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We study the low-energy electronic structure of heterostructures formed by one sheet of graphene placed on a
monolayer of NbSe2. We build a continuous low-energy effective model that takes into account the presence of
a twist angle between graphene and NbSe2, and of spin-orbit coupling and superconducting pairing in NbSe2.
We obtain the parameters entering the continuous model via ab-initio calculations. We show that despite the
large mismatch between the graphene’s and NbSe2’s lattice constants, due to the large size of the NbSe2’s Fermi
pockets, there is a large range of values of twist angles for which a superconducting pairing can be induced into
the graphene layer. In addition, we show that the superconducting gap induced into the graphene is extremely
robust to an external in-plane magnetic field. Our results show that the size of the induced superconducting gap,
and its robustness against in-plane magnetic fields, can be significantly tuned by varying the twist angle.

PACS numbers:

I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are extremely
interesting materials due to their unique electronic proper-
ties1–11 and the fact that in recent years experimentalists have
been able to isolate and probe TMD films only few atoms
thick, down to the monolayer limit. Some TMDs monolayers,
like MoSe2 and MoS2, are insulators with gaps of the order
of 1.5-2 eV. Other TMDs monolayers, such as NbSe2, NbS2,
TaSe2, TaS2 are metallic at room temperature and supercon-
ducting at low temperature. One feature that all TMDs have in
common is a strong spin-orbit coupling (SOC). In monolayer
TMDs the strongest effect of the SOC is a spin-splitting of the
conduction and valence bands around the K, and K ′, points
of the Brillouin zone (BZ)12–14. For the TMDs that are super-
conducting at low temperature, such a spin splitting causes the
superconducting pairing to be of the Ising type9 and therefore
extremely robust to external in-plane magnetic fields15–18. The
ability of metallic TMDs to exhibit superconductivity even in
the limit in which they are only one-atom thick, and the ro-
bustness of such superconducting state to external magnetic
fields make them very interesting systems both from a funda-
mental point of view and for possible applications.

Recent advances in fabrication techniques have made pos-
sible the realization of van der Waals (vdW) heterostructures
obtained by stacking crystals that are only few atoms thick19,20

In these structures the different layers are held together by
van der Waals forces. As a consequence the crystals that can
be used to create the structures, and their stacking configura-
tion, are not limited to the configurations allowed by chemical
bonds. This makes possible the realization of systems with
unique properties such as graphene–topological-insulator het-
erostructures in which graphene has a tunable spin-orbit cou-
pling depending on the stacking configuration21–25.

In graphene the conduction and valence bands touch at
the corners (K and K ′ points) of the hexagonal BZ, and
around these points the electrons behave as massless Dirac
Fermions26,27. This fact makes graphene an ideal semimetal in
which the polarity of the carriers can easily be tuned via exter-
nal gates. In addition, graphene has a very high electron mo-

bility due to its very low concentration of defects and the fact
that electron-phonons scattering processes do not contribute
significantly to the resistivity for temperatures as high as room
temperature28–30. All these features make graphene an ideal
system to probe, via tunneling setups, other materials and to
realize novel vdW heterostructures with tunable properties. In
particular, the fact, that the low energy states of graphene, in
momentum space, are located just at the K points of its BZ,
in vdW structures implies that by simply varying the twist an-
gle, graphene can be used as a momentum selective probe of
the electronic structure, and properties, of the substrate. The
work that we present below is an example of such momentum-
selective probing capability of graphene. In monolayer NbSe2

the Fermi surface (FS) is formed by a pocket around the Γ
point, and pockets around the K, and K ′ points. Contrary to
bulk NbSe2, in monolayer NbSe2 there is no selenium-like
FS pocket around the Γ point. As a consequence monolayer
NbSe2 is expected to be a single-gap superconductor with the
same gap at the Γ pocket as at the K pockets31. However, the
Γ and K pockets differ in the magnitude, and k dependence
around the pocket, of the spin-splitting induced by the spin-
orbit coupling. The splitting is much larger for the K pock-
ets and therefore the superconducting gap for these pockets
is much more robust to external in-plane magnetic fields than
for the Γ pocket. As we show below a graphene-NbSe2 het-
erostructure allows to probe separately NbSe2’s states around
the Γ point, and K point simply by tuning the relative twist
angle between graphene and NbSe2 and therefore to study the
difference between pockets of the interplay between spin-orbit
coupling and superconducting pairing.

In this work we study vdW heterostructures formed by
graphene and monolayer NbSe2. Our results show that despite
the large mismatch between the lattice constants of graphene
and NbSe2 in these structures a large superconducting pair-
ing can be induced into the graphene layer. In addition, we
show how such pairing depends, both in nature and struc-
ture, on the stacking configuration. Our results are relevant
also to other graphene-TMD heterostructures such as the ones
that can be obtained by replacing the NbSe2 monolayer by
a monolayer of NbS2, TaSe2, or TaS2 that have also been
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shown to be superconducting at low temperature18,32–34 and
show how graphene can be used to probe in these systems the
momentum-dependent superconducting gap and in particular
its multiband structure.

II. METHOD

In graphene the carbon atoms are arranged in a 2D hexag-
onal structure formed by two triangular sublattices, A and B,
with lattice constant ag =

√
3a = 2.46Å, with a = 1.42Å the

carbon-carbon atomic distance. The 2D structure of NbSe2 is
also formed by two triangular sublattices. One of the sublat-
tices is formed by the Nb atoms, the other by two Se atoms
symmetrically displaced by a distance u = 1.679Å above and
below the plane formed by the Nb atoms. The lattice constant
of NbSe2 is as = 3.48Å.13. Figure 1 shows the Brillouin
zone of graphene and NbSe2. In this figure and in the remain-
der we take kx to be in the direction connecting the valley K
with its time-reversed partner K′. Figure 1 (a) shows the rel-
ative orientation of the graphene’s and NbSe2’s BZs for the
case when the twist angle θ is zero and Figure 1 (b) for a case
when θ 6= 0.

FIG. 1: Brillouin zone for graphene and NbSe2, and corresponding
q-vectors for the case when θ = 0, (a), (c), and θ 6= 0, (b), (d).

To obtain the electronic structure of the graphene-NbSe2

structure for a generic twist angle and in the presence of su-
perconducting pairing in the NbSe2, we first need to estimate
the charge transfer between the graphene layer and NbSe2,
and the strength of the tunneling t between graphene and the
NbSe2 monolayer. To this effect we first obtain via ab-initio
the electronic structure of a commensurate graphene-NbSe2

structure. Let a1s = as[cos(π/3−θ)x−sin(π/3−θ)y], a2s =
as[cos(π/3 + θ)x + sin(π/3 + θ)y], be the primitive lattice
vectors for NbSe2, and a1g = ag[cos(π/3)x − sin(π/3)y],
a2g = ag[cos(π/3)x + sin(π/3)y], the primitive vectors for
graphene, with x and y the unit vectors in the x and y direc-
tion, respectively. In a commensurate stacking configuration

the primitive vectors satisfy the equation:

m1a1s +m2a2s = n1a1g + n2a2g (1)

where (m1,m2, n1, n2) are four integers constrained by the
following second order Diophantine equation:

(m2
1 +m2

2 −m1m2) =
a2
g

a2
s

(n2
1 + n2

2 − n1n2). (2)

Given that the lattice constant of graphene and NbSe are
highly incommensurate with respect to each other, Eq. 1
(or, equivalently, Eq. 2) can only be satisfied for structures
with primitive cells comprising a very large number of atoms
(∼1000). It is computationally extremely expensive to study
structures with such large primitive cells using ab-initio meth-
ods. For this reason we allow for few percents strain of the
graphene’s lattice so that Eq. 1 (or, equivalently, Eq. 2) can
be satisfied for structures with primitive cells comprising 100
atoms or less. In general the relative strain of the graphene’s
and NbSe2’s lattices will depend on the specific structure con-
sidered. We did not perform an energy minimization analysis
and chose to strain graphene rather than NbSe2 for conve-
nience. This is justified considering that the amount of charge
transfer between the graphene layer and NbSe2, and the mag-
nitude of the graphene-NbSe2 tunneling strength, are not ex-
pected to be affected by a small change of the graphenes or
NbSe2’s lattice constant

The ab-initio calculation were performed using the
Quantum-Espresso package35,36. We use full-relativistic ul-
trasoft pseudopotentials with the wavefunction kinetic energy
cutoff of 50 Ry. We adopted the Perdew-Burke-Ernzerhof
(PBE)37 as the exchange and correlation functional. We set the
vacuum thickness equal to 25Å to isolate the heterostructure
and avoid the interactions between the periodic layers along
the direction, (z), perpendicular to the layers. The interlayer
distance between graphene and NbSe2 was obtained by full
relaxation in the z-direction. The total energy was calculated
by using a 18 × 18 × 1 Monkhorst-Pack scheme grid for the
k points.

After having obtained the amount of charge transfer and
the strength of the tunneling between the graphene layer and
NbSe2 via ab-initio, we use a continuum model23,38–40 to
obtain the low-energy spectrum of the graphene-NbSe2 het-
erostructure for different values of the twist angle θ. In gen-
eral, the Hamiltonian Ĥ describing the graphene-NbSe2 het-
erostructure can be written as: Ĥ = Ĥg + Ĥs + Ĥt where
Ĥg is the Hamiltonian for graphene, Ĥs is the Hamiltonian
for NbSe2 and Ĥt is the term describing tunneling processes
between graphene and NbSe2.

In graphene the low energy states are located at the
Kg and K′g points of the BZ: Kg = (4π/(3ag), 0),
K′g = (−4π/(3ag), 0) (and equivalent points connected
by reciprocal lattice wave vectors). Close the Kg and
K′g points in graphene the electrons, at low energies, are
well described as massless Dirac fermions with Hamilto-
nians ĤKg

=
∑

k,ττ ′σσ′
c†Kg+k,τ ′σ′HKg

cKg+k,τσ, ĤK′
g

=



3∑
k,ττ ′σσ′

c†K′
g+k,τ ′σ′HK′

g
cK′

g+k,τσ, where

HKg
= ~vFk · τσ0 − µgτ0σ0, (3)

HK′
g

= −~vFk · τ ∗σ0 − µgτ0σ0, (4)

c†p,τσ (cp,τσ) is the creation (annihilation) operator for an
electron, in the graphene sheet, with spin σ and two-
dimensional momentum ~p = ~(px, py), k is a wave vec-
tor measured from K (K′), vF = 106 m/s is graphene’s
Fermi velocity, µg graphene’s chemical potential, and τi, σi
(i = 0, 1, 2, 3)) are the 2 × 2 Pauli matrices in sublattice and
spin space, respectively. As a consequence, when consider-
ing the states of graphene close to the Kg (K′g) point we have
Hg = HKg (Hg = HK′

g
).

In NbSe2 the low energy states are located close to the Γ,
K, and K′ points of the BZ: Ks = (4π/(3as), 0), K′s =
(−4π/(3as), 0) (and equivalent points connected by recip-
rocal lattice wave vectors). Close the Γ point the effective
low-energy Hamiltonian for NbSe2 takes the form HΓs =∑

kσσ′ d
†
k,σHΓsdk,σ′ , where d†k,σ (dk,σ) is the creation (an-

nihilation) operator for an electron in NbSe2 with momentum
k and spin σ, and HΓs is the effective low energy Hamilto-
nian matrix for the conduction band of NbSe2. By fitting the
ab-initio results we obtain:

HΓs = ε0Γ(k)σ0 + λΓ(k)σz (5)

where

ε0Γ(k) = η0Γ + η2Γk+k−

λΓ(k) = l3Γ

[(
k3

+ + k3
−
)

cos(3θ) + i
(
k3

+ − k3
−
)

sin(3θ)
]
,

(6)

k± = kx ± iky , and η0Γ, η2Γ, l3Γ are constants:

η0Γ = 0.5641 eV,

η2Γ = −7.0640 eV [as/(2π)]2,

l3Γ = 0.5085 eV [as/(2π)]3. (7)

Close to the corners of the BZ of NbSe2, the Ks and K′s
points, for NbSe2 we have HKs

=
∑

kσσ′ d
†
k,σHKs

dk,σ′ ,
HK′

s
=
∑

kσσ′ d
†
k,σHK′

s
dk,σ′ , where k is now a wave vec-

tor measured from the Ks, K′s point, respectively, and

HKs
= ε0(k)σ0 + ε3(k)σ0 + λ(k)σz (8)

HK′
s

= ε0(k)σ0 − ε3(k)σ0 − λ(k)σz (9)

(10)

where,

ε0(k) = η0 + η2k+k−,

ε3(k) = η3

[(
k3

+ + k3
−
)

cos(3θ) + i
(
k3

+ − k3
−
)

sin(3θ)
]
,

λ(k) = l0 + l2k+k−, (11)

and η0, η2, η3, l0, l2, are constants that we extracted from the
ab-initio results for an isolated monolayer of NbSe2:

η0 = 0.4526 eV,

η2 = −9.0940 eV [as/(2π)]2,

η3 = 3.07 eV [as/(2π)]3,

l0 = 0.0707 eV,

l2 = −0.33 eV [as/(2π)]2. (12)

Let pg , ps, be the wave vector of an electron in graphene,
NbSe2, respectively. In the remainder we consider only mo-
mentum and spin conserving tunneling processes. Conserva-
tion of crystal momentum requires

ps + Gs = pg + Gg, (13)

where Gg and Gs are reciprocal lattice vectors for graphene
and NbSe2 respectively. For the purpose of developing a con-
tinuum low energy model for a graphene-NbSe2 heterostruc-
ture it is more convenient to consider the twist angle θ as rel-
ative twist between BZ’s, as shown in Fig. 1. For θ = 0 the
K point of graphene’s and NbSe2’s BZs are on the same axis.
Depending on the value of θ we can have two situations: the
low energy states of graphene, in momentum space, are close
to NbSe2’s Fermi pockets around the K and K′ points, or,
considering NbSe2’s extended BZ, to NbSe2’s Fermi pocket
around the Γ point. In the first case the conservation of the
crystal momentum, Eq. (13), takes the form:

ks = kg + (Kg −Ks) + (Gg −Gs) (14)

where ks kg are momentum wave vectors measured from Kg

and Ks, respectively. By replacing Kg , Ks, with K′g , and K′s
in Eq. (14) we obtain the momentum conservation equation
valid for momenta taken around the K′ points. In the second
case Eq. (13) takes the form:

ks = kg + Kg + (Gg −Gs) (15)

and similarly for momenta around K′g .
The conservation of the crystal momentum implies that the

tunneling term takes the form:

Ĥt =
∑

GgGsτσ

T̂τσσ′(pg+Gg)e
−iGg·dτ c†pgτσdpg+(Gg−Gs)σ′+h.c.

(16)
where dτ is the position of the carbon atom on sublattice τ
within the primitive cell of the graphene sheet. For sublattice
A dτ = (0, 0), for sublattice B dτ = (a0, 0), with a0 the
carbon-carbon distance.

Considering that, as shown in table I, the separation d =
3.57Å between the graphene sheet and NbSe2 is much larger
than the interatomic distance in each material, in momentum
space, the tunneling amplitude t(p) decays very rapidly as a
function of p40 and so in Eq.(16) we can just keep the terms
for which (pg + Gg) is smallest, i.e., restrict the sum to
Gg = 0 and the two Gg that map K (K′) to the two other
equivalent points in the BZ and set t = t(K). The sum over
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Gs is restricted by the fact that we only need to keep terms
for which the graphene’s and NbSe2’s states have energy sep-
arated by an amount of the order of t.

Let q = ks − kg . The above considerations imply that
for the case when the Kg and Ks are close we only need to
keep the terms for which |q| = |Kg −Ks|, given that these
are the terms for which (pg + Gg) that satisfies Eq. (14) is
smallest. Due to the C3v symmetry of the hexagonal struc-
ture there are three equivalent K points, K1, K2, K3, (and
K′ points), i.e. two reciprocal lattice wave vectors G con-
necting equivalent corners of the BZ. There are three vec-
tors qiK = (Kg − Ks) + (Ggi − Gsi) (i = 1, 2, 3)
such that |qi| = |Kg − Ks|. q1K is obtained by tak-
ing Gg1 = 0 and Gs = GsK1 ≡ 0, q2K by taking
Gg = Gg2 ≡ 4π/(

√
3ag)[cos(5π/6), sin(5π/6)], Gs =

GsK2 ≡ 4π/(
√

3as)[cos(5π/6+θ), sin(5π/6+θ)], and q3K

by taking Gg = Gg3 ≡ 4π/(
√

3ag)[cos(7π/6), sin(7π/6)],
Gs = GsK3 ≡ 4π/(

√
3as)[cos(7π/6 + θ), sin(7π/6 + θ)].

When the graphene’s low energy states are close to the
Γ pocket of NbSe2’s second BZ the smallest possible value
of |q| is |Kg − Gs| with Gs = 4π/(

√
3as)[cos(−π/6 +

θ), sin(−π/6+θ)]. As before, considering theC3v symmetry,
there are three vectors qiΓ with this magnitude: q1Γ obtained
by taking Gg = 0, Gs = GsΓ1 ≡ 4π/(

√
3as)[cos(−π/6 +

θ), sin(−π/6 + θ)], q2Γ obtained by taking Gg = Gg2,
Gs = GsΓ2 ≡ 4π/(

√
3as)[cos(π/2 + θ), sin(π/2 + θ)],

and q3Γ obtained by taking Gg = Gg3, Gs = GsΓ3 ≡
4π/(
√

3as)[cos(7π/6 + θ), sin(7π/6 + θ)],
By retaining only the tunneling terms for which t(pg+Gg)

is largest, when considering the graphene states close to the
Kg point so that Hg = HKg

, we can rewrite Ĥt as

Ĥt =

3∑
i=1

c†kgτσT
†
Kg,i,τσσ′dkg+qi,σ′ + h.c. (17)

with:

T †Kg,1
=

[
t 0 t 0
0 t 0 t

]
(18)

T †Kg,2
=

[
t 0 te−iGg2·dB 0
0 t 0 te−iGg2·dB

]
(19)

T †Kg,3
=

[
t 0 te−iGg3·dB 0
0 t 0 te−iGg3·dB

]
. (20)

In the remainder, supported by DFT results, we take t to be
the same both when the graphene’s low energy states tunnel
into states around the K (K′) point and the Γ point of NbSe2.
Let γ ≡ t/~vF |qi|. When γ < 1 we can develop a pertur-
bative approach in which γ is the small parameter40,41: terms
of order γn correspond n-tuple tunneling processes. For our
situation, as we show in the following section, γ � 1 and so
we can retain just the lowest order terms in γ.

It is convenient to define the following spinors:

C†k = (c†kA↑, c
†
kA↓, c

†
kB↑, c

†
kB↓);

D†Γk = (d†k↑, d
†
k↓);

D†K,k = (d†Ks+k↑, d
†
Ks+k↓);

Ψ†KgΓsk
= (C†k, D

†
Γ,k+q1Γ

, D†Γ,k+q2Γ
, D†Γ,k+q3Γ

);

Ψ†KgKs,k = (C†k, D
†
K,k+q1K

, D†K,k+q2K
, D†K,k+q3K

).

For the case when the graphene’s FS overlaps with the
NbSe2’s pocket close to the K point, we can then express
the Hamiltonian for the graphene-NbSe2 system as ĤKgKs =∑

k Ψ†k,KgKsHKgKs(k)Ψk,KgKs with

HKgKs(k) =


HKg

(k) TKg,1 TKg,2 TKg,3

T †Kg,1
HKs+GsK1

(k + q1K) 0 0

T †Kg,2
0 HKs+GsK2

(k + q2K) 0

T †Kg,3
0 0 HS

Ks+GsK3
(k + q3K)

 . (21)

For the case when we consider graphene states close to the
K′g point, so that Hg = HK′

g
, the expression of the Hamil-

tonian matrix HK′
gK

′
s
(k) for the graphene-NbSe2 system,

within the approximations described above, can be obtained
from Eq. (21) by doing the following substituions: Ks → K′s,
Ggi → −Ggi, Gsi → −Gsi, qiK → −qiK and noticing
that TK′

g,i
= T ∗Kg,i

. Similarly, when the low energy states of

graphene are close to the Γ point of NbSe2 the Hamiltonian
HKgΓ(k) (HK′

gΓ(k)) is obtained from the expression (21)
for HKgKs(k) via the substitutions Ks + GsKi → GsΓi

(K′s −GsKi → −GsΓi), and qiK → qiΓ (q′iK → −qiΓ).

Including the superconducting pairing, the effective low-
energy Hamiltonian for NbSe2 for states close to the Γ point
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takes the form

Ĥ
(SC)
Γs

=
∑
k

Ψ†ksH
(SC)
Γs

Ψks, (22)

where Ψ†ks is the Nambu spinor Ψ†ks = (D†k, D−k),

H
(SC)
Γs

=

[
HΓs(k) i∆Γσ2

−i∆Γσ
∗
2 −HT

Γs
(−k)

]
, (23)

HΓs(k) is given by Eq. (5), and ∆Γ is the size of the super-
conducting gap of NbSe2 close to the Γ point.

For states close to Ks, including the superconducting pair-
ing, the Hamiltonian for NbSe2 becomes

Ĥ
(SC)
sK =

∑
kn

Ψ†ksH
(SC)
sK Ψks , (24)

where now k (−k) is understood to be measured from Ks

(K′s), and

H
(SC)
sK =

[
HsKs

(k) i∆Kσ2

−i∆Kσ
∗
2 −HT

sK′
s
(−k)

]
, (25)

HsKs
(k), HsK′

s
(k) are given by Eq. (8).

For monolayer NbSe2 the superconducting gap is expected
to have the same value, ∆, on the Γ and K pocket. In the
remainder we conservatively assume ∆ = 0.5 meV31.

The Hamiltonian for the graphene-NbSe2 system in-
cluding the superconducting pairing in NbSe2. For the
case when Kg is close to Ks the Hamiltonian becomes
Ĥ

(SC)
KgKs

=
∑

k Ψ†KgKs,SC,kH
(SC)
KgKs

(k)ΨKgKs,SC,k, with

Ψ†KgKs,SC,k = (Ψ†KgKs,k,Ψ
T
K′
gK

′
s,−k),

H
(SC)
KgKs

(k) =

[
HKgKs(k) ∆KΛ

∆KΛ† −HT
K′
gK

′
s
(−k)

]
, (26)

and

Λ =

 04×4 04×2 04×2 04×2

02×4 iσ2 02×2 02×2

02×4 02×2 iσ2 02×2

02×4 02×2 02×2 iσ2

 (27)

where 0m×n is the zero matrix with m rows and n columns.
Similarly, for the case when the low energy states of

graphene are close to the Γ point of the extended BZ of NbSe2

the Hamiltonian for the whole system becomes Ĥ(SC)
KgΓs

=∑
k Ψ†KgΓs,SC,k

H
(SC)
KgΓs

(k)ΨKgΓs,SC,k, with Ψ†KgΓs,SC,k
=

(Ψ†KgΓs,k
,ΨT

K′
gΓs,−k),

H
(SC)
KgΓ (k) =

[
HKgΓ(k) ∆ΓΛ

∆ΓΛ† −HT
K′
gΓ(−k)

]
. (28)

III. RESULTS

The large lattice mismatch between graphene and NbSe2

would suggest that even in the absence of any twist angle

the electronic states of the two systems would not hybridize.
However, this does not take into account the large size of
NbSe2’s Fermi pockets. As shown in Fig. 2 there is a large
set of values of θ for which the Dirac point of graphene inter-
sects the NbSe2’s FS either around the K points, or around
the Γ point in the repeated zone scheme. For these points the
electronic states of graphene and NbSe2 are expected to hy-
bridize.

FIG. 2: Overlap of the Fermi surfaces of monolayer NbSe2 and
graphene. The blue (green) FSs are the NbSe2 FSs for spin up
(down) respectively, the black circle shows the position of the
graphene Dirac point for all the possible twist angles, and the red
circles show the region within which the graphene FS is confined as
the twist angle is varied.

From the results shown in Fig. 2 we see that for small val-
ues of θ, we can expect that the graphene’s low energy states
close to the Dirac point will hybridize with the NbSe2’s states
close to the K point. For values of θ close to 30◦ we see
that graphene’s states will hybridize with NbSe2’s states close
to the Γ point. For this reason, to estimate the charge trans-
fer and the strength of the graphene-NbSe2 tunneling in the
two situations, we performed ab-initio calculations for a com-
mensurate heterostructure with θ = −65.2◦, and one with
θ = 33.0◦. The parameters identifying these commensurate
structures are given in table I and the corresponding primitive
cells are shown in Fig. 3.

TMD (m1,m2, n1, n2) as(Å) ag(Å) %δag θ |A|(Å) d(Å) µG(eV )

NbSe2 (−2, 1,−4,−3) 3.4813 2.55 3.7% −65.20 9.2 3.57 -0.40
NbSe2 (−1, 2, 1, 4) 3.4813 2.55 3.7% 33.00 9.2 3.57 -0.40

TABLE I: Parameters for graphene-NbSe2 commensurate structures.

The ab-initio calculations return the band structure shown
in Fig. 4, 5. In these figures the dashed blue lines show the
bands of isolated graphene. The left panels show the results
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FIG. 3: Commensurate graphene-NbSe2 structure corresponding to
the parameters listed in Table I. (a) is the configuration for θ =
−65.20. (b) is the configuration for θ = 33.00. The red (blue)
spheres show Nb (Se) atoms, the graphene lattice is shown in yellow.

obtained without including spin-orbit effects and the right
panels the results obtained taking into account the presence
of spin orbit coupling. Panels (c) and (d) show an enlarge-
ment at low energies of the results shown in panels (a) and
(b).

FIG. 4: Bands for the commensurate graphene-NbSe2 structure
shown in Fig. 3 (a) for which θ = −65.2◦ so that graphene’s FS
overlaps with NbSe2’s FS pocket around the K point. (a) No SOC,
(b) with SOC. (c): low energy detail of (a). (d): low energy detail of
(b).

The results of Fig. 4, 5 clearly show that there is a signifi-
cant charge transfer between graphene and monolayer NbSe2

resulting in hole doping of the graphene sheet correspond-
ing to a Fermi energy of about -0.4 eV. They also show that
the amount of charge transfer does not depend on the value
of the twist angle θ. Considering the finite extension of the
graphene’s FS due to the charge-transfer shown in Fig. 4 5
between NbSe2 and graphene, we obtain that there is a sig-
nificant range of values of θ for which the graphene’s FS in-
tersects the NbSe2 FS and for which we can then expect non-
negligible hybridization of the graphene’s and NbSe2 states.
This is shown in Fig. 2 in which the red circles delimit the
boundaries of the graphene’s FS as θ is varied. Table II
shows the range of values of θ extracted from Fig. 2 for which
the graphene’s FS is expected to intersect either one of the

FIG. 5: Bands for the commensurate graphene-NbSe2 structure
shown in Fig. 3 (b) for which θ = 33◦ so that graphene’s FS overlaps
with NbSe2’s FS pocket around the Γ point. (a) No SOC, (b) with
SOC. (c): low energy detail of (a). (d): low energy detail of (b).

NbSe2’s FS pockets around theK (K ′) point, or around the Γ
point. In this table θm(K) (θm(Γ)) is the angle in the mid-
dle of the range 2δθ(K) (2δθ(Γ)) of angles for which the
graphene’s FS intersects the NbSe2’s FS.

TMD (1L) θm(K) δθ(K) θm(Γ) δθ(Γ)

NbSe2 00 + n ∗ 600 7.20 21.90 + n ∗ 600 3.90

37.50 + n ∗ 600 3.90

TABLE II: Values of the twist angle θ for which the graphene’s FS
overlap with NbSe2’s FS pocket around the K point or Γ point.
For θm(K)− δθ(K) ≤ θ ≤ θm(K) + δθ(K), θm(Γ)− δθ(Γ) ≤
θ ≤ θm(Γ) + δθ(Γ), graphene’s FS overlaps NbSe2’s K pocket, Γ
pocket, respectively. n is an integer between 0 and 5.

The ab-initio results allow us also to estimate the
strength of the tunneling between graphene and NbSe2. In
Figs. 4 (c), (d), 5 (c), (d) we can see the avoided cross-
ings close to the Fermi energy between the graphene’s and
NbSe2’s bands. The amplitude of such crossings provides
an estimate of the tunneling strength t between the graphene
sheet and the monolayer of NbSe2. We find that both for the
case when the graphene’s FS intersects the NbSe2’s pocket
around the K point and when it intersects the NbSe2’s FS
pocket around the Γ point, t ≈ 20 meV and so in the remain-
der we set t = 20 meV.

We first consider the case when graphene’s FS intersects
the FS pocket of NbSe2 close to the K point, i.e. −7.2◦ <
θ < 7.2◦, and ∆ = 0. Figure 6 shows the results for the FS
of the hybridized system in the limit when no superconduct-
ing pairing is present in NbSe2: the left (right) column shows
the FS around the K (K′) of graphene. Figure 6 (a), (b) show
the relative position in momentum space of graphene’s FS and
NbSe2’s FS for the case when θ = 0 and t = 0, taking into ac-
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count the “folding” of the NbSe2’s FS pockets due to the fact
that the three K (K′) corners of the BZ are equivalent. The
graphene FS is shown in red and the spin splitted NbSe2’s
FS in blue and green. We use this color-convention through-
out this work. A zoom closer to the graphene’s K point,
Figs 6 (c), (d), clearly shows the overlap of the graphene’s
FS with the NbSe2’ FS pockets. When t 6= 0 the graphene’s
and NbSe2’s states hybridize giving rise to the reconstructed
FSs shown in Fig. 6 (e), (f). Figures 6 (e), (f) show that the
graphene’s FS, due to the hybridization with NbSe2, becomes
spin split.

FIG. 6: (a) Graphene’s FS at the K point (in red) and NbSe2’s FS
(in red and green) for θ = 0, for which graphene’s low energy states
are close to NbSe2’s K point. Because of SOC the NbSe2 FS for
spin-up, shown in blue is different from the NbSe2’s FS for spin
down, shown in green. The arrows show the vectors qiK . (b) Same
as (a) but for graphene’s valley around the K′point. (c), (d) zoom of
(a), and (b), respectively. (e) FS of graphene-NbSe2 heterostructure
around graphene’s K valley for the case when a finite tunneling t =
20 meV between graphene and NbSe2 is present. (f) Same as (e) for
graphene’s K′ valley.

Figure 7 shows the results for the case when θ = 2◦, left
column, and θ = 6◦, right columns. For these values of the
twist angle the low energy states of graphene are still close
to the low energy states of NbSe2 located around NbSe2’s K
points. For θ = 2◦ the graphene’s and NbSe2’s low energy
states are still close enough (in momentum and energy) that,
for t = 20 meV, the hybridization is strong enough to signif-
icantly modify the FS of the combined system, as shown in
Fig 7 (c), obtained setting ∆ = 0. For θ = 6◦ the graphene’s
and NbSe2’s FSs are tangent at isolated points as shown in

Fig. 7 (b). As a consequence, when t 6= 0 the states at the FS
of graphene and NbSe2 only hybridize around these “tangent-
points”, as shown in Fig. 7 (d) obtained for t = 20 meV and
∆ = 0.

7

FIG. 6: Left and right panel show the Fermi surface at valley K and
K’ when ✓ = 00. [Note: need to use axes label consistent with
notation in text]

twist angel the low energy states of graphene are still close
to the low energy states of NbSe2 located around NbSe2’s
K points. For ✓ = 2� the graphene’s and NbSe2’s low en-
ergy states are still close in enough (in momentum and energy)
that for t = 20 meV there is a strong hybridization between
graphene’s and NbSe2’s states to significantly modify the FS
of the combined system, as shown in Fig 7 (c), obtained set-
ting � = 0 in NbSe2. Such strong hybridization implies that
also for ✓ = 2�, when � = 1.4 meV for NbSe2 K FS pocket,
the FS of the combined system is completely gapped. Fig 7 (e)
show the low energy band structure of the combined system
(same conventions as in Fig 6), from which we can extract
�ind =XX meV.

For ✓ = 6� the graphene’s and NbSe2’s FSs are tangent at
isolated points [Note: Is this consistent with 7.2 value in
the table above?] as shown in Fig. 7 (b). As a consequence,
when t 6= 0 the states at the FS of graphene and NbSe2 only
hybridize at these “tangent-points”, as shown in Fig. 7 (d) ob-
tained for t = 20 meV and � = 0. In this situation, setting
� = 1.4 meV we find that for the graphene-NbSe2 system
only the sections of the FS close to the tangent-points are
gapped, Fig. 7 (d). We should point out that the results of
Fig. 7 (d) were obtained using 50 µeV energy resolution and
so do not exclude the possibility that a gap smaller or equal
to 50 µeV might be present. The results of Fig. 7 (d) show
that that for ✓ = 6� the graphene-NbSe2 heterostructure is
expected to behave as a gapless superconductor38 with nodes
along the directions shown in Fig. 7 (d) [Note: Need to add
arrow to show gapless directions, but we need to first see
also results for K’ point] .

The results of Figs. 6-7 show that by varying the twist an-
gle ✓ we can tune the strength of the superconducting gap in

FIG. 7: (a) and (c) are the Fermi surfaces for ✓ = 20 when there is
no hopping and with hopping t = 20 meV. (b) and (d) are the Fermi
surfaces for ✓ = 60 when there is no hopping and with hopping t =
20 meV. (e) and (f) are the Fermi surfaces for ✓ = 90 without and
with superconductivity pairing, respectively.

graphene-NbSe2 systems and drive the system from a situa-
tion in which the FS is fully gapped to a situation in which
the superconducting gap has nodes and finally to a situation
superconductivity coexists with a fully gapless FS pocket as
the case shown in Fig.?? (b).

We now consider the case when the graphene’s FS touches,
in the extended BZ, the NbSe2’s FS pocket around the �
point. Figure 8 shows the results when ✓ = 20�, situation for
which the overlap between the graphene’s FS and the NbSe2’s
pocket at the � point is highest. Figure 8 (a) shows, on a fairly
large scale, the configuration of the graphene’s and NbSe2’
FSs, in the absence of any interlayer tunneling, and the cor-
responding qi vectors. Figure 8 (b) shows an enlargement, at
small momenta, of Fig. 8 (a) from which we can see that the
graphene’s FS and the NbSe2 spin-splitted FS intersect at sev-
eral points. At these intersections the graphene’s and NbSe2’s
states strongly hybridize causing the FS of the system to take
the form shown in Fig. 8 (c), for the case when t = 20 meV,
and �� = 0. When �� = 0.5 meV15 the FS is completely
gapped. Fig. 8 (d) show the low energy band structure of the
graphene-NbSe2 systems along the � � XX direction of the
mini-BZ, from which we can extract the induced gap �

(ind)
�

=XX meV. [Note: It seems that �ind might larger here
than for ✓ = 0, and that would be a bit surprising, need
to double check.] [Note: We need to be careful when
estimating �

(ind)
� by considering all possible directions.]

[Note: We should show the direction chosen for the band
structure in figure (c)] .

As ✓ moves away from 20� the graphene’s and NbSe2’s FSs
overlap less. For ✓ = 18� the overlap is still significant, the
graphene’s and NbSe2’s FS still intersect, Fig. 9 (a), resulting

FIG. 7: Graphene’s and NbSe2’s FSs for θ = 2◦, (a), and θ = 6◦

in the limit t = 0. (c) FS of graphene-NbSe2 heterostructure for the
case when t = 20 meV, and θ = 2◦. (d) Same as (c) for θ = 6◦

We now consider the case when a superconducting gap is
present in NbSe2. We find that for θ = 0 the FS is completely
gapped but the gap is not uniform. Figure 8 (a) shows the
lowest positive electron energy, Ec, as a function of k. The
smallest value of Ec(k) corresponds to the induced supercon-
ducting gap ∆ind. For θ = 0 we find ∆ind = 0.05 meV.
By calculating the smallest value of Ec(k) for each angle
φk = arctan(ky/kx) we obtain the angular dependence of
∆ind. This is shown in Fig. 8 (b) for the case when the twist
angle is zero. We see that ∆ind is strongly anisotropic, with
a C3v symmetry, a reflection of the structure of the recon-
structed FS, Fig. 6 (e), 7 (c).

As the twist angle θ increases ∆ind decreases becoming
vanishing small for θ & 9◦. Figure 8 (c) shows Ec(k) when
θ = 9◦. From this figure we see that the location whereEc(k)
is minumum appears to correspond to the original graphene’s
FS for which |k| = kF,g . A closer inspection however reveals
small oscillations as a function of φk, as shown in Fig. 8 (d)
where Ec(k) is plotted as function of φk and |k| for a small
range of |k| centered at kF,g.

We now consider the case when the graphene’s FS touches,
in the extended BZ, the NbSe2’s FS pocket around the Γ
point. Figure 9 shows the results when θ = 20◦, situa-
tion for which the overlap between the graphene’s FS and
the NbSe2’s pocket at the Γ point is largest. The left row
show the results for the K point, the right the ones for the
K′ point. Figure 9 (a), (b), show, on a fairly large scale, the
configuration of the graphene’s and NbSe2’ FSs, in the ab-
sence of any interlayer tunneling, and the corresponding qi
vectors. Figure 9 (c), (d) show a zoom, at small momenta,
of Fig. 9 (a) and (b), respectively, from which we can see
that the graphene’s FS and the NbSe2’s spin-split FS inter-
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FIG. 8: (a) Ec(k) for θ = 0. (b) ∆ind(φk) for θ = 0. (c) Ec(k)
for θ = 9◦. (d) Ec(φk, |k|) for θ = 9◦ and |k| close to the original
graphene’s Fermi wave vector kF,g .

sect at several points. At these intersections the graphene’s
and NbSe2’s states strongly hybridize causing the FS of the
system to take the form shown in Fig. 9 (e), (f), for the case
when t = 20 meV, and ∆Γ = 0.

As θ moves away from 20◦ the overlap of the graphene’s
and NbSe2’s FSs is reduced. For θ = 18◦ the overlap is
still significant, the graphene’s and NbSe2’s FS still inter-
sect, Fig. 10 (a), resulting in a significantly modified FS for
the graphene-NbSe2 system, Fig. 10 (c). For θ = 16◦ the
graphene’s and NbSe2’s FSs merely touch, Fig. 10 (b). As a
consequence the FS of the hybridized system, for t = 20 and
∆Γ =0, is quite similar to the FS of the two isolated systems.

The superconducting gap on the NbSe2’s Gamma pocket
induces a gap in the graphene layer when θ is around
22◦. Figure 11 (a)-(c) show the profile of Ec(k) for θ =
(20◦, 22◦, 16◦), respectively. As θmoves away from 22◦∆ind

decrease. Figure 11 (d) show Ec(k) as function of φk and |k|
for a small range of |k| centered at kF,g for the case when
θ = 16◦ and the original FSs of graphene and NbSe2 barely
touch. As for the case then θ = 9◦ we see that also for
θ = 16◦ ∆ind is very small and oscillates as function of φk
for |k| ≈ kF,g.

Using tunneling experiments42,43 it is possible to obtain
the density of states, DOS, of van der Waals systems like
graphene-NbSe2. From the DOS it is then straightforward
to extract the value of the induced superconducting gap. Fig-
ure 12 (a) shows the total DOS as a function of energy on a
linear-log scale. We observe the coherence peaks correspond-
ing to the NbSe2’s superconducting gap. Below such coher-
ence peaks the DOS remains finite, because of the graphene’s
states, until the energy is equal to ∆ind. When the energy is
equal to ∆ind the DOS rapidly goes to zero given that at that
energy also the graphene’s states become gapped. By ana-
lyzing the DOS at small energies we can find how it depends
on the twist angle, as shown in Fig. 12 (b), and (c). Figure

FIG. 9: Fermi surfaces for θ = 20◦, situation for graphene’s FS
overlaps with NbSe2’s pocket Γ. Left and right panels show the
results for the Dirac bands at valley K and K′, respectively. (a), (b)
FSs for t = 0. (c), (d) zoom of (a) and (b), respectively. (e), (f) FSs
for t = 20 meV.
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FIG. 8: The fermi surfaces are shown when Dirac bands overlap with
pocket �. The rotation angle is selected to be ✓ = 200. Left and
right panels are corresponding to Dirac bands at valley K and K’,
respectively. (a-d) are calculated without hopping between graphene
and NbSe2. (e-f) are the spin projection when tunneling is turned
on with hopping energy t = 20 meV. [Note: Add qs. Show spin
polarization for hybridized FS]

in a significantly modified FS for the graphene-NbSe2 system
in the limit t = 0, �� =0, Fig. 9 (b), and fully gapped FS
for �� =0.5 meV, but �(ind)

� =XX meV smaller than for the
case when ✓ = 20�. For ✓ = 16� the graphene’s and NbSe2’s
FSs do not intersect but merely touch, Fig. 9 (b). As a conse-
quence the FS of the hybridized system, for t = 20 and ��

=0, is quite similar to the FS of the two isolated systems. For
�� =0.5 meV, for ✓ = 16� the FS of the hybridized system
is gapped only close to the points where the graphene’s and
NbSe2’s FSs crosses giving rise to a gap structure with nodes,
as we can infer from the FS shown in Fig. 9 (d). Similarly to
the case when ✓ = 6�, Fig 7 also for ✓ = 16� in the graphene
layer we have a gapless superconducting state that we expect
will exhibit in-plan anisotropic transport properties.

As for the case when the graphene’s FS is close to the
NbSe2’s K (K 0) pockets, we have that when the graphene’s
FS is close to the NbSe2’s � pocket, the size of the supercon-
ducting gap induced into the graphene layer, �(ind)

� , can be
tuned by varying the twist angle ✓.

Using tunneling experiments? ? ? it is possible to obtain
the density of states (DOS) of van der Waals systems like
graphene-NbSe2. When calculating the low energy DOS it
must be considered that NbSe2 has low energy states both
around the � point and the K, K 0 points. For values of ✓ in the
range (�7.2�, 7.2�), considering that � ⌧ 1, the low energy
states of NbSe2 close to the � point will not be affected by the
presence of graphene, but they still have to be taken into ac-
count when calculating the DOS. Figure ?? show the DOS for

FIG. 9: (a) and (c) are the Fermi surfaces for ✓ = 180 without and
with hopping. (b) and (d) are the Fermi surfaces for ✓ = 160 without
and with hopping. (e) is the low energy bands for ✓ = 200 when
pairing is turned on. (f) is the Fermi surface with superconductivity
pairing for ✓ = 160.

graphene-NbSe2 heterostructure when ✓ = 0, for a relatively
large energy window using a linear scale. The two coherence
peaks due to the two different gaps in NbSe2 are the main
features of the DOS also for the graphene-NbSe2 heterostruc-
ture. However, a plot of the DOS using a log-scale reveals low
energy features due to the hybridization of the graphene and
NbSe2 states. Figure ?? shows the low energy DOS of the
graphene-NbSe2 system for several values of ✓ close to zero,
i.e., for the case when the Kg is close to Ks, and Figure 10
it for several values of ✓ close to 20�, i.e., for the case when
the Kg is close to � point of NbSe2’s extended BZ. From
Figs. ??, 10 we see that at low energies the DOS exhibits sev-
eral features due to the hybridization of the states of graphene
and NbSe2.

From the results for the case when no superconducting pair-
ing in NbSe2 is present we know that no gap at the FS is
induced simply by the hybridization of graphene and NbSe2

states. Therefore, by identifying the value of the energy below
which the DOS vanishes we can extract the size �ind of the
superconducting gap induced into the graphene layer. This is
shown, as function of ✓ in Fig. 11. [Note: expand a bit dis-
cussion once we have final results emphasizing tunability
of gap] .

[Note: Results in the presence of a magnetic field] .

FIG. 10: (a) FSs for θ = 18◦ and t = 0. (b) FSs for θ = 16◦ and
t = 0. (c) FSs for θ = 18◦ and t = 20 meV. (d) FSs for θ = 16◦

and t = 20 meV.

12 (b) shows the low energy DOS for several values of θ close
to zero, i.e., for the case when Kg is close to Ks, and Fig-
ure 12 (b) shows it for several values of θ close to 20◦, i.e., for
the case when the Kg is close to Γ point of NbSe2’s extended
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FIG. 11: Ec(k) for: θ = 20◦, (a), θ = 22◦, (b), and θ = 16◦,
(c). For θ = 16◦ the induced superconducting gap is very small.
Panel (d) shows the value of Ec(φk, |k|) for θ = 16◦.

BZ.
From results like the ones showed in Figs. 12 (b), (c), we

can extract the size of the induced superconducting gap and
in particular its dependence on the twist angle, Fig. 13. We
see that ∆ind has a fairly sharp peak for θ = 23◦ (we used
a 0.5◦ resolution) where it reaches the value of 0.087 meV.
This is due to the fact that for θ ≈ 23◦ there is a very strong
overlap of the graphene’s and NbSe2 Fermi surfaces. ∆ind

rapidly decrease as θ deviates from 23◦ and becomes an order
of magnitude smaller when θ = 16◦. ∆ind(θ) has a lower
and broader peak for θ = 0, for wich ∆ind =0.05 meV, i.e.,
for the situation in which the graphene’s FS has the maximum
overlap with the NbSe2 K pockets. As θ increases from zero
∆ind smoothly decreases and becomes negligible for θ ≈ 9◦.
Due to the symmetry of the system the behavior of ∆ind(θ)
has a “mirror” symmetry around θ = 30◦ and is periodic with
period equal to 60◦, as exemplified by Fig. 13. We notice that
the range of values of θ for which ∆ind is not vanishingly
small is larger than what we can infer by simply looking at
the overlaps of the graphene’s and NbSe2’s FSs, Fig. 2. The
reason is that for finite t graphene’s and NbSe2’s states that
are within the energy window |t| can still hybridize resulting
in a nonzero ∆ind.

Figure 13 shows that in a graphene-NbSe2 structure the su-
perconducting gap can be strongly tuned by varying the twist
angle and that, counterintuitively, the maximum induced gap
is achieved for a value of θ for which the graphene’s FS over-
laps with the Γ pocket of NbSe2 in the second BZ.

Due to the strong spin-orbit coupling in NbSe2 the in plane
critical field is much larger than the field corresponding to the
Pauli paramagnetic limit. Due to the fact that SOC is also in-
duced into the graphene layer via proximity effect we find that
also for graphene-NbSe2 heterostructures the in plane upper
critical field is much larger than the Pauli paramagnetic limit.

(b) (c)

(a)

FIG. 12: (a) Plot full DOS for graphene-NbSe2 heterostructure for
θ = 0.. (b) Low energy zoom of panel (a), for several values of θ
for which the graphene’s FS is touching NbSe2 K point valley. (c)
Same (b) for values of θ for which the graphene’s FS overlaps with
NbSe2 pocket around the Γ point.

This is shown in Fig. 14 in which we plot the evolution of
∆ind in the presence of a Zeeman term Vz both for values of
θ corresponding to the case when the graphene’s FS overlaps
NbSe2’s K pockets (solid lines and circles), and for values of
θ corresponding to the case when the graphene’s FS overlaps
NbSe2’s Γ pocket (dashed lines and squares). We see that in
both cases ∆ind remains finite for Vz as large as 40 times the
induced gap of the system at zero magnetic field. However, it
is also evident that the suppression of ∆ind due to the mag-
netic field is weaker, and almost independent of θ, for the case
when graphene’s FS overlaps NbSe2’s K pockets. This is a
consequence of the fact that in NbSe2 the bands’ spin splitting
due to SOC is much stronger for the K pockets than for the Γ
pocket.

From Fig. 14 we notice that for θ = 22◦ the dependence of
∆ind on the Zeeman term deviates from the dependence that
we find for the other values of θ: ∆ind suddenly decreases
when Vz ≈ 15∆ind(Vz = 0), and it exhibits oscillations
for larger values of Vz . The reason is that for this value of
θ there are several points in momentum space for which the
induced gap is close to the minimum value and, as shown in
Figs. 15 (a)-(c), as VZ increases the point, k∗, in momentum
space where the induced gap is minimum moves. This is in
contrast to what happens for other value of θ, for which the
gap is minimum always around the same points in k space,
Figs. 15 (d), regardless of the value of Vz . This implies, for
θ = 22◦, depending on the value of Vz the minimum gap
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FIG. 13: Induced gap ∆ind as a function of twist angle θ.

will be located at points with significantly different amount of
SOC-induced spin splitting of the original FSs, and therefore
different robustness against an in-plane magnetic field.

FIG. 14: Figure (a): Induced gap ∆ind as a function of Zeeman field,
Vz . The solid lines (circles) show the results for values of θ for which
graphene’s FS overlaps with NbSe2’s K pockets. The dashed lines
(squares) show the results for values of θ for which graphene’s FS
overlaps with NbSe2’s Γ pocket.

FIG. 15: Location k∗ in momentum space where ∆ind is minimum:
(a) θ = 22◦, Vz = 0; (b) θ = 22◦, Vz = 14∆ind(Vz = 0); (c)
θ = 22◦, Vz = 16∆ind(Vz = 0); (d) θ = 20◦, Vz = 0;

IV. CONCLUSIONS

In conclusion, we have shown that, despite the large lattice
mismatch between graphene’s and monolayer NbSe2’s lattice
constants, in graphene-NbSe2 heterostructures graphene ex-
hibit a significant proximity-induced superconducting gap for
a large range of stacking configurations. This is due to the
fact that NbSe2 has large FS pockets that overlap with the FS
of graphene for most twist angles. Using ab-initio calcula-
tions we have obtained the amount of charge transfer between
graphene and NbSe2 and estimated the strength of the inter-
layer tunneling. We have then obtained a continuum model to
describe the low energy electronic structure valid in the limit
of small interlayer tunneling, condition that the ab-initio re-
sults show is satisfied. The continuum model takes into ac-
count both the presence of SOC and superconducting pair-
ing in NbSe2 and the fact that, depending on the twist angle,
graphene’s FS overlaps either with NbSe2’s FS around the K
point or the Γ point. Using this model, and the value of the
parameters from ab-initio calculations, we find that, assum-
ing conservatively the gap in NbSe2 monolayer to be equal to
0.5 mev, and the graphene-NbSe2 tunneling to be 20 meV,
the maximum induced superconducting gap in graphene is
∼ 0.09 meV, obtained for a situation when the graphene FS
has maximum overlap the NbSe2’s FS around the Γ point.
We have shown that the superconducting gap induced into the
graphene layer is very robust to external in plane magnetic
fields: the superconducting gap remains finite for values of
the Zeeman term more than 40 times larger then the value of
the induced gap in the absence of magnetic fields. In addition,
we have shown that such robustness strongly depends on the
twist angle in the sense that if θ is such that the graphene’s
FS overlaps with the NbSe2 pockets around the K points the
induced gap is much more robust to an external in-plane mag-
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netic field than if θ is such that the graphene’s FS overlaps
with the NbSe2 pocket around the Γ pocket. This is a conse-
quence of the fact that the spin-splitting of the NbSe2 bands
due to SOC is much stronger at theK point than at the Γ point.

The strong dependence on the external magnetic fields of
the superconducting gap induced into the graphene layer is
a reflection of the fact that graphene can be used, by simply
varying the twist angle, as a momentum-selective probe of the
electronic structure, and properties, of the substrate. We can
therefore envision that tunneling experiments on graphene-
based heterostructures could provide very useful, momentum
selective, information on the gap structure of systems with
more complex gap profiles.

Considering the similarities between the Fermi sur-
face structure of monolayer NbSe2 and other transition
metal dichalcogenides our results are relevant also to other
graphene-TMDs heterostructures. This also applies to the
case in which, instead of a monolayer, a few atomic layers
TMD is used. Our results suggests that in general, for a
large range of stacking configurations, the graphene and TMD

states, despite the large lattice mismatch, are expected to hy-
bridize and, when the TMD is superconducting, induce a sig-
nificant superconducting gap into the graphene layer. It would
be interesting to study how such proximity affect can affect
the ground state of twisted-bilayer graphene systems44–48.
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