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In the study of strongly-correlated, many-electron systems, the Hubbard Kanamori (HK) model
has emerged as one of the prototypes for transition metal oxide physics. The model is multiband
in nature and contains Hunds coupling terms, which have pronounced effects on metal-insulator
transitions, high temperature superconductivity, and other physical properties. In the following, we
present a complete theoretical framework for treating the HK model using the ground state Auxiliary
Field Quantum Monte Carlo (AFQMC) method and analyze its performance on few-band models
whose parameters approximate those observed in ruthenate, rhodates, and other materials exhibiting
Hund’s physics. Unlike previous studies, the constrained path and phaseless approximations are
used to respectively control the sign and phase problems, which enables high accuracy modeling
of the HK model’s ground state properties within parameter regimes of experimental interest. We
demonstrate that, after careful consideration of the Hubbard-Stratonovich transformations and trial
wave functions employed, relative errors in the energy of less than 1% can routinely be achieved
for moderate to large values of the Hund’s coupling constant. Crucially, our methodology also
accurately predicts magnetic ordering and phase transitions. The results presented open the door
to more predictive modeling of Hund’s physics within a wide range of strongly-correlated materials
using AFQMC.

I. INTRODUCTION

Since the unanticipated discovery of high-temperature
superconductivity in the cuprates, the single-band Hub-
bard model1 has been the focus of an unparalleled
level of theoretical scrutiny and associated algorithmic
development.2–5 Nevertheless, most materials exhibit-
ing strong correlation, including most transition metal
oxides6–8 as well as the pnictides,9–11 fullerides,12,13 and
chalcogenides9,10,14 possess multiple bands that cross
their Fermi levels and are therefore fundamentally multi-
band in nature.15 In recent years, it has become in-
creasingly evident that some of the most significant ef-
fects in such multi-band materials stem from Hund’s
coupling.10,11,16 According to Hund’s rules, electrons fa-
vor maximizing their total spin by first occupying differ-
ent, degenerate orbitals with parallel spins; only after the
parallel spins fill all available orbitals do electrons then
begin to doubly occupy the same orbitals.15 As such, the
effective Coulomb repulsion among electrons in a half-
filled shell is increased due to Hund’s rules, while that
at any other filling is decreased. Hund’s effects there-
fore drive half-filled d- and f -electron materials closer
to a Mott transition for a given Coulomb repulsion, yet
drive non-half-filled materials away from a Mott trans-
ition while also increasing the correlation within their
metallic phases. The consequences of these effects are
perhaps best illustrated in 4d transition metal oxides
that have more than a single electron or hole in their 4d
shells.17–20 Unlike their rhodate counterparts, which pos-
sess a single hole in their shells, many ruthenates and mo-
lybdenates exhibit substantial mass enhancements,21 un-
expected Mott Insulator transitions,22–24 novel quantum

phase transitions,25 and even superconducting phases26

– all of which may be attributed to Hund’s physics.

Despite both the prevalence and importance of Hund’s
effects, they remain a challenge to model. Most ana-
lytical and numerical treatments revolve around solving
a multi-band Hubbard model, most often the Hubbard-
Kanamori (HK) model,27 containing a mixture of kinetic,
Coulomb U , and Hund’s J terms. Although analytical
studies have been performed,28–32 just as in the case of
the single-band Hubbard model containing a repulsive U
term,2,33 accurate treatments of these models necessit-
ate methods capable of treating strong correlation non-
perturbatively. However, because these models possess
significantly larger state spaces and involve additional
pair-hopping and Hund’s exchange terms, they are often
even more difficult to treat than the Hubbard model.

Due to the complicated interactions involved, there is
no general analytical solution for these problems. Thus,
numerical treatments are in high demand. To date, most
numerical studies of multi-band models have employed
Dynamical Mean Field Theory (DMFT)34,35 either on its
own or in combination with Density Functional Theory
(DFT)36 because of DMFT’s ability to treat band and
atomic effects on equal footing by self-consistently solv-
ing an impurity problem within a larger bath. DMFT
has been very successful at mapping out multi-band
phase diagrams at finite temperatures.19,20,23,37–40 Nev-
ertheless, DMFT is fundamentally limited by the ac-
curacy and scaling of its impurity model solver. Some
DMFT studies rely upon exact diagonalization (ED) to
solve their impurity models, yet the computational cost
of ED grows exponentially with the number of bands
involved, thus thwarting its application to many-band
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models. Some DMFT algorithms employ continuous-
time quantum Monte Carlo (CTQMC)41 to solve their
impurity models. CTQMC can solve larger impurity
models than ED, but is still hampered by the sign prob-
lem, an exponential decrease in the signal to noise ra-
tio observed in stochastic simulations,42 in certain para-
meter regimes and low temperature calculations remain
difficult.43 A method that can accurately simulate larger
system sizes at lower temperatures is thus in need.

One suite of techniques particularly well-suited for
studying the large state spaces inherent to multi-
band models are quantum Monte Carlo (QMC)
techniques.44,45 Both finite temperature QMC methods,
including the CTQMC43 and Hirsch-Fye QMC46 al-
gorithms that have been employed as impurity solvers
within DMFT, and ground state47,48 QMC algorithms
have been developed and applied to the multi-band Hub-
bard model. Nonetheless, the Hund’s terms of the HK
Hamiltonian have posed challenges for all of these meth-
ods. This is because Hund’s terms are not readily ex-
pressed as products of density operators and are there-
fore not readily amenable to standard QMC transform-
ations. Straightforward decoupling of the exchange and
pair hopping terms leads to a severe sign problem.49 At-
tempts have therefore been made to simplify the Hund’s
contribution to the Hamiltonian to make it more palat-
able to QMC methods by constraining its direction to
the z-axis,49,50 but such treatments often fail to properly
capture the model’s expected physics. Several Hund’s-
specific transformations have been proposed, including
a discrete transformation by Aoki51,52 and a continuous
transformation by Imada.47,48 Nevertheless, these trans-
formations ultimately do not eliminate the sign problem
and are limited to parameter regimes with only high sig-
nal to noise ratios. These algorithmic constraints obscure
our fundamental understanding of multi-band physics.

In this paper, we present an Auxiliary Field Quantum
Monte Carlo (AFQMC) framework especially suited for
the study of ground state multi-band Hubbard models
and demonstrate its accuracy over a range of realistic
parameters using different signal-preserving approxima-
tions and trial wave functions. Key to our approach is
the strategic use of two forms of both the continuous and
discrete Hubbard-Stratonovich (HS) Transformations to
decouple the Hund’s term: a charge decomposition for
negative values of the Hund’s coupling parameter, and
a spin decomposition for positive values of the Hund’s
coupling parameter. We also employ an unconventional
form of importance sampling in which we shift propag-
ators instead of auxiliary fields so as to enable import-
ance sampling of discrete transformed propagators. This
enables us to combine importance sampling with both
discrete and continuously transformed propagators. Un-
like previous works, we furthermore utilize flexible Gen-
eralized Hartree-Fock (GHF) trial wave functions which
enable us to calculate highly accurate background sub-
traction terms and apply highly accurate sign/phase con-
straints. Altogether, we find that these improvements

yield promising results for a variety of HK model bench-
marks. Although the algorithm presented is designed for
the ground state, it can easily be adapted for use in fi-
nite temperature methods.53,54 Our algorithm therefore
paves the way to high accuracy modeling of the low tem-
perature physics of a wide range of multi-band models
and materials over a dramatically larger portion of the
phase diagram.

The remainder of the paper is organized as follows.
In Section II, we outline the HK model, summarize the
key features of the AFQMC method, and describe how
the conventional AFQMC technique may be modified
to best treat the HK Hamiltonian. In Section III, we
then present benchmarks of our method’s performance
within different parameter regimes, using different trial
wave functions and employing different approximations
on two- and three-band HK models for which ED res-
ults may be obtained. Towards the end of this section,
we also demonstrate the accuracy with which our tech-
niques can predict the charge gaps and magnetic order-
ing of two-dimensional lattice models beyond the reach
of most other techniques. We conclude with a discus-
sion of the broader implications of this work and future
directions in Section IV.

II. METHODS

A. Hubbard Kanamori Model Hamiltonian

The HK model is a multi-band version of the Hubbard
model designed to account for the competition between
the spin and orbital degrees of freedom observed in the
physics of d- and f - electron material.15,27 In order to
accomplish this, the model includes not only standard
Hubbard on-site density-density interactions, but also
inter-orbital (band) density, exchange, and pair hopping
terms. The full HK Hamiltonian, written as generally as
possible, reads

ĤHK ≡ Ĥ1 + Ĥ2 ≡ Ĥ1 + ĤU + ĤJ , (1)

where

Ĥ1 =
∑
imσ

∑
jm′σ′

tσσ
′

im,jm′ ĉ
†
imσ ĉjm′σ′ , (2)

ĤU =
∑
i,m

Uimn̂im↑n̂im↓ +
∑

i,m6=m′

U ′imm′ n̂im↑n̂im′↓

+
∑

i,m<m′,σ

(U ′imm′ − Jimm′)n̂imσn̂im′σ, (3)

and

ĤJ =
∑

i,m6=m′

Jimm′(ĉ†im↑ĉ
†
im′↓ĉim↓ĉim′↑

+ ĉ†im↑ĉ
†
im↓ĉim′↓ĉim′↑ +H.c.).

(4)
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In the above, ĉ†imσ(ĉimσ) creates (annihilates) an elec-
tron with spin σ in band m at site i. n̂ denotes the
number operator and n̂im↑, for example, represents the

number of spin-up electrons at site i in band m. Ĥ1

contains all one-body contributions to the Hamiltonian,
including terms parameterized by the constants tσσ

′

im,jm′

that describe the hopping of electrons in different bands
between sites i and j and the spin-orbit coupling com-
mon within realistic materials. Ĥ2 denotes the collec-
tion of all two-body operators. ĤU contains all density-
density interactions, including the intraband (U) and
interband (U ′) Coulomb interactions, and the z- (or
Ising) component of the Hund’s coupling. In contrast,

ĤJ contains all of the terms that cannot be written as
density-density interactions, which consist of the x- and
y- components (spin-exchange) of the Hund’s coupling,

(ĉ†im↑ĉ
†
im′↓ĉim↓ĉim′↑ + H.c.), as well as the pair-hopping

interaction (ĉ†im↑ĉ
†
im↓ĉim′↓ĉim′↑+H.c.), in which two elec-

trons in a given band transfer as a pair to another band.
J denotes the Hund’s coupling constant. Note that
our formalism is general and allows for band- and site-
dependent U , U ’, and J constants.

B. Modified Hubbard Kanamori Model
Hamiltonian

In order to facilitate programming and the general-
ization of this HK Hamiltonian into a form in which all
coupling constants are independent, we map the Hamilto-
nian given by Equations (1)-(4) into a one-band model
whose terms only depend upon their band indices. If we
now let i and j denote superindices that combine both
lattice site and band information, then

Ĥ = Ĥ1 + Ĥ2

=
∑
ij,σσ′

tσσ
′

ij ĉ†iσ ĉjσ′

+
∑
i

U in̂i↑n̂i↓

+
∑
i<j

U ij1 (n̂i↑n̂j↓ + n̂i↓n̂j↑)

+
∑
i<j

U ij2 (n̂i↑n̂j↑ + n̂i↓n̂j↓)

+
∑
i<j

J ij(ĉ†i↑ĉ
†
j↓ĉi↓ĉj↑ + ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑

+ ĉ†j↑ĉ
†
i↓ĉj↓ĉi↑ + ĉ†j↑ĉ

†
j↓ĉi↓ĉi↑).

(5)

tσσ
′

ij describes the hopping and spin-orbit coupling
between different sites and bands. In keeping with the∑
i,m<m′ and

∑
i,m6=m′ summations in Equations (3) and

(4),
∑
i<j only sums over index combinations that refer-

ence different bands on the same site. In this modified
HK Model, the U term describes density-density interac-
tions only between electrons with opposite spins in the

same band, the U1 term describes interactions between
electrons with opposite spins in different bands on the
same site, the U2 term describes interactions between
electrons with parallel spins in different bands on the
same site, and the J term describes spin-exchange and
pair hopping interactions on the same site. Thus, in going
from Equations (3) and (4) to Equation (5), the original
U ′ term has become the U1 term, the original (U ′ − J)
term has become the U2 term, and the J term has been
re-expressed. Using Equation (5), we map a multi-band
model into a single-band model in which the number of
lattice sites has been enlarged into the number of bands.
Since there is no explicit band index in our model, we can
deal with any number of bands as long as the mapping
is done correctly.

C. Overview of AFQMC

In the remainder of this work, AFQMC will be
employed to obtain accurate numerical solutions to
the HK Model. AFQMC is a quantum many-body
method that solves the ground state Schrodinger Equa-
tion by randomly sampling an overcomplete space of non-
orthogonal Slater determinants55–57 and has consistently
been demonstrated to be among the most accurate of
modern many-body methods for modeling the Hubbard
model over a wide range of parameter regimes.2,33,58–60

At its heart, AFQMC is an imaginary-time projection
quantum Monte Carlo technique that applies a projec-

tion operator, e−βĤ , onto an initial wave function, |ΨI〉,

|Ψ0〉 ∝ lim
β→∞

(
e−βĤ

)
|ΨI〉. (6)

In the limit of infinite imaginary projection time (β →
∞), it converges to the ground state wave function, |Ψ0〉,
as long as the initial wave function is not orthogonal to
the ground state wave function. Because the projection
operator cannot be evaluated for large values of β, it is
discretized into n = β/∆τ smaller time slices for which
it can be evaluated

|Ψ0〉 ∝ lim
n→∞

(
e−∆τĤ

)n
|ΨI〉, (7)

and the projection is carried out iteratively as follows

|Ψ(n+1)〉 = e−∆τĤ |Ψ(n)〉. (8)

For sufficiently small ∆τ , the projection operator may be
factored into one- and two-body pieces via Suzuki-Trotter
Factorization61,62

e−∆τĤ ≈ e−∆τĤ1/2e−∆τĤ2e−∆τĤ1/2. (9)
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The two-body propagator may be further decomposed
into the four terms given in Equation (5)

e−∆τĤ2 ≈ e−∆τĤU e−∆τĤU1 e−∆τĤU2 e−∆τĤJ

= e
−∆τ

∑
i
Uin̂i↑n̂i↓

e
−∆τ

∑
i<j

Uij1 (n̂i↑n̂j↓+n̂i↓n̂j↑)

e
−∆τ

∑
i<j

Uij2 (n̂i↑n̂j↑+n̂i↓n̂j↓)

e
−∆τ

∑
i<j

Jij(ĉ†i↑ĉ
†
j↓ĉi↓ĉj↑+ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑+H.c.)

.

(10)

A time step extrapolation is needed to make sure the
Trotter error is negligible in the Monte Carlo simulation.

D. Hubbard-Stratonovich Transformation of the
Modified Hubbard Kanamori Hamiltonian

According to Thouless’s Theorem,63 acting the expo-
nential of a one-body operator on a determinant results in
another determinant, reducing the process of projecting
a one-body operator onto the wave function into stand-
ard matrix multiplication. Nevertheless, no such theorem
applies to exponentials of two-body operators, which
necessitates re-expressing these operators into integrals
over one-body operators using the so-called Hubbard-
Stratonovich transformation.64

In order to transform the two-body propagator given
by Equation (10), both discrete65,66 and continuous67 HS
transformations need to be performed. The U , U1, and
U2 terms are products of density operators, much like the
single-band Hubbard model U term, and may therefore
be decomposed using discrete transformations. For α <
0, where α may denote U , U1, or U2, it is usually better
to use the discrete charge decomposition

e−∆ταn̂1n̂2 = e−∆τα(n̂1+n̂2−1)/2
∑
x=±1

1

2
eγx(n̂1+n̂2−1),

(11)
where cosh(γ) = e−∆τα/2, while for α > 0, it is usually
better to use the spin decomposition

e−∆ταn̂1n̂2 = e−∆τα(n̂1+n̂2)/2
∑
x=±1

1

2
eγx(n̂1−n̂2), (12)

where cosh(γ) = e∆τα/2. In both Equations (11) and
(12), x represents the namesake auxiliary field that may
assume the discrete values of +1 or −1. For the sub-
sequent discussion, note that the charge decomposition
is so named because it produces a one-body propagator
involving the sum of n̂1 + n̂2, which would be equival-
ent to the charge on a site if 1 represented an up and 2
a down spin on that site. Along similar lines, the spin
decomposition is so named because it involves the differ-
ence between n̂1 and n̂2, which would represent the spin
on a site under the same assumptions.

Because ĤJ contains terms that are not simple
products of density operators, decomposing it is a much

more challenging task. Past attempts have either neg-
lected or simplified ĤJ .49,50 Several techniques have em-
ployed exact decompositions,47,51,52 but all such decom-
positions are accompanied by a sign problem that thwarts
explorations of wide swaths of the phase diagram. Un-
like these past attempts, in the following, we define a
unique decomposition that can be employed in both con-
tinuous and discrete transformations, and accompany it
by importance sampling that first mitigates and the con-
strained path and phaseless approximations that sub-
sequently eliminate the sign and phase problems. As part

of our decomposition of e−∆τĤJ , we first re-expressed ĤJ

in terms of squares of one-body operators. Let

ρ̂ij ≡
∑
σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ). (13)

Then,

ρ̂2
ij =

∑
σσ′

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ)(ĉ†iσ′ ĉjσ′ + ĉ†jσ′ ĉiσ′), (14)

and ĤJ may be re-expressed as (see Supplemental Mater-
ials Section at IA for more details about the deduction)

ĤJ =
∑
i<j

J ij(ĉ†i↑ĉ
†
j↓ĉi↓ĉj↑ + ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑ +H.c.)

=
∑
i<j

J ij

2
[ρ̂2
ij −

∑
σ

(n̂iσ + n̂jσ − n̂iσn̂jσ − n̂jσn̂iσ)]

=
∑
i<j

J ij

2
ρ̂2
ij −

∑
i<j,σ

J ij

2
(n̂iσ + n̂jσ) +

∑
i<j,σ

J ij n̂iσn̂jσ.

(15)

The second term of Equation (15) consists of one-body
operators and can be combined with the other one-body
operators into Ĥ1. The third term consists of a product
of density operators and can therefore be transformed
according to either Equations (11) or (12). The first
term, however, consists of a square that cannot be re-
solved into products of density operators. In general, the
two-body term can be decoupled via either a discrete68

or a continuous64 Hubbard Stratonovich transformation.
A continuous HS transformation was employed based on
previous experience60 that the statistical errors that ac-
company transformations with near optimal background
subtraction terms have substantially smaller slopes as a
function of projection time than the errors that accom-
pany discrete transformations without any background
subtraction. In general, the continuous HS transforma-
tion may be written as

e−∆τÂ2/2 =

∫
dx

1√
2π
e−x

2/2ex
√
−∆τÂ, (16)

where Â represents any one-body operator and x denotes
an auxiliary field, as before. Letting Â ≡ ρ̂ij , it follows
that the most obvious way to transform the exponential
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formed from the first term of Equation (15) is using the
charge decomposition

e
−∆τ

∑
i<j

Jij

2 [
∑
σ

(ĉ†iσ ĉjσ+ĉ†jσ ĉiσ)]2

=
∏
i<j

∫
dxij

1√
2π
e−x

2
ij/2e

xij
√
−∆τJij [

∑
σ

(ĉ†iσ ĉjσ+ĉ†jσ ĉiσ)]
.

(17)

As long as J ij < 0 for all i, j, all of the propagators
produced by this transformation will be real, as is de-
sirable within AFQMC simulations. However, if any of
the J ij are greater than 0,

√
−∆τJ ij will be complex

resulting in a complex propagator that immediately in-
troduces a complex phase into simulations. To prevent
complexity from being introduced into the operators, in
certain cases, we take a cue from the discrete case and
define a continuous spin decomposition that involves the
difference between spin up and down operators. Let

ρ̂ij =
∑
σ

δσ(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ), (18)

where δ↑ = 1 and δ↓ = −1, then (see Supplemental Ma-
terials at Section IA for further details)

ρ̂2
ij =

∑
σσ′

δσδσ′(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ)(ĉ†iσ′ ĉjσ′ + ĉ†jσ′ ĉiσ′). (19)

Using this to re-express ĤJ , we have

ĤJ =
∑
i<j

J ij(ĉ†i↑ĉ
†
j↓ĉi↓ĉj↑ + ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑ +H.c.)

=
∑
i<j

−J
ij

2
[ρ̂2
ij −

∑
σ

(n̂iσ + n̂jσ − n̂iσn̂jσ − n̂jσn̂iσ)]

=
∑
i<j

−J
ij

2
ρ̂2
ij +

∑
i<j,σ

J ij

2
(n̂iσ + n̂jσ)−

∑
i<j,σ

J ij n̂iσn̂jσ.

(20)

Employing this form for the decomposition, the exponen-
tial that stems from the first term of Equation (20) may
now be transformed to yield

e
∆τ

∑
i<j

Jij

2 [
∑
σ
δσ(ĉ†iσ ĉjσ+ĉ†jσ ĉiσ)]2

=
∏
i<j

∫
dxij

1√
2π
e−x

2
ij/2e

xij
√

∆τJij [
∑
σ
δσ(ĉ†iσ ĉjσ+ĉ†jσ ĉiσ)]

,

(21)

which is real for J ij > 0. Using the charge decomposi-
tion (Equation (17)) when J ij < 0 and the spin decom-
position (Equation (21)) when J ij > 0 thus completely
eliminates complex propagators, easing simulation. In
Section III A, we compare the merits of using this mixed
decomposition approach to exclusively relying upon the
complex charge decomposition on the accuracy of our
overall results.

Inserting the HS transformations defined by Equations
(11), (12), (17), and (21) into Equations (9) and (10)
and combining terms, one arrives at the final AFQMC
expression for the projection operator

e−∆τĤ =

∫
dxp(x)B̂(x), (22)

where x = {x1, x2, ..., xNF } denotes the set of NF total
normally distributed auxiliary fields sampled at a given
time slice, B̂(x) represents the amalgamation of all one-
body operators, and p(x) is a combination of all scalar

functions of the fields. Example expressions for B̂(x)
and p(x) are given in the Supplemental Material at Sec-
tion IB. As is clear from Equation (22), the series of HS
Transformations described ultimately maps the original
two-body propagator into a weighted integral over one-
body propagators that are functions of external auxiliary
fields.

E. Sampling in AFQMC

1. The Sampling Process

One of the most computationally efficient ways of
evaluating many dimensional integrals such as that
given by Equation (22) is to use Monte Carlo sampling
techniques. As described in more detail in previous
publications,55–57,69 if |ΨI〉 is represented by a single
Slater determinant, after each application of the projec-
tion operator, a new Slater determinant will be produced.
Thus, if k instances (so-called “walkers”) are initialized to
|ΨI〉 and the projection operation given by Equation (22)
is applied to each of them by independently sampling sets
of fields, then a random walk through the space of non-
orthogonal determinants is realized in which the overall
wave function at time slice n, |Ψ(n)〉, is represented by

an ensemble of k wave functions |ψ(n)
k 〉 with weights w

(n)
k

|Ψ(n)〉 =
∑
k

w
(n)
k |ψ

(n)
k 〉. (23)

Here, the w
(n)
k consist of the products of scalars accu-

mulated over all time slices by walker k, which can be
complex.

Ground state observables at each time slice, such as
the energies reported below, may then be computed by
evaluating the mixed estimator44 over the ensemble

〈Â〉mix =
〈ΨT |Â|Ψ(n)〉
〈ΨT |Ψ(n)〉

=

∑
k w

(n)
k 〈ΨT |Â|ψ(n)

k 〉∑
k w

(n)
k 〈ΨT |ψ(n)

k 〉
, (24)

where |ΨT 〉 denotes a trial wave function that approxim-
ates the true ground state wave function. To facilitate
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the evaluation of the mixed estimator, it is common to
introduce the local energy

EL[ΨT ,Φ] ≡ 〈ΨT |Ĥ|Φ〉
〈ΨT |Φ〉

, (25)

such that Equation (24) may be simplified to

〈Â〉mix =

∑
k w

(n)
k 〈ΨT |ψ(n)

k 〉EL[ΨT , ψ
(n)
k ]∑

k w
(n)
k 〈ΨT |ψ(n)

k 〉
. (26)

After a sufficiently large number of time slices such that
|Ψ(n)〉 approaches the ground state, final estimates of 〈Â〉
may be obtained by averaging over each time slice expect-
ation value.

A population control procedure70 is needed during the
random walk. During this procedure, walkers with larger
weights are replicated and those with smaller weights are
eliminated probabilistically. The weight used in popula-
tion control is

W
(n)
k = w

(n)
k 〈ΨT |ψ(n)

k 〉. (27)

When there is a sign or phase problem, W
(n)
k may become

negative or complex. As described in Section (II E 5) and

Section (II E 6), W
(n)
k is always positive or zero if the con-

strained path or phaseless approximations are employed.

2. The Sign and Phase Problems

Unfortunately, the “free” projection process just de-
scribed is typically beset by either the sign42,71 or phase
problems.72 These problems fundamentally stem from
the fact that observables computed using a single Slater
determinant, |Ψ〉, remain invariant to arbitrary rotations,
eiθ|Ψ〉, of that determinant, where θ is a phase angle.
Consequently, during the course of an AFQMC simula-
tion involving complex propagators, walkers may accu-
mulate infinitely many possible phases (as there are infin-
itely many possible phase angles, θ ∈ [0, 2π)), resulting in
infinitely many possible determinants. Since these phases
are directly multiplied into the walker weights of Equa-
tions (24) and (26), after many iterations, the walker
weights end up populating the entire complex plane and
many of the terms summed to compute weighted aver-
ages of observables cancel one another out. This cancel-
lation leads to an exponential decline in observable sig-
nal to noise ratios that manifests as infinite variances60

called the phase problem. If transformations that pre-
clude propagators from becoming complex are employed
as described above, positive and negative versions of each
determinant may still be generated, resulting in a some-
what less pernicious cancellation of positive and negative
weights termed the sign problem. If left unchecked, the
sign and phase problems render obtaining meaningful ob-
servable averages nearly impossible, thwarting AFQMC
simulations. We therefore mitigate these problems us-
ing a combination of background subtraction, importance

sampling, and either the constrained path (for the sign
problem) or phaseless (for the phase problem) approxim-
ations.

3. Background Subtraction

One of the simplest ways of reducing variances within
AFQMC is via background subtraction.73 As part of
background subtraction, the two-body portion of a
Hamiltonian is rewritten so that a mean field average is
subtracted from each one-body operator. Thus, if the ori-
ginal two-body operator may be written as a square such
that V̂ = − 1

2

∑
i v̂

2
i to make it amenable to a HS Trans-

formation, as part of background subtraction, it would
be re-expressed as

V̂ = −1

2

∑
i

(v̂i − 〈v̂i〉)2 −
∑
i

v̂i〈v̂i〉+
1

2

∑
i

〈v̂i〉2, (28)

where 〈v̂i〉 denotes the mean field average of the operator
v̂i (see Supplemental Materials at Section II for more de-
tails on how this mean field average is obtained). Because
the modified v̂i − 〈v̂i〉 operator will be smaller in mag-
nitude than the bare v̂i operator, background subtraction
reduces the variance involved in AFQMC simulations.
In this work, we perform background subtraction on the
only term in the Hamiltonian that is not a product of

on-site densities, the Jij

2 ρ̂2
ij term of Equation (15) or the

−J
ij

2 ρ̂2
ij term of Equation (20), yielding∑

i<j

J ij

2
ρ̂2
ij =

∑
i<j

J ij

2
(ρ̂ij − 〈ρ̂ij〉)2 −

∑
i<j

J ij

2
〈ρ̂ij〉2

+
∑
i<j

J ij〈ρ̂ij〉ρ̂ij (29)

and∑
i<j

−J
ij

2
ρ̂2
ij =

∑
i<j

−J
ij

2
(ρ̂ij − 〈ρ̂ij〉)2 +

∑
i<j

J ij

2
〈ρ̂ij〉2

−
∑
i<j

J ij〈ρ̂ij〉ρ̂ij , (30)

respectively.

4. Importance Sampling

In order to further reduce the variance of walker
weights and to make our simulations more amenable to
the constrained path and phaseless approximations, we
additionally perform importance sampling, which aims to
shift the center of the distribution from which we sample
our auxiliary fields so that the most important fields are
sampled more frequently. The conventional way of per-
forming importance sampling in AFQMC simulations is
by introducing a force bias that shifts each sampled field
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by an amount dependent upon the operator being trans-
formed and the current walker wave function.72,74–76 Be-
cause we utilize a mixture of discrete and continuous
transformations and force bias importance sampling is
only applicable to continuous transformations, in this
work, we employ a formally equivalent strategy in which
we shift the propagators instead of the auxiliary fields.

For continuous HS Transformations, this may be ac-
complished by shifting the operator Â by 〈Â〉 in Equation
(16)

e−∆τÂ2/2 =

∫
dx

1√
2π
e−x

2/2ex
√
−∆τÂ

=

∫
dx

1√
2π
e−x

2/2ex
√
−∆τ〈Â〉ex

√
−∆τ(Â−〈Â〉),

(31)

where 〈Â〉 is the mixed estimator of Â

〈Â〉 ≡
〈ΨT |Â|ψ(n)

k 〉
〈ΨT |ψ(n)

k 〉
. (32)

If we define the dynamic force as F ≡
√
−∆τ〈Â〉, then

Equation (31) may be re-expressed as

e−∆τÂ2/2 =

∫
dx

1√
2π
e−x

2/2exF ex
√
−∆τÂ−xF

=

∫
dx

1√
2π
e−(x−F )2/2e

1
2F

2

ex
√
−∆τÂ−xF

=

∫
dx

1√
2π
e−(x−F )2/2e

1
2F

2−xF ex
√
−∆τÂ.

(33)

In order to realize this transformation, fields are sampled
from the shifted Gaussian probability density function,

1√
2π
e−(x−F )2/2, and the propagator ex

√
−∆τÂ is applied

with weight e
1
2F

2−xF . The field distributions are now
centered around the dynamic force, which can be shown
to minimize the variance. If the dynamic force F is com-
plex, our auxiliary fields will have the same imaginary
part to ensure x− F is real. Then, the probability func-

tion 1√
2π
e−(x−F )2/2 will remain real and therefore amen-

able to sampling.
Shifting the propagator within a discrete transforma-

tion proceeds in exactly the same fashion. Comparing
Equations (16) and (12), the dynamic force needed to
shift the propagator in Equation (12), for example, would
be F ≡ γ(〈n̂1〉 − 〈n̂2〉), resulting in the transformation

e−∆ταn̂1n̂2e−∆τα(n̂1+n̂2)/2
∑
x=±1

1

2
eγx(n̂1−n̂2)

= e−∆τα(n̂1+n̂2)/2
∑
x=±1

1

2

(
exF

W

)
Weγx(n̂1−n̂2)−xF .

(34)

As in the continuous case, in order to realize this trans-
formation, fields are now sampled from a shifted probab-
ility density function, exF /W , where W is the normal-
ization factor, W = exF + e−xF , and the propagator
e(−∆τα/2+γx)n̂1e(−∆τα/2−γx)n̂2 is applied with weight
1
2We−xF . A shifted transformation may similarly be
constructed for the discrete charge decomposition given
by Equation (11). Propagators that include background

subtraction may be shifted by simply replacing Â with
Â− 〈Â〉 in Equations (31) and (33) above (see the Sup-
plemental Materials Section III for detailed formula).

It can readily be proven that shifting auxiliary fields is
equivalent to shifting propagators.75–77 Shifting propag-
ators therefore entails a convenient way of combining im-
portance sampling with discrete transformations, whose
discrete fields cannot be shifted by the continuous force
bias terms of conventional importance sampling tech-
niques. Overall, the importance sampled propagation
produces the same observable averages as free propaga-
tion, but favors the sampling of determinants with larger
overlaps with the trial wave function and suppresses the
sampling of determinants with no overlap.

5. Constrained Path Approximation

In order to address the sign problem that may emerge
when our propagators, B̂(~x), are real, we employ the
constrained path approximation.55 Here, we impose this
approximation by requiring that all walkers maintain a
positive overlap with the trial wave function after each
propagation step

w
(n)
k 〈ΨT |ψ(n)

k 〉 > 0. (35)

As in typical constrained path implementations, walkers
with negative overlaps with the trial wave function will
be killed (have their weights set equal to zero), prevent-
ing them from being propagated further. This condition
will select for only walkers with positive determinants,
eliminating the sign problem. It can be shown that if
the trial wave function is the exact ground state wave
function, this condition will be exact;78 however, since
the trial wave function is typically unknown, constrain-
ing the propagation path in this way results in a small,
but consequential approximation.60,79

6. Phaseless Approximation

In cases in which our propagators are complex, instead
of employing the constrained path approximation, we em-
ploy the more general phaseless approximation.72,73 The
phaseless approximation controls the phase problem by
projecting complex walker weights onto the positive real
axis according to the equation

W
(n)
k = |W (n)

k | ×max(0, cos(∆θ)), (36)
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where W
(n)
k is defined in Equation (27) and ∆θ, the phase

angle, is defined as

∆θ = Arg

[
〈ΨT |B̂(x)|ψ(n)

k 〉
〈ΨT |ψ(n)

k 〉

]
≈ O(Im(xF )). (37)

The use of the cosine function to project also ensures
that the density of the walkers will vanish at the ori-
gin. Because this cosine projection does not affect walk-
ers with real weights, in practical implementations, we
apply Equation (36) to realize both the constrained path
and phaseless approximations.

F. Trial and Initial Wave Functions

Although AFQMC can readily accommodate multi-
determinant trial wave functions, we restrict ourselves
to employing single determinant trial wave functions
that satisfy certain symmetries60 such as the free elec-
tron (FE), restricted Hartree-Fock (RHF), unrestric-
ted Hartree-Fock (UHF), and generalized Hartree-Fock
(GHF) wave functions. RHF wave functions preserve
spin symmetry. While RHF and UHF wave functions
separately conserve the number of spin up and down
electrons, GHF wave functions only conserve the total
number of electrons. See Supplemental Materials at Sec-
tion IV for details about how these wave functions are
generated.

As illustrated in what follows, because GHF wave func-
tions do not impose any spin symmetries and are there-
fore the most flexible of these wave function ansatzes,
they enable the fastest AFQMC wave function relaxa-
tion to the global energy minimum. Nevertheless, when
the number of up and down electrons must be fixed,
UHF/RHF wave functions were employed instead. Even
though our formalism permits our initial wave functions
to differ from our trial wave functions, we take our initial
and trial wave functions to be the same, except where
otherwise noted.

III. RESULTS AND DISCUSSION

A. Two-Band Hubbard Kanamori Model
Benchmarks

In order to test the accuracy of our theoretical frame-
work, we began by benchmarking our method against ED
results for the one-dimensional, two-band HK Model on
5×1 and 6×1 lattices with periodic boundary conditions
small enough to diagonalize. For these benchmarks, we
simplify the Hamiltonian given by Equations (1) and (2)
so that hopping can only occur between adjacent sites
within the same bands and may be described by a single

site- and spin-invariant constant t, such that

Ĥ
′

1 = −t
∑
〈ij〉,σ

2∑
m=1

ĉ†imσ ĉjmσ. (38)

We moreover assume that the parameters are site-
invariant, such that U i = U , U ij1 = U1, U ij2 = U2, and
J ij = J .

Table I: The ground state energy of the two-band, 6×1 HK model
with N↑ = N↓ = 6 over a range of parameters using ED and
AFQMC. All energies and parameters are reported in units of t.

U U1 U2 J ED AFQMC
2.0 1.5 1.0 0.5 -3.773268 -3.774(3)
2.0 1.5 1.0 1.0 -4.234037 -4.230(6)
2.0 1.5 3.0 0.5 0.758540 0.755(4)
3.0 5.0 1.0 0.5 2.460374 2.466(5)
6.0 1.5 1.0 0.5 1.496509 1.503(6)

Table I presents our results for a 6×1 HK model over a
representative set of parameters at half filling. All of the
calculations presented were initialized using 560 walkers
and employed FE trial and initial wave functions, ex-
cept for the U=3.0, U1=5.0, U2=1.0, J=0.5 case. In
this case, it was found that an RHF trial wave function
yielded a lower trial energy and manifested a different
spin order (antiferromagnetic (AFM) order between two
bands) than the FE solution. Thus, an RHF trial wave
function was employed instead. This demonstrates that
trial wave functions should first be analyzed to determ-
ine whether their global minima exhibit the correct order
before using them to guide propagation within AFQMC.
Unless otherwise noted, all of the results presented in this
section were obtained using a charge decomposition for
J and the phaseless approximation to tame the related
phase problem that emerges.

As is clear from the table, AFQMC results are within
0.01t or less of the exact results, with the smallest dis-
crepancy occurring for the U = 2.0, U1 = 1.5 case and
the largest occurring for the U = 6.0 case. In all of these
cases, exact results are within two standard derivations of
the Monte Carlo results, despite the use of the phaseless
approximation.

To pinpoint AFQMC’s systematic bias, as well as to
better understand which regions of the phase diagram
are the most challenging for AFQMC, we independently
scanned through each of the U , U1, U2, and J paramet-
ers holding the others fixed for a 5 × 1 HK model. In
Figures 1 and 2, we present our scans over U and J ; See
Supplemental Materials at Section V for figures of our
U1 and U2 scans.

As shown in Figure 1, although the magnitude of the
error bars on our energies grows with U , the relative error
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Figure 1: AFQMC ground state energy vs. the density-density
parameter U for the two-band, 5×1 HK model using the charge
decomposition and FE trial wave functions. Here, all of the other
Hamiltonian parameters are held fixed at t = 1, U1=0, U2=0, and
J = 0 with N↑ = N↓ = 6. Relative errors, ∆E, taken with respect
to ED results are plotted in the inset for clarity.

remains within 0.1% to 1% throughout this range. Sim-
ilar trends are observed for U1 and U2, and using RHF,
UHF, or GHF wave functions. This gives us reason to
believe that our method can readily accommodate some
of the even larger U values used in studies of strongly
correlated materials. Nevertheless, much larger relative
errors are observed as J is varied, as depicted in Figure
2. This is consistent with previous work, which also im-
plicates the J terms as being most conducive to QMC
errors.49 Fortunately, for most real materials, J is usu-
ally a small fraction of U . For small J values, the relative
errors are observed to remain less than 1% and are there-
fore controllable.

What may also be gleaned from Figure 2 is that the
quality of the J > 1.5 energies depends upon the type
of trial wave function employed. While free propagation
calculations yield results that are independent of the trial
wave function, the quality of the constrained path and
phaseless approximations fundamentally depend on the
accuracy of the trial wave function. As depicted in Fig-
ure 2, the relative errors in the energies produced by FE
trial wave functions surpass 10% and increase with in-
creasing J ; in contrast, the relative errors produced by
RHF trial wave functions not only remain less than 10%,
but plateau as a function of J . As J increases, the RHF
electron density becomes non-uniform, yielding a lower
variational energy than the FE wave function. Figure 2
thus demonstrates that AFQMC becomes more accurate
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Figure 2: AFQMC ground state energy vs. the Hund’s coupling
parameter J for the two-band, 5×1 HK model using the charge
decomposition and FE/RHF trial wave functions (WF). Here, all
of the other Hamiltonian parameters are held fixed at t = 1,
U = 0, U1=0, and U2=0 with N↑ = N↓ = 6. Relative errors, ∆E,
taken with respect to ED results are plotted in the inset for
clarity.

as trial wave functions better describe the ground state.
Note that we also tested UHF and GHF wave functions,
which all converged to the same states as RHF wave func-
tions.

The accuracy of AFQMC predictions are also influ-
enced by the constrained path and phaseless approxim-
ations employed. In Figure 3, we compare the errors
produced by these approximations. As discussed in Sec-
tion II D, for J > 0, the spin decomposition will yield real
propagators that we constrain using the constrained path
approximation, while for J < 0, the spin decomposition
will yield complex propagators that we constrain using
the phaseless approximation. The charge decomposition
behaves in the opposite fashion with respect to J . As
shown in Figure 3, the constrained path approximation
behaves significantly better than the phaseless approxim-
ation, which appreciably differs from the exact results for
|J | > 1.5. Indeed, the constrained path approximation
nearly reproduces the exact results for J < 0, only mani-
festing a slight deviation for larger positive values of J .
These results attest to the fact that using the transform-
ations we describe to prevent the phase problem from
emerging is key to maintaining AFQMC accuracy. They
also underscore that our method is capable of simulat-
ing -J values, which have been unattainable in previous
QMC simulations. We expect these trends in accuracy
to generalize to models with more bands and higher di-
mensionality.
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Figure 3: Comparison of phaseless and constrained path AFQMC
energy errors as a function of J for a two-band, 5×1 HK model.
Open circles denote parameters at which the constrained path
approximation was employed, while closed circles denote
parameters at which the phaseless approximation was employed.
Here, we set N↑= N↓=6, t = 1, U = 0, U1 = 0, and U2 = 0. FE
trial wave functions were used for both the initial and trial wave
functions, and 560 walkers were employed in each calculation.

B. Application to Three-Band Hubbard Kanamori
Models

In order to understand how our techniques general-
ize to models that approximate more realistic materials
and their magnetic phase transitions, we constructed a
three-band model with an adjustable band gap. As illus-
trated in Figure 4, in this model, three bands are located
at each site, one band of which is lower in energy by a
‘band gap’ parameter, ∆, than the other two degenerate
bands. When ∆ = 0, all three bands are completely de-
generate. Similar to the two-band model, the hopping oc-
curs between adjacent sites within the same bands, with
hopping constant tij = 1. While the band gap would be
fixed in any given material, creating a separate ∆ para-
meter enables us to sample a range of band gaps and,
by extension, to drive magnetic ordering transitions. We
moreover assume that U i = U and J ij = J = 0.15U with
U ij1 = U1 = U − 2J and U ij2 = U2 = U − 3J , which are
appropriate for the description of transition-metal oxides
with a partially occupied t2g shell.80 In the following dis-
cussion, we fix our filling such that an average of four
electrons occupy the three bands at each lattice site.

As an initial step, we benchmarked our AFQMC
method against ED results. Diverging from our previ-

Figure 4: Schematic of our three-band model on a 4x4 lattice. At
each site, there is one atom with three bands, one of which is
lower in energy by ∆ than the other two degenerate bands. The
top right box illustrates a situation in which AFM order is
present between adjacent lattice sites.
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Figure 5: AFQMC ground state energy as a function of the band
gap magnitude, ∆, for the three-band, 2×2 HK model using the
charge decomposition and GHF trial wave functions. Here, all of
the other Hamiltonian parameters are held fixed at t = 1, U = 6,
U1 = U − 2J , U2 = U − 3J , and J = 0.15U with N↑ = N↓ = 8.
Relative errors, ∆E, taken with respect to ED results are plotted
in the inset for clarity.

ous two-band analysis, as part of our three-band bench-
marks, we studied our model on two-dimensional lattices
with periodic boundary conditions, only varying ∆ and
U while keeping the other parameter relationships fixed
in order to preserve realism. Our simulations were ini-
tialized with 560 walkers and GHF initial and trial wave
functions for all of the benchmarks described below. The
charge decomposition with the phaseless approximation
was employed throughout this section.

In Figure 5, we illustrate how the energy and relative
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errors change as ∆ is varied from 0 to 1 with U = 6 on a
2×2 lattice. At fixed U , the relative error remains fairly
stable and less than 0.1% throughout this range. This
may be anticipated since the band gap only modifies the
magnitude of the one-body terms and does not change
the phase of the model, which do not directly contribute
to our method’s stochastic errors.
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Figure 6: AFQMC ground state energy vs. U for the three-band,
2×2 HK model using the charge decomposition and GHF trial
wave functions. Here, all of the other Hamiltonian parameters are
held fixed at t = 1, ∆ = 0.8, U1 = U − 2J , U2 = U − 3J , and
J = 0.15U with N↑ = N↓ = 8. Relative errors, ∆E, are taken
with respect to ED results are plotted in the inset for clarity.

In Figure 6, instead of scanning ∆, we scan U with
∆ = 0.8. As shown in Figure 6, the relative errors are
larger in this case, but still range from 0.1% for U < 6
to 1% for U > 6. Errors would be expected to grow
in this manner as the system becomes more correlated.
Overall, the magnitudes of these relative errors suggest
that AFQMC’s performance is promising.

The rationale for introducing the band gap ∆ para-
meter is to enable tuning of the magnetic order of the
model system. Intuitively, when the band gap is small,
the three bands are nearly degenerate and the four elec-
trons have the largest freedom to move among the bands.
Such a situation would favor ferromagnetic (FM) order.
However, when the band gap becomes sufficiently large,
two electrons will populate the lower band, forcing the
other two electrons to reside among the higher energy
bands. Such a situation would favor AFM order.

This intuition was confirmed by comparing the
AFQMC energies attained using trial wave functions with
FM and AFM order, respectively (see Figure 7). Typic-
ally, GHF calculations converge to the lowest state with

the same magnetic order as the initial state. Thus, in
order to construct wave functions with FM order, a ran-
domly initialized density matrix was supplied to the GHF
self-consistent equations; to construct wave functions
with AFM order, an AFM-ordered initial density mat-
rix was supplied. Several independent GHF calculations
were conducted for each system studied to guarantee that
the final GHF wave functions produced attained their
global minima. For large ∆ (∆ & 1.1) values at which
ferromagnetic order is disfavored, GHF calculations ini-
tialized with random density matrices often developed
order. In these situations, FM wave functions produced
at smaller values of ∆ were used as trial wave functions
in “FM” AFQMC calculations performed at larger ∆ val-
ues. Figure 7 depicts the energies of AFQMC simulations
performed with AFM and FM trial wave functions, re-
spectively, as a function of band gap. All of the AFQMC
energies presented here are the lowest energies we can ob-
tain at each ∆. At smaller ∆s, trial wave functions with
FM order led to the lowest AFQMC energies, while at lar-
ger ∆s, AFM trial wave functions did so. This confirms
that our model undergoes a ferromagnetic to antiferro-
magnetic transition at roughly ∆ = 1.15. In contrast,
Hartree-Fock theory predicts the transition to occur at
∆ = 0.5, which is reasonable since Hartree-Fock theory
tends to favor AFM order. An illustration of the AFM
order exhibited by our model is depicted in Figure 4.
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Figure 7: AFQMC ground state energy vs. band gap magnitude,
∆, for the three-band, 4×4 HK model using the charge
decomposition. GHF trial wave functions with both FM order
and AFM order are used. QMC predicted a phase transition to
occur at around ∆ = 1.15, as illustrated by the orange dotted
line. Hartree-Fock predicted a phase transition to occur at
∆ = 0.5, as illustrated by the green dotted line. Here, all of the
other Hamiltonian parameters are held fixed at t = 1, U = 6,
U1 = U − 2J , U2 = U − 3J , and J = 0.15 U with N↑ = N↓ = 32.
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To further corroborate the phase transition we observe,
we estimated the magnitude of the charge gap at ∆ = 0.2
and ∆ = 1.5. To do so, we computed the ground state
AFQMC energies of 4×4, 6×6, and 8×8-site systems,
with three bands occupied by four electrons situated at
each site. The charge gap may be determined by comput-
ing EN−1+EN+1−2EN , where N denotes the total num-
ber of electrons in the system. To determine the charge
gap in the thermodynamic limit, we fit a 1/L form, where
L denotes the total number of lattice sites, to the ener-
gies and extrapolated to the infinite L limit (see Sup-
plemental Materials at Section V for details about the
extrapolation). The energies produced using FM initial
trial wave functions were used to ascertain the ∆ = 0.2
charge gap, while those produced using AFM wave func-
tions were employed to ascertain the ∆ = 1.5 charge
gap. The charge gaps obtained are presented in Table II.
After extrapolations, the ∆ = 0.2 charge gap converged
to -0.006(47) and the ∆ = 1.5 charge gap converged to
1.201(41). As one would expect antiferromagnetic, not
ferromagnetic, order to be accompanied by a charge gap,
these extrapolations support our previous conclusions.

Table II: The charge gaps of the three-band model at ∆ = 0.2 and
∆ = 1.5 for different system sizes calculated using AFQMC. GHF
trial wave functions with FM order and AFM order are used at
∆ = 0.2 and ∆ = 1.5, respectively. All of the other Hamiltonian
parameters are held fixed at t = 1, U = 6, U1 = U − 2J ,
U2 = U − 3J , and J = 0.15U . The electron density per band is
4/3.

# of bands Charge Gap (∆ = 0.2) Charge Gap (∆ = 1.5)
4x4x3 0.222(29) 1.311(32)
6x6x3 0.103(27) 1.268(35)
8x8x3 0.015(72) 1.225(36)
∞ -0.006(47) 1.201(41)

The successful determination of the magnetic order
and charge gaps in this model system illustrate our
method’s promise for accurately modeling realistic ma-
terials.

IV. CONCLUSIONS

In summary, we have presented a ground state
AFQMC framework suited for the study of the HK

model, a multi-band model designed to capture the
Hund’s physics of many d- and f -electron materials. Di-
verging with past QMC studies of the HK model, we em-
ploy a novel set of HS transformations to decouple the
Hund’s coupling terms while preserving the terms’ essen-
tial physics. We find that by carefully combining these
transformations with a form of importance sampling that
shifts our propagators, well-optimized GHF wave func-
tions, and the constrained path and phaseless approxim-
ations, we can accurately predict the energetics of bench-
mark lattice models and the magnetic order of much lar-
ger models that approximate realistic materials. Overall,
we find that the phaseless version of our method produces
nearly exact energies for small models for −3 < J < 3,
a range of J values which contains those commonly ob-
served in experiment. This bodes well for the generaliz-
ation of our method to other systems.

Our method may readily be extended to include spin-
orbit coupling effects and negative J values, which
opens the doors to the highly accurate study of exotic,
-J fulleride physics.12,13 In order to describe super-
conducting physics, our method can be adapted to
use superconducting trial wave function forms, includ-
ing Bardeen-Cooper-Schrieffer76,81 and Hartree-Fock-
Bogoliubov82 wave functions. We foresee our method
having the most immediate impact as a way to delineate
low-temperature phase diagrams currently beyond the
reach of DMFT methods. As the same transformations
and importance sampling techniques may readily be ad-
apted into finite temperature AFQMC formalisms,46,53,54

the same methods may be used to develop low scaling,
sign and phase problem free impurity solvers. We look
forward to employing our methods to more accurately
elucidate the complex many body physics of 4d trans-
ition metal oxides such as the ruthenates, rhodates, and
molybedenates in the near future.
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