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Q-spoiling is a known phenomenon in wave chaos, where an open chaotic cavity deformed from
an integrable one exhibits a significantly reduced Q-value. In relativistic quantum mechanics, an-
other mechanism that makes trapping of wave difficult is Klein tunneling. For chaotic scattering of
pseudospin-1 wave from a deformed scalar potential domain, both “leaking” mechanisms are thus
present. Surprisingly, we find an energy range in which a pseudospin-1 chaotic cavity is capable
of defying both Q-spoiling and super-Klein tunneling. The physical origin of this remarkable phe-
nomenon is a peculiar type of unexpectedly robust edge modes that absolutely have no counterpart
in nonrelativistic quantum or even in pseudospin-1/2 systems. The phenomenon can be tested
experimentally in emerging electronic or photonic metamaterials with pseudospin-1 Dirac cones.

I. INTRODUCTION

A well established notion in quantum chaos is that
classical dynamics defined by the geodesic ray path are
relevant in the short wavelength limit when the effective
Planck constant approaches zero. Because of this rele-
vance, characteristic and universal fingerprints of clas-
sical chaos can emerge in the corresponding wave sys-
tem1,2. Take quantum/wave scattering3 as an exam-
ple. For integrable classical dynamics, there can be sharp
quantum resonances due to the stable orbits in the scat-
tering region with a divergent lifetime, leading to an al-
gebraic decay of the particles. If the classical dynam-
ics are fully chaotic with no stable periodic orbits, the
particle decay is exponential with a finite average life-
time, broadening the quantum resonances. Semiclassi-
cal arguments based on the quantum-classical correspon-
dence4 stipulate that the statistical fluctuation patterns
with energy of the quantum scattering matrix elements
are characteristically distinct for classical integrable and
chaotic dynamics5–7. A ray-wave correspondence thus
exists, which is believed to be a general and universal
principle in physics.

The ray-wave correspondence results in remarkable
phenomena such as Q-spoiling in optics. For example,
deformed dielectric microcavities allowing exponentially
slow evanescent leakage and refractive escape on the en-
tire boundary8 can lead to ray chaos, which in the wave
picture can drastically reduce the lifetime of high-Q reso-
nant modes via the mechanism of chaos-assisted tunnel-
ing. Associated with Q-spoiling is a highly anisotropic
output, which can be expected from the correspond-
ing ray dynamics model9–11. A related phenomenon
occurs in electronic transport through a ballistic quan-
tum dot12–17, where classically integrable dynamics of-
ten lead to sharp conductance fluctuations with energy
or the magnetic field strength. Fully developed chaos,
because of its ability to broaden the isolated narrow res-
onances, can smooth out the conductance fluctuations.
This means that classical chaos can be used to modulate

conductance fluctuations18,19.
In relativistic quantum systems, another mechanism

that makes wave trapping or confinement difficult is
Klein tunneling, where substantial tunneling can occur
even when the potential barrier is wide and the particle
energy is below the potential height20–23. When both
chaos and Klein tunneling are present, intuitively, con-
finement of the particle for a relatively long time would
seem impossible.

In this paper, we present a class of relativistic quan-
tum scattering systems that defy chaos/Q-spoiling and
Klein tunneling, a phenomenon that absolutely breaks
the ray-wave correspondence. It occurs in Dirac mate-
rial systems hosting pseudospin-1 quasiparticles with a
conical intersection of triple degeneracy in the under-
lying energy band24–51, whose physics is described by
the generalized Dirac-Weyl equation for massless spin-1
particles25,26,44. Pseudospin-1 quasiparticles are differ-
ent from Dirac, Weyl and Majorana fermions, and are
of particular interest to the broad research community
with diverse experimental realization schemes such as
artificial photonic lattices30,34,38,39,42,52,53, optical40 and
electronic Lieb lattices49,50, as well as superconducting
qutrits51. A striking relativistic quantum hallmark of
pseudospin-1 particles is super-Klein tunneling through
a scalar potential barrier26,28,41,54, where omnidirectional
and perfect transmission of probability one occurs when
the incident energy is about one half of the potential
height. Generally, Klein tunneling defines optical-like,
negatively refracted ray paths through the barrier inter-
face via angularly resolved transmittance in the short
wavelength limit55–57. When both super-Klein tunnel-
ing and chaos are present, one may intuitively expect
severe leakage to predominantly occur so that trapping
would be impossible. However, quite counterintuitively,
we uncover an energy range in which robust wave con-
finement occurs in spite of chaos and super-Klein tunnel-
ing. Especially, we find that the three-component spinor
wave concentrates in a particular region of the boundary
through strongly squeezed local current vortices gener-
ated there, whose pattern in physical space can be ma-
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nipulated in a reconfigurable manner, e.g., by deforming
the boundary shape or setting the direction of excita-
tion wave. While these modes are distributed unevenly
in physical space because of the irregular deformations,
even fully developed chaos and super-Klein tunneling are
not able to reduce their trapping lifetime. That is, these
modes break the quantum-classical correspondence to-
tally and completely, contradicting the intuitive expec-
tation that electrostatically confining relativistic type of
carriers/particles to a finite chaotic domain is impossi-
ble due to the simultaneous presence of two leaking (Q-
spoiling) mechanisms: chaos assisted tunneling and Klein
tunneling. This phenomenon has no counterpart in non-
relativistic quantum or even in pseudospin-1/2 systems.
The resulting narrow resonances are also characteristi-
cally different from those due to scarring modes concen-
trating on periodic orbits in conventional wave chaotic
scattering, in quantum dots58–64 or in open optical mi-
crocavities9–11, for which there is still a reasonable ray-
wave correspondence. A key technical breakthrough that
makes the discovery possible is our development of an ex-
tremely efficient and accurate method to solve relativistic
quantum chaotic scattering of massless spin-1 particles
from an electrostatic potential barrier of finite range and
arbitrary shape (Appendix A).

II. PSEUDOSPIN-1 DIRAC-WEYL SYSTEMS

In recent years, a large number of lattice systems
have been discovered, which host exotic low-energy,
relativistic quantum quasiparticles that have no ap-
parent counterparts with conventional particles (e.g.,
Dirac, Weyl and Majorana particles) in high energy
physics30,35,40,44,49,50,65. Typically, such lattice systems
do not obey the stringent constraints imposed by the
Poincaré symmetry but are governed by only certain sub-
groups of it. Our work focuses on one type of such quasi-
particles: pseudospin-1 particles.

Particularly, we study the scattering of pseudospin-1
particles in a planar potential field V(r) of finite range
whose shape can be chosen to generate classically inte-
grable or chaotic dynamics. For simplicity, we consider
a piecewise constant potential, which corresponds to a
junction or a dot/cavity device in an experimentally ac-
cessible lattice system, a setting that has been widely
used in studying the scattering of spin-1/2 Dirac-Weyl
particles66–70 and in graphene-based experiments71,72.
For scattering of pseudospin-1 wave, super-Klein tunnel-
ing can occur, which is characteristically different from
conventional Klein tunneling that occurs only at nor-
mal incidence in scattering of massless pseudospin-1/2
Dirac fermions73. Intuitively, it would then be signif-
icantly more difficult to confine pseudospin-1 particles
electrostatically than to confine massless pseudospin-1/2
particles. Even for a classically integrable cavity, quasi-
bound states could be much less robust against perturba-
tions for pseudospin-1 particles than for pseudospin-1/2

fermions. When the perturbations are strong enough to
induce fully developed classical chaos so that the two Q-
spoiling mechanisms, i.e., chaos-assisted tunneling and
Klein tunneling, are simultaneously present, any kind of
quasibound states would be eliminated for pseudospin-1
particles. Is this intuitive picture true?

The starting point of our study is the effective low-
energy Hamiltonian describing the motion of a massless
pseudospin-1 particle in the plane r = (x, y) under the
action of a scalar potential V(r). In the position repre-
sentation, the Hamiltonian reads

Ĥ = vF Ŝ · p̂ + S0V(r), (1)

where vF is the magnitude of the Fermi velocity, Ŝ =
(Sx, Sy) are spin-1 matrices, p̂ is the momentum oper-
ator, and S0 is the three-by-three identity matrix. The
particle dynamics with energy E are governed by the
generalized Dirac-Weyl equation for energy eigenstates
Ψ(r) = [ψ1(r), ψ2(r), ψ3(r)]T :

ĤΨ(r) = EΨ(r). (2)

For a spatially homogeneous/constant potential, e.g.,
V(r) = V0, the eigenenergies are E = V0 and

E = V0 + s~vF |k|

with s = ± being the dispersive band index, while the
corresponding plane-wave solutions can be written as

Ψk,0(r) = 1/
√

2[−e−iβ , 0, eiβ ]T eik·r

and

Ψk,s(r) =
1

2

e−iβ√2s
eiβ

 eik·r, (3)

where the wavevector k = (kx, ky) has length k = |k| and
makes an angle β = arctan(ky/kx) with the x axis. The
current operator is defined from Eq. (1) as

û =∇pĤ = vF Ŝ. (4)

The local current associated with a given state Ψ(r) can
be calculated from the local expectation value of û as

u(r) = vF (ψ∗1 , ψ
∗
2 , ψ

∗
3)Ŝ

ψ1

ψ2

ψ3

 (5)

=
√

2vF (<[ψ∗2(ψ1 + ψ3)],−=[ψ∗2(ψ1 − ψ3)]) .

Using the plane wave (3), we obtain u = svFk/k. The ef-
fects of the applied scalar potential are to shift the Dirac
point (k = 0) in the energy domain, to tune the parti-
cles’ kinetic energy ε = (E − V0)/~vF , and to alter their
attributes from hole to electron-type, and vice versa.

The focus of our study is on the interplay between rel-
ativistic quantum, three-component pseudospinor wave
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dynamics and classical chaos. This is different from
the commonly studied interplay between pseudospin-1/2
Dirac fermion system and chaos in the field of relativistic
quantum chaos74,75, and also distinct from the existing
studies of the three-component SU(3) model based quan-
tum nonlinear dynamics and chaos76 for systems such as
spinor Bose gases in ultracold atomic physics to which
relativistic quantum effects are irrelevant.

Our prototypical setting is a two-dimensional poten-
tial step (scatterer) of the stadium shape that permits
fully developed chaos in the classical limit. Unlike the
case of a circular potential barrier where analytic solu-
tions can be obtained77, analytic treatment of quantum
scattering of pseudospin-1 wave from a stadium (chaotic)
domain is not possible. Because the classical scattering
system is nonintegrable, it cannot simply be reduced to
a one-dimensional problem. To our knowledge, prior to
our work, not even an effective numerical method existed
for the task. We thus seek to develop a feasible and effi-
cient computational method. Mathematically, the prob-
lem is to solve the generalized Dirac-Weyl spinor wave
equation with given scalar potential steps of an irregular
closed shape in the open space, taking into account the
physically open boundary conditions. It is effectively a
problem of relativistic quantum chaotic scattering of two-
dimensional massless pseudospin-1 particles from short-
range obstacles in the presence of relativistic tunneling
based resonant interaction. Because of classical chaos,
a Dirac-type of matrix wave equation is non-separable.
While the real-space Green’s function based boundary
element method78 or more general methods based on
the Lippmann-Schwinger equation6 can in principle be
adopted to solving quantum chaotic scattering of spin-
less or spin-1/2 particles, such methods did not exist for
pseudospin-1 particles. In fact, it is extremely difficult
to obtain the real-space Green’s function for pseudospin-
1 waves in a closed form expression due to the emer-
gence of the singularity in the density of state caused
by the flat band of the underlying lattice system79. To
overcome this difficulty, we exploit the close analogy be-
tween the massless pseudospin-1 particle and light pho-
ton in that they both possess a linear dispersion relation.
Specifically, in optics, there exists a multiple multipoles
method (method of “fictitious” sources) for treating scat-
tering of electromagnetic waves from a cavity of arbitrary
shape80–84. We have adopted this method to pseudospin-
1 wave scattering systems with an arbitrary piecewise
homogeneous potential, where the multipoles or “ficti-
tious’ sources” are defined in terms of the analytic three-
component spinor cylindrical wave basis of the eigenso-
lutions to the generalized Dirac-Weyl equation in each
sub-region separated by the potential boundaries. The
multiple multipole method is thus of the semi-analytic
type, which is powerful for near-field calculations and is
in principle suitable for potential domains of an arbitrary
shape. The details of this method are are described in
Appendix A.

To establish the generality of our finding, we also study

pseudospin-1 wave scattering from a class of chaotic cavi-
ties with an eccentric annular shape. For such cavity sys-
tems, quantum scattering of pseudospin-1/2 particles was
recently studied, where the phenomenon of relativistic
quantum chimera was uncovered85. To solve pseudospin-
1 wave scattering from the eccentric annular chaotic cav-
ity, we develop a scattering matrix approach based on
wavefunction matching, which is extremely efficient for
the particular geometric domain. The method is also of
the semi-analytic type.

III. QUANTUM CHAOTIC SCATTERING OF
PSEUDOSPIN-1 WAVE IN A STADIUM

POTENTIAL

A. Emergence of edge resonant modes

Contrary to the intuition, here we demonstrate the
emergence of an unexpectedly robust class of sharp res-
onances associated with massless pseudospin-1 particle
scattering, which generate chaos-immune, high-Q con-
finement of small modal volume at the boundary in the
semiclassical regime where the wavelength is short com-
pared with the cavity/dot size. This is surprising as
the confining modes occur in the super-Klein tunnel-
ing regime with fully developed chaotic ray dynamics, in
which the system is expected to be a perfectly transpar-
ent lens. According to conventional wisdom, there would
be no room for any trapping nodes in the semiclassical
sense.

Specifically, we consider the prototypical setting of
plane wave incident on the potential barrier region of
a stadium shape parameterized by the aspect ratio a/R
[Fig. 1(e)], which generates chaos in the classical limit,
and analyze spinor wave scattering and its correspon-
dence with the underlying ray dynamics. This setting
is different from that of scattering transport through a
quantum dot structure. We first examine the scatter-
ing wave functions of an incident plane spinor wave of
short wavelength both inside and outside of the scat-
terer. Representative results are shown in Fig. 1. Due
to super-Klein tunneling [Fig. 1(a)] and the defocusing
mechanism of classical chaos, semiclassically the scat-
terer acts as a super lens with the stadium shape, gen-
erating a folded (rainbow) caustic pattern inside, which
corresponds to the envelope of the negatively refracted
ray paths of parallel incident rays, as shown in the up-
per panel of Fig. 1(b). The corresponding result from
the exact wave calculation is shown in the lower panel
of Fig. 1(b), which exhibits significant deviations from
the classical ray result due to the emergence of peculiar
localized states at the straight side boundary. The de-
viations can be quantified, as demonstrated in Fig. 1(c),
where the y-axis distribution of the integral amplitude
intensity over the horizontal range of the shaded do-
main in Fig. 1(b) is obtained quantum mechanically
through Iq(y) =

∫ a
−a Ψ†(r)Ψ(r)dx and semiclassically by
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FIG. 1. Caustics anomaly due to the emergent localized modes
at the straight side boundary in the pseudospin-1 Dirac-Weyl
system with chaotic ray scattering dynamics from a stadium
shaped electrostatic-potential barrier in the Klein tunneling
regime. (a) Super-Klein tunneling with omnidirectional and
perfect transmission for the particle through a single straight
potential step, where the incident wave energy is half of the
potential height. (b) Stationary ray pattern inside the sta-
dium barrier generated by reflections at the inner boundary.
Due to Klein tunneling, the effective refractive index of the
barrier is negative. Parallel ray paths are incident from the
top of the stadium (one marked in blue), which correspond a
plane spinor wave in the short wavelength limit (upper panel).
Lower panel: the result from full wave simulation, represented
by the color-coded probability density distribution (in scale of
its fourth root). (c) Quantitative test of ray-wave correspon-
dence using the Y -dependent profile of the integral amplitude
intensity over the horizontal range of the shaded region in
the lower panel of (b), where the quantum and classical re-
sults are obtained from full wave simulation and the corre-
sponding semiclassical ray model, respectively. (d-f) Results
from the pseudospin-1/2 Dirac-Weyl scattering system with
the same parameter setting for comparison. Parameters are:
a/R = 1, incident wavenumber kR = 300, and barrier height
V0 = 600~vF /R.

Isc(y) =
∑
n∈My

Pn. In particular, we discretize the y-

axis in small steps of h and enumerate all segments be-
tween successive collisions inside the scatterer, where Pn
(n = 1, 2, · · · ) is the survival intensity of the n-th ray seg-
ment andMy is the number set of rays passing through an
element {(x, y′)|x ∈ [−a, a], y′ ∈ [y − h/2, y + h/2]}. For
comparison, we include the corresponding results for
pseudospin-1/2 Dirac fermion scattering from the same
system, as shown in Figs. 1(d-f). In stark contrast to
quantum chaotic scattering of pseudospin-1 particles, the
scattering of pseudospin-1/2 fermions enjoys a well de-

fined ray-wave correspondence.

FIG. 2. Unique relativistic-type of under-barrier scattering
resonances against super-Klein tunneling which survive clas-
sical chaos. LDOS at a given position inside the potential
barrier of height V0 = 100 (in units of ~vF /R) as a function of
energy E (~vF /R) for (a) pseudospin-1/2 and (b) pseudospin-
1 systems, where two representative barrier shapes: a cir-
cle (a/R = 0 - integrable) and a stadium (a/R =

√
3/2

- chaotic), are used. (c) Semiclassical decay of the dwell
time probability P (t) (scaled by the ray-tracing trajectory
length) for pseudospin-1 (thick solid lines) and pseudospin-
1/2 (thin dashed lines) particles. For classically integrable
or chaotic dynamics, the decay is algebraic (solid-gray and
dashed-orange lines) or exponential (solid-red and dashed-
green lines), respectively. The insets show the shape of the
electrostatic potential barrier, inside which a typical ray path
starting from an arbitrary position on the boundary (indi-
cated by a purple pentagram marker) is formed via successive
amplitude loss at boundary reflections due to Klein tunnel-
ing (top), the related ergodic ray dynamics on the Poincaré
surface of section (middle), and semi logarithmic plot of the
resulting survival probability time distribution (bottom). (d)
Upper panel: typical real space probability density (on a
square root scale) pattern of the edge mode as indicated by
the cyan diamond marker in (b); lower panel: the associated
local current density distribution with the formation of pecu-
liar succession vortices strongly squeezed about a particular
portion of the boundary (inset).

We next study the interplay between relativistic quan-
tum wave dynamics and the underlying classical tran-
sient chaos from the perspective of scattering resonance,
as shown in Fig. 2 through the local density of states
(LDOS) ∝ Ψ†(r∗)Ψ(r∗) in the Klein tunneling regime,
where r∗ is a specific position inside the scatterer. For the
integrable barrier, there are sharp resonances leading to
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strong confinement, as shown in Figs. 2(a) and 2(b) for
massless pseudospin-1/2 wave (solid orange curve) and
pseudospin-1 wave (solid gray line), respectively. The
sharp resonances are a manifestation of the algebraic de-
cay of the classical survival probability P (t), as shown
in Fig. 2(c) (dashed-orange and solid-gray lines). For
either type of particles, the decay law is obtained from
ray simulation that takes into account Klein tunneling.
When there is classical chaos, for pseudospin-1/2 parti-
cles the sharp resonances have mostly disappeared [the
green curve in Fig. 2(a)] but some resonances located
at E ∼ 50 (i.e., 2πR/λ ∼ 50) persist for pseudospin-1
particles [the red curve in Fig. 2(b) and inset] in spite
of a faster particle decay due to super-Klein tunneling
from ray simulation [insets of Fig. 2(c)]. Representative
distributions of LDOS patterns and local current vec-
tors u(r) = vFΨ†(r)ŜΨ(r) for one such mode [specified
by the cyan diamond marker in Fig. 2(b)], are shown in
Fig. 2(d). We see that, associated with this mode, par-
ticles are trapped locally near the boundary by strongly
squeezed current vortices formed there. At a given res-
onant frequency, depending on the direction of the “il-
luminating” wave, its profile can change dramatically,
e.g., from a connected one to two split ones with the
chaotic cavity shape considered while the feature of pe-
culiar edge localization persists. Remarkably, the cavity
boundary harboring the localized edge excitations sepa-
rates domains of a massless particle with approximately
identical wavelength but opposite chirality, which is thus
highly penetrable due to super-Klein tunneling in the ab-
sence of any external anti-Klein tunneling mechanisms
of a magnetic field or gap-opening perturbations. The
occurrence of the edge modes requires the creation of
vortices near the boundary dominantly and can be at-
tained in a narrow energy window77. Note that super-
Klein tunneling enables massless spin-1 particles to pass
through the boundary unimpeded at arbitrary incidence
angles. The edge modes are capable of configuring the
tangent/transverse component of the local current/spin
density reversely across the boundary without degrading
the magnitude. Dominant edge current and spin vortices
can thus emerge at the boundary without translational
invariance, which are responsible for the peculiar local-
ized edge states in an ordered arrangement. Strikingly,
the strong confinement persists in the presence of fully
chaotic dynamics even in the relatively small wavelength
limit, defying the semiclassical expectations.

B. Controllable morphology of the emergent
resonance modes

The spatial profiles of edge resonant modes that sur-
vive chaos and defy Q-spoiling can be controlled by
changing the incident direction of the “illuminating”
wave, as shown in Fig. 3. Especially, Fig. 3(a) shows
the stadium geometry where the positions of multipoles
or “fictitious” sources are indicated (the blue stars and

FIG. 3. Profiles of high Q, edge resonant modes that
defy chaos and super-Klein tunneling. (a) The scatterer
geometry where the blue stars and red circles denote the po-
sitions of multipoles or “fictitious” sources. (b) Numerical
results of LDOS from our method with an inset showing the
corresponding scattering cross section. (c) Spatial patterns
of the edge mode for the specific energy value marked in (b)
versus the direction of the incident wave indicated by the gray
arrows. (d) The semiclassical counterparts. Parameters are
a/R =

√
3/2 and V0 = 100~vF /R.

red circles). Figure 3(b) and its inset show the LDOS
and the scattering cross section versus the energy. Sev-
eral spatial patterns of a typical resonant edge mode are
shown in Fig. 3(c). The pseudospin, which is locked
to momentum and hence the incident direction, can in
general be regarded as being analogous to light polar-
ization. This correspondence indicates that the surface
resonant modes in pseudospin-1 systems uncovered here
mimic the localized edge resonance modes in deformed
metal nanoparticles86. Moreover, the emergence of the
edge resonant modes contradicts the intuitive, semiclas-
sical based thinking that, in the presence of super-Klein
tunneling, the chaotic (stadium) cavity is effectively a
transparent super-lens, as shown in Fig. 3(d).

IV. SCATTERING OF PSEUDOSPIN-1
PARTICLES FROM NONINTEGRABLE

CAVITIES OF AN ECCENTRIC ANNULAR
POTENTIAL STEP

To demonstrate the peculiar cavity edge modes and
their immunity to chaos more generally, we consider scat-
tering of pseudospin-1 particles from an annular poten-
tial barrier, in which the degree of classical chaos can be
systematically adjusted by varying the eccentricity pa-
rameter ξ. For this system, quantum scattering can be
solved using the analytic scattering (S) matrix formalism
developed for pseudospin-1 Dirac-Weyl systems.
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A. S-matrix formulation

For the nonintegrable potential step with the eccentric
annular shape, the scattering matrix can be obtained an-
alytically through the techniques of wavefunction match-
ing and coordinate transformations, which were previ-
ously developed for scalar wave scattering in nonrelativis-
tic quantum systems87–89. Here we extend the method
to generalized pseudospin-1 wave scattering.

The required algebraic derivations are lengthy and
more complicated than those for scalar or pseudospin-1/2
wave systems, as detailed in Appendix B. Here we list
the main results in terms of formulas for the key quanti-
ties characterizing the quantum scattering. In particular,
given that the potential shape is defined by two disks of
different radii (R1 and R2 < R1) with a finite relative
displacement ξ between the disk centers, the resulting S
matrix is given by

S = −Z(2) − Y(2) − sIsIIX(2)T
Z(1) − Y(1) − sIsIIX(1)T

, (6)

where sI,II denote the band indices in the corresponding

regions, T = F−1(H−G) with the conventions F = x(2) +
Sodx(1),G = y(2) + Sody(1),H = z(2) + Sodz(1),


X(1,2) =

[
H(1,2)
m (k0R1)δmj

]
,

Y(1,2) =
[
H

(1,2)
m+1(k0R1)δmj

]
,

Z(1,2) =
[
H

(1,2)
m−1(k0R1)δmj

]
,

(7)


x(1,2) =

[
H(1,2)
m (k1R1)δmj

]
,

y(1,2) =
[
H

(1,2)
m+1(k1R1)δmj

]
,

z(1,2) =
[
H

(1,2)
m−1(k1R1)δmj

]
,

(8)

and

Sod = [Jm−l(k1ξ)]
[
Scdl δll′

]
[Jµ−l(k1ξ)] , (9)

with

Scdl = −
Scd−Tl

Scd−Bl

(10)

and


Scd−Tl ≡ Jl(kIIIR2)

(
H

(2)
l−1(kIIR2)−H(2)

l+1(kIIR2)
)
− sIIsIIIH(2)

l (kIIR2) (Jl−1(kIIIR2)− Jl+1(kIIIR2)) ,

Scd−Bl ≡ Jl(kIIIR2)
(
H

(1)
l−1(kIIR2)−H(1)

l+1(kIIR2)
)
− sIIsIIIH(1)

l (kIIR2) (Jl−1(kIIIR2)− Jl+1(kIIIR2)) .
(11)

B. Edge resonant modes that defy
chaos/Q-spoiling and Klein tunneling

The confinement quality can be characterized by the
Wigner-Smith time delay, which can be obtained from
the S matrix as τ(E) = −i~Tr

[
S†∂S/∂E

]
. Sharp res-

onances with energy and thus strong confinement corre-
spond to large positive values of τ . Figures 4(a,b) show
the dimensionless time delay versus ξ and particle energy
E for pseudospin-1 and pseudospin-1/2 systems, respec-
tively. For the former, there exists a particular set [red
curves in Fig. 4(a)] where the time delay retains high
values and is unaffected when the corresponding classi-
cal system becomes increasingly more chaotic. The qual-
ity factor of a cavity mode at energy En is given by90

Qn = (En/~)τ(En). For ξ = 0 (integrable dynamics),
a large number of high-Q modes exist [highlighted by
red, blue and green colors in Figs. 4(a,b)]. The values
of their quality factors versus ξ is shown in Fig. 4(c).
Conventional wisdom stipulates that severe Q-spoiling
would occur as the value of the deformation parameter is
increased due to chaos-assisted tunneling [schematically
illustrated in inset of Fig. 4(c)]. We see that the con-
ventional wisdom holds but only for the pseudospin-1/2

scattering system and for some states of the pseudospin-
1 system, but for the latter, there is a particular set of
high-Q modes that are completely immune to classical
chaos. As the system and solution methods here are com-
pletely different from those for the stadium system, the
results in Fig. 4 represents independent confirmation of
the emergence of high-Q cavity edge modes that defy
chaos and Klein tunneling. A plausible physical origin of
the robustness of these modes is spin-momentum locking,
which can be elucidated by analyzing the transverse spin
as done in a recent work on the quantum spin Hall effect
of light91.

C. Spatial profiles of edge modes

Figure 4 presents the results of scattering of
pseudospin-1 wave by an annular potential barrier. Here
we provide the exact wave calculation result, as shown
in Fig. 5, where the red modes are localized edge modes,
which can occur at either the inner or outer boundaries
of the ring domain. For the given parameter values il-
lustrated, they are confined at the inner boundary of the
ring geometry. This is because, in this case, the required
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FIG. 4. Superconfinement in a chaotic scattering system of
annular potential barrier. The degree of chaos can be con-
trolled by the eccentric deformation parameter ξ. The char-
acterizing quantities are obtained from a scattering matrix
based analysis. (a,b) Dimensionless Wigner-Smith time de-
lay versus ξ (in units of R1) and particle energy E (in units
of ~vF /R1) for (a) pseudospin-1 and (b) pseudospin-1/2 sys-
tems, respectively. (c) Dependence of the Q factor of the
representative modes marked in (a) and (b) on ξ. The left
inset shows the shape of the potential barrier, inside which
one typical ray trajectory (orange) initially undergoes total
internal reflections and escapes from the barrier completely
via Klein tunneling after a few collisions with perpendicular
incidence at the outer boundary. Right inset: chaos rendered
ergodic ray motion in the corresponding Poincaré surface of
section. Other parameters are R2/R1 = 0.6, the potentials in
the annular and inner disk regions are VI = −10 and VII = 40,
respectively.

condition of sign change in the band indices rendering
the edge modes arises only across the inner boundary.
In Fig. 5, representative patterns for the conventional
modes are also included (middle and right panels) for
comparison, the confinement quality of which is typically
destroyed by classical chaos.

V. ENERGY WINDOW FOR EDGE RESONANT
MODES

In the energy domain, the edge resonant modes associ-
ated with pseudospin-1 wave scattering occur in a quite
predictable way in that the locations depend linearly on
the applied potential, as shown in Figs. 6(a,b) for both
types of chaotic systems studied. There is in fact a tun-
able energy window in which the modes can arise - a

FIG. 5. Exactly calculated spatial profiles of representative
resonant modes in pseudospin-1 and pseudospin-1/2 wave
scattering. The modes are indicated by the corresponding
colored triangles in Fig. 4(c). Left panel: a confined surface
resonant mode in pseudospin-1 wave scattering; middle panel:
a conventional mode in pseudospin-1/2 wave scattering; right
panel: a conventional mode in pseudospin-1 scattering.

FIG. 6. Energy window for edge resonant modes that defy
chaos/Q-spoiling and Klein tunneling with respect to the ex-
ternal electrostatic potential. (a) Resonant modes in the en-
ergy domain versus the value of VII for a strongly deformed
annular barrier for ξ = 0.27, R2/R1 = 0.6, and VI = −10.
(b) Edge modes in the chaotic stadium barrier (a/R =

√
3/2)

for pseudospin-1 (left column) and pseudospin-1/2 (right col-
umn) systems.

great advantage from the point of view of experimental
observation. We emphasize that no such resonances are
possible for pseudospin-1/2 particles.

We note that the presence of strong confinement does
not necessarily correspond to peaks in the plot of LDOS
defined at a given position versus the energy. The con-
finement, however, will have its manifestation of dra-
matic variances/changes in LDOS over a small energy
interval, which would generically appear as peaks within
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a relatively large energy range. Examples of such peaks
are shown in Fig. 2. In fact, the correspondence be-
tween peaks in LDOS and the cross section is indicative
of strong confinement but becomes poor for weak confine-
ment. The correspondence also depends on the specific
position chosen. While in principle, it is necessary to
calculate the total DOS - a computationally demanding
task, in practice (e.g., in an experiment), one can choose
a proper position according to the pertinent parameters
such as the particle energy and potential height. For ex-
ample, when the energy and potential height are large,
higher angular-momentum channels will be excited. In
this case, choosing the position near the cavity/scatterer
boundary suffices.

VI. DISCUSSION

The phenomenon of Q-spoiling by ray (classical) chaos
has been known in optics for more than two decades9–11.
In electronic transport through a quantum dot, chaos can
remove the sharp resonances associated with conductance
fluctuations, which would occur if the classical dynam-
ics were integrable12–19. We have uncovered a quantum
chaotic scattering paradox/anomaly for massless spin-1
particles: in a relevant short-wavelength regime, high-Q
(resonance) trapping persists in leaking chaotic cavities
with a super-Klein tunneling enabled transparent bound-
ary, contradicting the semiclassical expectations. This
presents a remarkable exception to the conventional wis-
dom that wave trapping would be impossible in the si-
multaneous presence of chaos and Klein tunneling: not
only do the modes defy chaos/Q-spoiling, they are also
immune to super-Klein tunneling. This finding is rele-
vant to the fields of optics, solid state physics, and quan-
tum chaos, with potential applications in 2D Dirac-Weyl
material and photonic systems.

Experimental test of the phenomenon uncovered in this
paper is feasible through, e.g., two-dimensional electronic
Lieb lattices that have been realized recently49,50. A con-
crete link with experiments is as follows. To verify the
existence of edge resonant modes in pseudospin-1 wave
scattering, a viable experimental setting is transport in
electronic Lieb lattice systems. In a typical transport and
conductance-probe setup with a quantum dot and waveg-
uide geometry, resonant scattering occurs naturally92.
The interference between the waveguiding channels (in-
stead of simple unbounded plane waves) and individual
cavity resonant (quasi-bound) modes will give rise to in-
tricate Fano patterns that appear as asymmetric dips and
peaks on top of the background conductance plateau.
The presence of long-lived surface cavity modes would
have their fingerprints as robust and sharp conductance
fluctuations in the energy regime of Klein tunneling, re-
gardless of classical chaos.

We make a number of remarks pertinent to the finding
of this paper.

Remark 1: Results in this paper that go beyond those
in our previous work. In Ref. [77], we studied scatter-
ing of pseudospin-1 particles from a circular potential
domain, derived boundary conditions for the Dirac-Weyl
equation, obtained analytic formulas for various scatter-
ing cross sections, and found a class of resonant modes
that are trapped near the boundary inside the poten-
tial region. From a classical point of view, the dynamics
in a circular domain are integrable and there are sta-
ble periodic orbits inside the scattering region. As such,
the emergence of long-lived, sharp resonant modes in the
quantum regime is not surprising. A question that is fun-
damental to the field of quantum chaos, which we were
not able to answer at that time was whether these modes
can persist when the domain is deformed so that there is
fully developed chaos in the classical limit. The difficulty
lies in the lack of even numerical methods to calculate the
scattering wavefunctions for the three component spinor
when the potential domain is deformed from the circular
shape.

According to wisdom from microcavity optics9–11 and
mesoscopic transport physics12–19, when the classical
dynamics are fully chaotic, long-lived resonant modes
are unlikely, which is the well known phenomenon of
Q-spoiling. Intuitively, the expectations were that
pseudospin-1 chaotic scattering ought to behave the sim-
ilar way. Our development of the multiple multipole
method has enabled us to study pseudospin-1 wave scat-
tering in arbitrary potential domain, as detailed in the
present manuscript. What has been found, to our sur-
prise, is that pseudospin-1 particles can still be trapped
inside the potential domain through the long lived res-
onant modes, regardless of the boundary deformations
- even those that lead to fully developed chaos in the
classical limit. More surprisingly, in the energy regime
studied, pseudospin-1 particles exhibit super-Klein tun-
neling, which would make trapping even more unlikely.
The emergence of the resonant boundary trapping modes
thus defy all existing understanding of the interplay
among classical chaos, trapping, and Klein tunneling.
The phenomenon reported in the current manuscript
is thus fundamental to at least three areas in physics:
quantum chaos, microlasing optics, and mesoscopic or
nano-transport in two-dimensional solid state systems,
representing an advance going far beyond the results in
Ref. [77].

Remark 2: persistence of long-lived boundary trap-
ping modes in the semiclassical, short-wavelength regime
. There was previous work discussing the persistent ef-
fect of classical chaos in the deep quantum (long wave-
length) regime93,94. This was counterintuitive because
the quantum manifestations of chaos occur typically in
the semiclassical (short wavelength) regime. What we
have found here is somewhat opposite: long lived reso-
nant modes, typically a quantum behavior in the long
wavelength regime, persist in the semiclassical regime
and completely defies classical chaos, leading to a break-
down of the quantum-classical correspondence. A plau-
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sible reason lies in the three-component spinor wave-
function structure of pseudospin-1 particles, where the
boundary conditions are drastically different from those
for scalar or even two-component spinor wavefunctions77.
Especially, at the boundary of the potential domain, two
quantities must be continuous: (1) the second (middle)
spinor component and (2) the algebraic sum of the phase
modulated first and third spinor components. Mathe-
matically, the boundary conditions mean that one of the
spinor components can have an arbitrary finite value.
There are thus significantly more possibilities to config-
ure the distribution of the resulting wave density and the
corresponding local current density than for scalar wave
and spin-1/2 Dirac wave. A remarkable consequence is
the formation of vortex-like boundary trapping modes,
which was analytically demonstrated by using the Mie
theory for pseudospin-1 wave for the case of an integrable
circular cavity77. For chaotic cavities, an analytic theory
is not feasible. Nonetheless, as we have demonstrated in
this paper, the wave-coherence based boundary trapping
modes persist, regardless of the chaos rendered irregular-
ities and/or randomness. Unlike the conventional whis-
pering gallery modes and scars associated with a chaotic
cavity for scalar or pseudospin-1/2 waves, the boundary
trapping modes for pseudospin-1 waves have no classi-
cal correspondence. The particular localization feature
of these modes is due to the non-integrable cavity ge-
ometry that breaks the circularly rotational symmetry.
Depending on the direction of the incident wave, e.g.,
whether it is along the axis of symmetry of the cavity or
not, the locations where these localized states occur are
different.

Remark 3: Need to study the classical-quantum cor-
respondence in systems described by multicomponent
spinor wavefunctions. Most previous discussions of the
classical-quantum correspondence in the literature were
for the scalar wavefunction described by the Schrödinger
equation. The breakdown of the classical-quantum cor-
respondence uncovered in this paper owes its origin to
the three-component structure of the spinor wavefunc-
tion for pseudospin-1 particles. As a fundamental issue
in physics, the classical-quantum correspondence in sys-
tems described by multicomponent wavefunctions should
be examined more deliberately, as the “classical” equa-
tion of motion may be different from the one in spineless
systems95,96.

ACKNOWLEDGMENT

We would like to acknowledge support from the Van-
nevar Bush Faculty Fellowship program sponsored by the
Basic Research Office of the Assistant Secretary of De-
fense for Research and Engineering and funded by the
Office of Naval Research through Grant No. N00014-16-
1-2828.

Appendix A: Multiple multipoles method for
relativistic quantum scattering of pseudospin-1 wave

1. Implementation

FIG. 7. Schematic illustration of scattering problem to be
solved: Γ is the physical boundary separating regions II and
I, while Γ± are auxiliary boundaries at which the multiple
multipoles (“fictitious” sources) are placed with coordinates
denoted by rmI and rmII . The sources at Γ− (green circu-
lar dots) radiate the pseudospin-1 field ΨI

l (r − rmI ) used to
determine the wavefunction in region I, while the ones at Γ+

(pentagrams) generate the field ΨII
l (r− rmII ) used to deter-

mine the wavefunction in region II. Boundary conditions are
satisfied at the collocation points rj ∈ Γ.

For simplicity but without loss of generality, we de-
velop the multiple multipoles method based on the con-
crete setting of a single potential step of arbitrary shape.
This leads to two sub-regions denoted by I and II, as
shown in Fig. 7. The generalized Dirac-Weyl equation in
each sub-region τ ∈ {I, II} reads

Ŝ · k̂Ψ(τ)(r) = ετΨ(τ)(r), (A1)

where ετ = (E − Vτ )/~vF . In the polar coordinates r =
(r, θ), the spinor cylindrical wave basis of solutions with
angular momentum l is

Ψ
(τ)
l (r) =

Bl−1(kτr)e
−iθ

isτBl(kτr)
−Bl+1(kτr)e

iθ

 eilθ, (A2)

where sτ = sgn(E−Vτ ) denotes the relevant band index
and kτ = |E − Vτ |/~vF . Assuming E > 0 and choosing

Bl(kτr) = H
(1)
l (kτr) (with H

(1)
l being the Hankel func-

tion of the first kind), we define the Dirac-type wavefunc-
tions of multipoles outside the specific solving region τ
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and positioned at rmτ as

Ψ
(τ)
l (dmτ ) =

1√
2

H
(1)
l−1(kτdmτ )e−iθmτ

i
√

2sτH
(1)
l (kτdmτ )

−H(1)
l+1(kτdmτ )eiθmτ

 eilθmτ , (A3)

where τ denotes the complement of τ , dmτ ≡ |dmτ | =
|r−rmτ | and θmτ = Angle(r−rmτ ) with r ∈ τ . Carrying
out multiple multipoles expansion for the specific region,
we obtain the wavefunction in region II as

Ψ(II)(r) =
∑
mI

∑
l

CmIl

1√
2

H
(1)
l−1(kIIdmI )e

−iθmI

i
√

2sIIH
(1)
l (kIIdmI )

−H(1)
l+1(kIIdmI )e

iθmI

 eilθmI

≡

ψII1

ψII2

ψII3

 . (A4)

The scattered (outgoing) wavefunction in region I has
the form

Ψ(I)(r) =
∑
mII

∑
l

CmIIl

1√
2

H
(1)
l−1(kIdmII )e

−iθmII

i
√

2sIH
(1)
l (kIdmII )

−H(1)
l+1(kIdmII )e

iθmII

 eilθmII

≡

ψI1ψI2
ψI3

 . (A5)

A planar incident wave propagating along the direction
that makes an angle β with the x-axis in region I can be
written as

Ψin(r) =
1

2

 e−iβ√
2sI
eiβ

 eik·r =

ψin1ψin2
ψin3

 . (A6)

Imposing the relevant boundary conditions parameter-
ized by the angle α between the outward normal at any
boundary point rj and the x-axis:(

ψ
(I)
2 + ψin2

)∣∣∣
rj∈Γ

= ψ
(II)
2

∣∣∣
rj∈Γ

, (A7)([
ψ

(I)
1 + ψin1

]
eiα +

[
ψ

(I)
3 + ψin3

]
e−iα

)∣∣∣
rj∈Γ

=
(
ψ

(II)
1 eiα + ψ

(II)
3 e−iα

)∣∣∣
rj∈Γ

, (A8)

we obtain∑
mII

∑
l

jA
(I)
lmII

CmIIl −
∑
mI

∑
l

jA
(II)
lmI

CmIl = − jψin2 ,

(A9a)∑
mII

∑
l

jB
(I)
lmII

CmIIl −
∑
mI

∑
l

jB
(II)
lmI

CmIl = − jχin,

(A9b)
where the substitutions are given by

jA
(I)
lmII

= isIH
(1)
l (kI |rj − rmII |)eilθmII , (A10a)

jA
(II)
lmI

= isIIH
(1)
l (kII |rj − rmI |)eilθmI , (A10b)

jB
(I)
lmII

=
1√
2

[
H

(1)
l−1(kI |rj − rmII |)ei(l−1)θmII eiα −H(1)

l+1(kI |rj − rmII |)ei(l+1)θmII e−iα
]
, (A10c)

jB
(II)
lmI

=
1√
2

[
H

(1)
l−1(kII |rj − rmI |)ei(l−1)θmI eiα −H(1)

l+1(kII |rj − rmI |)ei(l+1)θmI e−iα
]
, (A10d)

and

jψin2 =
1√
2
sIe

ikI ·rj , (A10e)

jχin =
1

2

[
ei(α−β) + e−i(α−β)

]
eikI ·rj . (A10f)

In principle, the set consists of an infinite number of equa-
tions with an infinite number of undetermined expansion
coefficients CmIIl and CmIl . To solve the system numer-
ically, a finite truncation is necessary, which turns out
to be feasible in practice by discretizing the boundary to

a finite number of points J and setting the number of
multipoles Mτ in the specific region τ and l ∈ [−L,L] for
all the multipoles. Carrying out the discretization proce-
dure, we arrive at the following finite dimensional matrix
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equation

M2J×N ·CN×1 = −Y2J×1, (A11)

where N = (2L+ 1)× (MI +MII) = NI +NII and the
compact substitutions are

CN×1 =



C1II
−L
...

C1II
l

C2II
l
...

CMII

l
...

CMII

L

C1I
−L
...

C1I
l

C2I
l
...

CMI

l
...

CMI

L


N×1

; Y2J×1 =



1ψin2
...

jψin2
...

Jψin2
1χin

...
jχin

...
Jχin


2J×1

(A12a)

and

M2J×N =

(
[c|c]A(I) −A(II)

B(I) −B(II)

)
2J×N

, (A12b)

with

A(τ) =



1A
(τ)
−L1τ

· · · 1A
(τ)
l1τ

1A
(τ)
l2τ
· · · 1A

(τ)
lMτ

· · · 1A
(τ)
LMτ

2A
(τ)
−L1τ

· · · 2A
(τ)
l1τ

2A
(τ)
l2τ
· · · 2A

(τ)
lMτ

· · · 2A
(τ)
LMτ

... · · ·
...

... · · ·
... · · ·

...
jA

(τ)
−L1τ

· · · jA
(τ)
l1τ

jA
(τ)
l2τ
· · · jA

(τ)
lMτ

· · · jA
(τ)
LMτ

... · · ·
...

... · · ·
... · · ·

...
JA

(τ)
−L1τ

· · · JA
(τ)
l1τ

JA
(τ)
l2τ
· · · JA

(τ)
lMτ

· · · JA
(τ)
LMτ


J×Nτ

, (A12c)

B(τ) =



1B
(τ)
−L1τ

· · · 1B
(τ)
l1τ

1B
(τ)
l2τ
· · · 1B

(τ)
lMτ

· · · 1B
(τ)
LMτ

2B
(τ)
−L1τ

· · · 2B
(τ)
l1τ

2B
(τ)
l2τ
· · · 2B

(τ)
lMτ

· · · 2B
(τ)
LMτ

... · · ·
...

... · · ·
... · · ·

...
jB

(τ)
−L1τ

· · · jB
(τ)
l1τ

jB
(τ)
l2τ
· · · jB

(τ)
lMτ

· · · jB
(τ)
LMτ

... · · ·
...

... · · ·
... · · ·

...
JB

(τ)
−L1τ

· · · JB
(τ)
l1τ

JB
(τ)
l2τ
· · · JB

(τ)
lMτ

· · · JB
(τ)
LMτ


J×Nτ

. (A12d)

As the expansions are generally nonorthogonal, more
equations are required than unknowns to enable deduc-
tion of an overdetermined matrix system with 2J � N ,

which can be solved by the pseudo-inverse algorithm
(e.g., in Matlab): C = −pinv(M) ∗ Y . In particular,
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we use the residual error evaluated at the boundary

SSE =
||M ∗C + Y ||
||Y ||

as the criterion for testing convergence. Especially, we
adjust the number, the order and/or positions of the
multipoles to ensure SSE < tolerance. After the un-

known coefficients C have been obtained, the associated
wavefunctions and hence the local density of states in the
specific region can be calculated accordingly.

We can also calculate the characteristic cross section
from the scattered wavefunction as given in Eq. (A5).
Rewriting the wavefunction in terms of the position vari-
ables r and θ, we have

Ψ(I)(r, θ) =
∑
mII

∑
l

CmIIl√
2

∑
n

Jn(krmII )

H
(1)
l+n−1(kIr)e

−iθ

i
√

2sIH
(1)
l+n(kIr)

−H(1)
l+n+1(kIr)e

iθ

 ei(l+n)θ. (A13)

In the far-field, i.e., kIr →∞, we get

Ψ(I)(r, θ)→
∑
mII

∑
l

∑
n

√
2/πkCmIIl ei(l+n)θ

il+n
√
−ir

Jn(krmII )

 e−iθ

i
√

2sI
eiθ

 . (A14)

The far-field scattering amplitude can be obtained as

f(θ) =

√
2

πk

∑
mII

∑
l

∑
n

CmIIl Jn(krmII )

il+n
ei(l+n)θ, (A15)

and associated cross section is given by

σ =

∮
|f(θ)|2dθ. (A16)

2. Method validation

To validate our method, we make use of a classically
integrable system for which the scattering characteristics
can be obtained analytically by evaluating the scattering
cross section according to the formula

σ̃ =
4

k

∑
l

|ãl|2, (A17a)

where

ãl = − F̃l

F̃l + iG̃l
, (A17b)

with

F̃l = Jl(βx)J ′l (x)− sIsIIJ ′l (βx)Jl(x),

G̃l = Jl(βx)Y ′l (x)− sIsIIJ ′l (βx)Yl(x).

and β = |E − V0|/|E|.

Figure 8 shows a comparison of the typical scattering
resonances obtained analytically and from the numerical
method. There is a good agreement. In fact, there is a
quite accurate correspondence between the peaks in the
LDOS and in the cross section in the regime of strong
confinement (the focus of our present work), although
the accuracy somewhat degrades in the regime of weak
confinement. In general, the effectiveness of using peaks
in the LDOS as an indicator of strong confinement de-
pends on the specific location to probe the LDOS pattern,
where locations near the domain boundary are typically
more effective. In practice (e.g., in an experimental sit-
uation), the position can be chosen properly according
to the parameter values such as the particle energy and
potential height. For example, when the values of both
energy and potential height are relatively large, higher
angular-momentum channels are excited. In this case,
the best region to choose the position is near the cav-
ity/scatterer boundary.

Appendix B: S-matrix approach to pseudospin-1
wave scattering from nonintegrable cavities of an

eccentric annular potential step

For a nonintegrable potential step with the eccentric
annular shape, the scattering matrix can be obtained an-
alytically through the techniques of wavefunction match-
ing and coordinate transformations, which were previ-
ously developed for scalar wave scattering in nonrel-
ativistic quantum systems87–89 and recently for rela-
tivistic quantum scattering of massless spin-1/2 Dirac
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FIG. 8. Validation of the multiple multipoles method for
a classically integrable scattering system. For pseudospin-1
waves, (a) scattering resonances versus energy characterized
by the cross section obtained analytically from the partial
wave decomposition method, (b) the cross section calculated
from our multipole method, (c) scattering resonances char-
acterized by the local density of states at a given position
inside the barrier (indicated by the green pentagram in the
inset), which are calculated numerically using the multiple
multipoles method, and (d) the corresponding residual error
versus energy characterizing the convergence of the multipole
method. The potential height is V0 = 100~vF /R.

fermions85. Here we extend the method to generalized
pseudospin-1 wave scattering.

Given that the potential shape is defined by two disks
of different radii (R1 and R2 < R1) with a finite relative
displacement ξ between the disk centers, we use the con-
vention that the global unprimed coordinates are defined
by choosing the origin as the center of the larger disk O
while the local primed ones have their origin sitting at the

small disk center O′. Adopting the standard S−matrix
formalism, in the unprimed polar coordinates r = (r, θ),
the wavefunction outside the eccentric annular scatterer,
i.e., |r| > R1, can be written as

Ψ(I)(r) =

∞∑
m=−∞

aIm

[
kIh(2)

m +

∞∑
m′=−∞

Smm′
kIh

(1)
m′

]
,

(B1)
where

kIh(1,2)
m =

1

2

 H
(1,2)
m−1(kIr)e

−iθ

i
√

2sIH
(1,2)
m (kIr)

H
(1,2)
m+1(kIr)e

iθ

 eimθ,

and Smm′ denotes the S−matrix elements in terms of
two given channels indexed by m and m′, respectively,
and the coefficients a0

m is chosen to yield a desired kind
of incident test wave. For simplicity but without loss of
generality, we set aIm ≡ 1. We thus have

Ψ(I)(r) =

∞∑
m=−∞

[
k0h(2)

m +

∞∑
m′=−∞

Smm′
k0h

(1)
m′

]
. (B2)

The wavefunction in the annular region, i.e., |r′| > R2

and |r| < R1, can be expressed in the primed coordinates
r′ = (r′, θ′) as

Ψ̃(II)(r′) =

∞∑
m=−∞

∞∑
l=−∞

mãIIl

[
kII h̃

(2)
l + Scdl

kII h̃
(1)
l

]
,

(B3)
where

kII h̃
(1,2)
l =

1

2

 H
(1,2)
l−1 (kIIr

′)e−iθ
′

i
√

2sIIH
(1,2)
l (kIIr

′)

H
(1,2)
l+1 (kIIr

′)eiθ
′

 eilθ
′
,

and

Scdl = −
Scd−Tl

Scd−Bl

(B4)

with


Scd−Tl ≡ Jl(kIIIR2)

(
H

(2)
l−1(kIIR2)−H(2)

l+1(kIIR2)
)
− sIIsIIIH(2)

l (kIIR2) (Jl−1(kIIIR2)− Jl+1(kIIIR2)) ,

Scd−Bl ≡ Jl(kIIIR2)
(
H

(1)
l−1(kIIR2)−H(1)

l+1(kIIR2)
)
− sIIsIIIH(1)

l (kIIR2) (Jl−1(kIIIR2)− Jl+1(kIIIR2)) .
(B5)

Making use of the Graf’s addition theorem for Bessel
functions

H
(1,2)
l (kr′)eilθ

′
=
∑
n

Jn(kξ)Hl+n(kr)ei(l+n)θ,

we can rewrite the Eq. (B3) as
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Ψ̃(II)(r′) =

∞∑
m=−∞

∞∑
l=−∞

mãIIl

[∑
n

Jn(kIIξ)
kIIh

(2)
l+n + Scdl

∑
n

Jn(kIIξ)
kIIh

(1)
l+n

]
. (B6)

With the convention l + n ≡ µ, we further have

Ψ̃(II)(r′) =

∞∑
m=−∞

∞∑
l=−∞

mãIIl

[∑
µ

Jµ−l(kIIξ)
kIIh(2)

µ + Scdl
∑
µ

Jµ−l(kIIξ)
kIIh(1)

µ

]
,

=
∑
m

∑
µ

[(∑
l

mãIIl Jµ−l(kIIξ)

)
kIIh(2)

µ +

(∑
l

mãIIl S
cd
l Jµ−l(kIIξ)

)
kIIh(1)

µ

]
.

(B7)

Redefining

mãIIl ≡
∑
l′

maIIl′ Jl′−l(kIIξ), (B8)

we finally obtain the wavefunction expressed in unprimed
coordinates r = (r, θ) as

Ψ(II)(r) =
∑
m

∑
l′

maIIl′ ×
∑
µ

[(∑
l

Jl′−l(kIIξ)Jµ−l(kIIξ)

)
kIIh(2)

µ +

(∑
l

Jl′−l(kIIξ)S
cd
l Jµ−l(kIIξ)

)
kIIh(1)

µ

]
,

=
∑
m

∑
l′

maIIl′
∑
µ

[
δl′µ

kIIh(2)
µ + Sodl′µ

kIIh(1)
µ

]
=
∑
m

∑
l′

maIIl′

[
kIIh

(2)
l′ +

∑
µ

Sodl′µ
kIIh(1)

µ

]
,

(B9)

where maIIl′ are interpreted as the expansion coefficients
in the unprimed coordinates. The resulting matrix Sod ≡
[Sodl′µ] characterizes the scattering from the off-centered
small inner disk expressed in the unprimed coordinates
and is non-diagonal:

Sod = U−1ScdU, (B10)

with the transformation matrices U = [Ulµ] =

[Jµ−l(kIIξ)], U
−1 = [U−1

l′l ] = [Jl′−l(kIIξ)] is responsible

for the eccentric displacement/deformation and Scd =
[Scdl δll′ ] is the diagonal scattering matrix for the cen-
tered inner disk scatterer in the primed coordinates with
elements Scdl given by Eqs. (B4) and (B5).

The S−matrix of the whole scatterer can thus be deter-
mined by the matching conditions at the outer boundary
|r| = R1. In particular, for a given incident spin-1 wave
with angular momentum m, wavefunction matching im-
posing on each momentum state j yields

sIH
(2)
m (kIR1)δmj + sISmjH

(1)
j (kIR1) = sII

maIIj H
(2)
m (kIIR1) + sII

∑
l

maIIl S
od
lj H

(1)
j (kIIR1), (B11a)

[
H

(2)
m−1(kIR1)δmj + SmjH

(1)
j−1(kIR1)

]
−
[
H

(2)
m+1(kIR1)δmj + SmjH

(1)
j+1(kIR1)

]
=[

maIIj H
(2)
j−1(kIIR1) +

∑
l

maIIl S
od
lj H

(1)
j−1(kIIR1)

]
−

[
maIIj H

(2)
j+1(kIIR1) +

∑
l

maIIl S
od
lj H

(1)
j+1(kIIR1)

]
.

(B11b)

Defining matrices
X(1,2) =

[
H(1,2)
m (k0R1)δmj

]
,

Y(1,2) =
[
H

(1,2)
m+1(k0R1)δmj

]
,

Z(1,2) =
[
H

(1,2)
m−1(k0R1)δmj

]
,

(B12)


x(1,2) =

[
H(1,2)
m (k1R1)δmj

]
,

y(1,2) =
[
H

(1,2)
m+1(k1R1)δmj

]
,

z(1,2) =
[
H

(1,2)
m−1(k1R1)δmj

]
,

(B13)
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we can rewrite the equations above in the following com- pact form

sIX(2) + sISX(1) = sIIAx(2) + sIIASodx(1), (B14a)

(
Z(2) − Y(2)

)
+ S

(
Z(1) − Y(1)

)
= A

(
z(2) + Sodz(1)

)
− A

(
y(2) + Sody(1)

)
, (B14b)

with the definition of the coefficient matrix A = [ maIIj ].
Solving the equations, we finally arrive at the resulting
S matrix:

S = −Z(2) − Y(2) − sIsIIX(2)T
Z(1) − Y(1) − sIsIIX(1)T

, (B15)

and

A =
sI
sII

[
X(2) + SX(1)

]
F−1, (B16)

where sI,II denote the band indices in the corresponding

regions, T = F−1(H−G) with the conventions F = x(2) +

Sodx(1),G = y(2) + Sody(1),H = z(2) + Sodz(1).

Inside the inner disk region, i.e., |r′| < R2, the wave-
function in the primed polar coordinates r′ = (r′, θ′)
(with origin at the small disk center O′) is

Ψ̃(III)(r′, θ′) =
∑
m

∑
l

mb̃l
2

Jl−1(kIIIr
′)e−iθ

′

i
√

2sIIIJl(kIIIr
′)

−Jl+1(kIIIr
′)eiθ

′

 eilθ
′
.

(B17)

The expansion coefficients mb̃l can be determined by the
matching condition at the inner boundary r′ = |r− ξ| =
R2 between Ψ̃(III) and Ψ̃(I) [c.f., Eq. (B3)] as

mb̃l = sII
∑
l′

maIIl′ Jl′−l(kIIξ)
H

(2)
l (kIIR2) + Scdl H

(1)
l (kIIR2)

sIIIJl(kIIIR2)
. (B18)

With these expansion coefficients maIIl ,
mb̃l and the

scattering matrices S, Sod, Scd obtained in the related
regions via Eqs. (B16, B18) and Eqs. (B15, B10, B4),

respectively, the resulting wavefunctions in different re-
gions can be calculated correspondingly. Together, they
give the full wavefunction in the entire space.
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