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Electrical transport properties near an electronic Ising-nematic quantum critical point in two di-
mensions are of both theoretical and experimental interest. In this work, we derive a kinetic equation
valid in a broad regime near the quantum critical point using the memory matrix approach. The
formalism is applied to study the effect of the critical fluctuations on the dc resistivity through dif-
ferent scattering mechanisms, including umklapp, impurity scattering, and electron-hole scattering
in a compensated metal. We show that electrical transport in the quantum critical regime exhibits
a rich behavior that depends sensitively on the scattering mechanism and the band structure. In
the case of a single large Fermi surface, the resistivity due to umklapp scattering crosses over from
ρ ∼ T 2 at low temperature to sublinear at high temperature. The crossover temperature scales
as q30 , where q0 is the minimal wavevector for umklapp scattering. Impurity scattering leads to
ρ−ρ0 ∼ Tα (ρ0 being the residual resistivity), where α is either larger than 2 if there is only a single
Fermi sheet present, or 4/3 in the case of multiple Fermi sheets. Finally, in a perfectly compensated
metal with an equal density of electrons and holes, the low temperature behavior depends strongly
on the structure of “cold spots” on the Fermi surface, where the coupling between the quasiparticles
and order parameter fluctuations vanishes by symmetry. In particular, for a system where cold spots
are present on some (but not all) Fermi sheets, ρ ∼ T 5/3. At higher temperatures there is a broad
crossover regime where ρ either saturates or ρ ∼ T , depending on microscopic details. We discuss
these results in the context of recent quantum Monte Carlo simulations of a metallic Ising nematic
critical point, and experiments in certain iron-based superconductors.

I. INTRODUCTION

Many strongly correlated materials, such as high tem-
perature superconductors, exhibit electrical transport
properties that are markedly different from those ex-
pected in a Fermi liquid. Most famously, in many sys-
tems, the electrical resistivity is a linear function of tem-
perature. Interestingly, it is often in this regime where
the highest superconducting transition temperature is
observed. Understanding the role of strong electronic
correlations in such systems is of utmost importance. A
natural way to explain these properties is to consider
a metallic system tuned near a quantum critical point
(QCP), i.e., a “quantum critical metal”. This is fur-
ther motivated by the observation that superconductiv-
ity is typically found near another electronically ordered
phase1. The electronic order is suppressed by varying
an external parameter such as electron concentration or
pressure, leading to a putative QCP. The critical fluctua-
tions of the order parameter mediate long-range, dynam-
ical interactions between electrons. These interactions
can lead to a breakdown of Fermi liquid behavior at the
longest length and timescales.

Of particular interest is the electrical transport
properties near an Ising-nematic QCP in two spatial
dimensions2–5. An Ising nematic phase refers to a
rotation-symmetry-breaking electronic order where the
square lattice tetragonal symmetry is spontaneously bro-
ken down to orthorhombic. It has been observed in var-
ious condensed matter systems6, notably in various high
Tc superconductors, including iron pnictides7,8 and iron
chalcogenides9,10. Evidence for nematic fluctuations has

been found in the cuprate superconductors, as well11,12.
Recent experiments13–18 reported non-Fermi liquid trans-
port in the vicinity of the nematic QCP.

On the theoretical front, several works have studied
trasport near a nematic QCP2–5, along with many other
investigations of transport in different types of quantum
critical metals19–27. However, the general picture re-
mains unclear. Naively, since the singular fluctuations of
the nematic order parameter occur at small wavevectors,
one may expect them not to strongly modify transport
properties. Treating the order parameter fluctuations as
an external “bath”, Ref.2 found a resistivity that varies
as T 3/2 near the QCP. However, in an electronic nematic
transition, the order parameter fluctuations are a collec-
tive mode of the same electrons that carry the current.
This issue was addressed in Ref.5, and the resistivity was
found to vary as T 2 in the clean case, due to the long-
wavelength nature of the nematic fluctuations. Ref.3

treated the case where the main source of momentum re-
laxation is long-wavelength disorder that couples to the
order parameter as a random field; a variety of behaviors
was found depending on the dynamical critical exponent
assumed for the QCP. Indications for non-Fermi liquid
transport due to quantum critical nematic fluctuations
were found in recent numerical simulations4; however,
these result suffer from the usual uncertainties associ-
ated with analytical continuation of numerical data, and
need to be backed by analytical calculations. Clearly, a
uniform theoretical framework to treat transport near an
Ising-nematic QCP is highly desireable.

The situation is complicated by the fact that despite
the substantial progress made 28–40, the theory of Ising-
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nematic quantum criticality at asymptotically low en-
ergies is not well understood. However, as we argue
below, there is a broad range of energy scales where
the theory can be controlled; this “Hertz–Millis–Moriya”
regime is described in terms of coherent electrons in-
teracting with strongly renormalized, overdamped col-
lective fluctuations of the order parameter41–43. Evi-
dence for the existence of such a regime has been found
in recent quantum Monte Carlo simulations4,44,45. At
lower temperatures, the theory becomes strongly cou-
pled, with nematic-mediated superconducting fluctua-
tions and strong non-Fermi liquid behavior onsetting at
the same energy scale.

In this work, we develop a memory matrix approach for
transport in the intermediate coherent electron regime.
Transport in this regime can be described by a kinetic
equation, where the effects of the quantum critical fluc-
tuations are incorporated in the collision integral. At
low temperatures (in the absence of a superconducting
phase), the electrons become incoherent, and our ap-
proach breaks down; however, in the absence of a mag-
netic field, in this regime the system generically becomes
a high Tc superconductor mediated by the nematic fluc-
tuations. Our theory is expected to hold down to tem-
peratures of the order of Tc.

We apply our technique to study situations where dif-
ferent scattering mechanisms dominate the transport be-
havior, including umklapp scattering, impurity scatter-
ing, and momentum-conserving electron-hole scattering
in a compensated metal. We find that depending on the
relaxation mechanism, the electrical resistivity exhibits
rich features, including several regimes beyond the ones
discussed in Refs.2,5. Our main results are summarized
as follows:

1. In a clean system with a large, generic Fermi
surface, umklapp scattering has a low-momentum
threshold q0 determined by the smallest distance
between Fermi surfaces in different Brillouin zones.
At low temperatures, T � T0 ∼ q3

0 , the typical
momentum of the quantum critical fluctuations is
smaller than q0. As a result, ρ(T ) ∼ T 2, as in
a Fermi liquid, despite the proximity to the QCP5.
At higher temperatures, umklapp scattering is gov-
erned by critical fluctuations. In this regime, ρ(T )
is strongly enhanced, and the dynamics of the crit-
ical fluctuations is qualitatively modified by the
umklapp processes, and deviates from the naive
low-temperature scaling behavior (characterized by
a z = 3 dynamical critical exponent). As a re-
sult, ρ(T ) exhibits a smooth crossover from T 2 at
T � T0 to sublinear at higher temperatures.

2. In the presence of weak impurity scattering in a sin-
gle electronic band and in the absence of umklapp
scattering, the critical nematic fluctuations decou-
ple from the transport properties to lowest order in
temperature. This is since for a single convex Fermi
surface, electron-electron scattering near the Fermi

surface conserves the odd moments of the quasipar-
ticle distribution function5,46. Therefore, to lowest
order, ρ(T ) = ρ0, and the correction scales as T β

with β > 2. However, for a generic multiband sys-
tem, we find ρ(T ) − ρ0 ∝ T 4/3 due to quantum
critical fluctuations.

3. For a clean compensated metal with an equal den-
sity of electrons and holes, the low-tempearture
properties are strongly sensitive to the presence of
“cold spots” on the Fermi sheets. At these points,
the lowest-order coupling between the quasiparti-
cles and the nematic fluctuations vanishes by sym-
metry. For instance, in the case of a B1g ne-
matic order parameter (of x2 − y2 symmetry), the
cold spots occur at the intersection between the
diagonals kx = ±ky and the Fermi surfaces. We
show that the non-equilibrium distribution func-
tion displays a strongly non-harmonic form, chang-
ing abruptly at the cold spots. In the case where all
the Fermi surfaces have cold spots, ρ ∼ T 2; if only
some of the Fermi surfaces have cold spots and oth-
ers do not47, then ρ ∼ T 5/3. If none of the Fermi
surfaces have cold spots, then ρ ∼ T 4/3. At inter-
mediate to strong coupling strengths48, there is a
broad crossover regime where the resistivity either
saturates or is linear in temperatrure, depending on
microscopic details. The crossover behavior is due
to near elastic scattering of electrons by thermal
nematic fluctuations.

The outline of the paper is given as follows. In Sec-
tion II, we introduce a model Hamiltonian that realizes
a metallic Ising-nematic QCP, and argue that there is a
parametrically broad temperature regime where electri-
cal transport can be described by kinetic theory. In Sec-
tion III, we derive a memory matrix formalism for calcu-
lating the linearized collision integral, and discuss various
conservation laws. In Section IV, we study the tempera-
ture dependence of dc electrical resistivity near the QCP
originating from various current-relaxation mechanisms,
including impurity scattering, umklapp scattering, and
momentum conserving electron-hole scattering in a com-
pensated metal. We conclude in Section V.

II. MODEL

We consider a simple model on a two-dimensional
square lattice that realizes a metallic Ising-nematic QCP.
The Hamiltonian is given by

H =

N∑

k,α=1

(εk − µ) c†αkcαk −
1

2

∑

q

UqQqQ−q (1)

where

Qq =
∑

k,α

fk,k+qc
†
αk+qcαk. (2)
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Here, cαk annihilates an electron of flavor α = 1, . . . , N
with momentum k. εk is the electron’s energy disper-
sion, and µ is the chemical potential. Physically, N = 2
(for the two spin flavors), but we will keep N general
– for some purposes it will be useful to consider the
limit of large N . The nematic form factor fk,k+q sat-
isfies fk,k+q = −fRπ/2k,Rπ/2(k+q), where Rπ/2 is a rota-

tion by π/2 around the axis perpendicular to the plane.
The interaction is written as Uq = λ2D0,q/N , where λ
is the coupling constant (the normalization by N en-
ables us to define the large-N limit), and we choose
D0,q = 1/[r0 + 2(2 − cos qx − cos qy)] (the lattice con-
stant is set to unity)49. r0 is a tuning parameter used to
approach the QCP.

Following the standard procedure, we use a Hubbard-
Stratonovich transformation with a real scalar field φ to
decouple the interaction term, obtaining the Lagrangian

L = L0 +
1

2

∑

q

D−1
0,q|φq|2 +

λ√
N

∑

q

φ−qQq, (3)

where L0 is a free fermion Lagrangian corresponding to
the first term in Eq. (1). The field φ can be thought of
as describing the spatial and temporal fluctuations of the
nematic order parameter; in the nematic phase, 〈φ〉 6= 0.

The low-energy continuum field theory governing the
critical behavior has been studied extensively36. Here we
briefly summarize the physical picture in the vicinity of
the QCP:

1. The nematic fluctuations become overdamped as a
result of their coupling to electrons near the Fermi
surface. To leading order in λ, φ acquires a self-

energy of the form: Π(q, iνn) ∝ f2
q,q

γ|νn|
|q| , where

νn = 2πTn is the bosonic Matsubara frequency and
γ ∝ λ2ε−2

F is the Landau-damping coefficient (εF is
the Fermi energy). This leads to a quantum critical
scaling with a dynamical critical exponent z = 3.

2. The feedback of the Landau-damped critical fluc-
tuations on the electrons near the Fermi surface
leads, to one-loop order, to an electronic self-
energy Σ(k, iωn) ∝ f2

k,kεFN
−1|γωn|2/3, where

ωn = 2πT
(
n+ 1

2

)
is the fermionic Matsubara fre-

quency. Below an energy scale ΩNFL ∝ λ4ε−1
F N−3,

the self-energy becomes dominant over the bare iωn
term in the electron propagator, and the electrons
become strongly incoherent. This regime is cur-
rently not well understood theoretically. Within a
large–N expansion, terms which are naively of ar-
bitrarily high order in 1/N turn out to be equally
important as the leading ones in this regime. Su-
perconducting fluctuations are also expected to be-
come strong at the same energy scale, implying a
nematic-mediated superconducting transition tem-
perature Tc ∼ ΩNFL. A dome-shaped supercon-
ducting phase with a maximum Tc near the ne-
matic QCP was indeed found in quantum Monte
Carlo simulations4,45.

These considerations suggest that in the weak coupling
limit λ2 � εF or in the large–N limit, there is a broad
regime of temperatures ΩNFL � T � εF above the QCP
where the system can be described in terms of Landau-
damped nematic fluctuations coupled to coherent elec-
trons. Evidence for the existence of such a regime, even
at moderate values of the coupling constant, has been
found in numerical simulations44. In this regime, the use
of a kinetic equation approach for computing transport
properties is justified, with the effects of the scattering off
critical fluctuations incorporated in the collision integral.

III. METHOD

In the previous section, we argued that above an en-
ergy scale ΩNFL, the normal state transport is governed
by a kinetic (Boltzmann) equation. Deriving the kinetic
equation requires special care: while the Lagrangian in
Eq. (3) describes electrons coupled to a fluctuating bo-
son φq, it is important to keep track of the fact that the
bosonic degrees of freedom do not act as a “bath” for the
electrons; rather, they are collective modes of the same
electron fluid [as is manifest in the original Hamiltonian
in Eq. (1)]. Therefore, in the absence of an external
momentum relaxation mechanism (such as umklapp or
impurity scattering), the total electronic momentum is
conserved.

In this section, we derive the kinetic equation based
on the memory matrix method. This method has been
applied widely for studying transport phenomena; see,
e.g., Refs.50–57. It has the advantage that the “collision
term” in the kinetic equation is formulated as a correla-
tion function at equilibrium, that can be computed using
standard perturbative techniques.

The dc resistivity can be calculated by taking the
zero-frequency limit of the real part of optical con-
ductivity, i.e., ρ−1 = limΩ→0 Reσ(Ω). Within linear
response, the optical conductivity is given by the re-
tarded current-current correlation function: σ(Ω) =
1
iΩ

[
GRJxJx (Ω)−GRJxJx (0)

]
, where J is the electrical cur-

rent operator corresponding to Eq. (1), obtained through
replacing cαk → cαk+eA and taking J = ∂H/∂A. To

lowest order in λ or in 1/N , J ≈∑k,α vkc
†
αkcαk

58.
Within the memory matrix method, the dynamics is

projected onto a set of “slow operators” that are nearly
conserved by the Hamiltonian. We briefly review the
method in Appendix A 1. In our model, the operators

nαk = c†αkcαk are nearly-conserved in the limit of either
small λ or large N59. The optical conductivity can then
be cast in the form:

σ(Ω) =
∑

α,β,k,k′

χJx,αk

(
1

M(Ω)− iΩχ

)

αk,βk′
χβk′,Jx

(4)

where χJx,αk ≡
´ β

0
dτ〈Jx(τ)nαk(0)〉 and χαk,βk′ ≡´ β

0
dτ [〈nαk(τ)nβk′(0)〉 − 〈nαk〉〈nβk′〉] are thermo-
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dynamic susceptibilities. The dynamical properties
are encoded in the structure [M(Ω)− iΩχ]

−1
, where

Mαk,βk′(Ω) is the “memory matrix”. To leading order
in 1/N , the memory matrix is given by:

Mαk,βk′(Ω) =
1

iΩ

[
GRṅαkṅβk′ (Ω)−GRṅαkṅβk′ (0)

]
(5)

where ṅαk ≡ i[H,nαk], and the correlation function
GRṅαkṅβk′ (Ω) is computed to order 1/N0. To perform

the computations, it is convenient to write the equiva-
lent Hamiltonian to Eq. (3)60. ṅαk is then given by

ṅαk =
iλ√
N

∑

q

φq

(
fk,k−qc

†
αkcαk−q − fk,k+qc

†
αk+qcαk

)
.

(6)

A diagrammatic representation of this operator is shown
in Figure 1(a).

The real part of the memory matrix describes the scat-
tering rate between different momentum states. Its eigen-
values are non-negative, and describes the decay rate of
various collective modes on the Fermi surface. If there is
a conserved mode, for example the total electron number,
then the corresponding eigenvalue is zero. The memory
matrix is related to the collision integral of the Boltz-
mann equation; as we demonstrate in Appendix F, the
memory matrix formalism coincides with the standard
Boltzmann kinetic equation away from the critical point
(where the interactions between electrons can be treated
as static), but incorporates more complicated scattering
processes important near the QCP.

It is worth noting that near the Ising-nematic QCP,
one can extend the applicability of the memory matrix
approach beyond the limits of small λ or large N . At
low temperatures, the typical nematic fluctuations have a
wavelength λ which is much longer than the Fermi wave-
length 2π/kF . As a result, electrons can rapidly reach
local equilibrium within a small “patch” of the Fermi
surface of width λ−1. Inter-patch relaxation processes,
which is the bottleneck for electrical transport, are much
slower61. In Appendix A 3 we derive an expression for
σ(Ω) based on these patch variables. Later on it will be-
come clear that in the coherent electron regime, the two
formulations give equivalent results to leading order in
T/εF . However, the patch formulation is applicable also
in the non-Fermi liquid regime.

Below we work in limits of small λ or large N , and treat
all nαk as slow operators. We first construct the memory
matrix [Eq. (5)] in the absence of any current-relaxing
mechanisms, and study its structure and conservation
laws. Next we will study how the memory matrix and the
transport properties are affected by different scattering
mechanisms.
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q q q q

(c) (d)

q

α, k

α, k + q

λN− 1
2 fk,k+q

FIG. 1. (a) Diagrammatic representation of ṅαk(Ω). The
open/closed circles denote inflow/outflow of an external fre-
quency Ω. The vertex function changes sign depending on if
the αk state is an initial (final) state of the scattering. (b-d)
Two class of diagrams for the memory matrix Mαk,βk′ (Ω).
The red colored labels correspond to external momenta k
and k′. For convenience we omitted the flavor index on the
fermionic Green’s functions, and the summation over internal
frequencies is implicit.

A. Feynman diagrams and conservation laws

At temperatures T � ΩNFL, we compute Mαk,βk′ in
a 1/N expansion. Depending on the placement of the
two momentum states k and k′, there are two classes
of Feynman diagrams that contribute to leading order,
as illustrated in Figure 1(b-d). In these diagrams, the
nematic propagator includes the one-loop self energy:
D−1(q, iνn) = D−1

0 −Π(q, iνn), where

Π(q, iνn) = −λ2T
∑

ωm,k

f2
k,k+qG0(k, iωm)G0(k+q, iωm+iνn),

(7)
whereas the fermion propagators G0(k, iωn) = 1/(iωn −
εk) are the bare ones. At low frequencies, we write
D−1(q, iνn) = rq + γq|νn|, where rq includes the
renormalization effects from Π(q, iνn = 0), and γq =
πλ2

∑
k f

2
k,k+qδ(εk)δ(εk+q).

A detailed derivation of the expressions corresponding
to these Feynamn diagrams is presented in Appendix A 2.
For class I [Fig. 1(b)], we obtain:

M
(1)
αk,βk′(iΩn) =δαβ

λ2T

NΩn

∑

q,νn

Dq,νn+Ωn (8)

×
∑

ζ=±1

(δk′−k,ζq − δkk′) f2
k,k+ζqRk,k+ζq,ζνn

where Rk,k+q,νn is the polarization bubble summed
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over the internal fermionic Matsubara frequencies:

Rk,k+q,νn =
nF (εk+q)− nF (εk)

εk − εk+q + iνn
. (9)

Here, nF (ε) is the Fermi function. Similarly, the expres-
sion for class II diagrams is

M
(2)
αk,βk′(iΩn) = − λ4T

N2Ωn

∑

q,νn

Dq,νnDq,νn+Ωn

×
∑

ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′qRk,k+ζq,ζνn

×
[
Rk′,k′+ζ′q,ζ′νn −Rk′,k′+ζ′q,ζ′(νn+Ωn)

]

(10)

For simplicity, we have omitted the static part
GRṅαkṅβk′ (0) in the expressions. However, they are al-

ways subtracted in later calculations. The memory ma-
trix are expressed in Matsubara frequencies. To obtain
real-time dynamics, we perform an analytic continuation
iΩn → Ω + iδ.

At high frequencies, these terms in the memory ma-
trix reproduce the standard Feynman diagrams de-
scribing contributions to optical conductivity, namely
Maki-Thompson (MT), Density of States (DOS) and
Aslamazov-Larkin (AL) diagrams. This is shown in Ap-
pendix G. In particular, MT and DOS diagrams combine
to give class I diagram, corresponding to the δk′−k,q and
δkk′ terms respectively. AL is equivalent to class II dia-
grams.

In the dc limit, our memory matrix approach is equiva-
lent to the quantum Boltzmann equation discussed in the
Kadanoff-Baym-Keldysh framework62–64, and that con-
servation laws are explicitly built in. We discuss the
conservation laws and their implications for the struc-
ture of the memory matrix. One can easily check that∑
αkMαk,βk′ = 0, corresponding to electron number con-

servation. Note that the two class of diagrams separately
conserve particle number. In Appendix B we show that in
the absence of impurity and umklapp scattering, the total
electronic momentum is conserved:

∑
αk kMαk,βk′ = 0.

Momentum conservation crucially relies on the fact that
the nematic fluctuations gain their dynamics only as a
result of their coupling to the electrons. As a result,
they do not act as a “sink” for the total electronic mo-
mentum. It is worth noting that momentum is conserved
only when the two classes of diagrams are combined, but
not for each class separately.

B. Low temperature and dc limit

At low temperatures compared to the Fermi energy
εF , the dominant scattering processes occur in the vicin-
ity of the Fermi surface. For two given momentum states
on the Fermi surface k and k′, there are three types of
processes described by class I and class II diagrams, as

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k k′�
q = k − k′�

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k
k′�

−k′�
−k

q = k + k′�

-π 0 π
-π

0

π
-π 0 π

-π

0

π

k k′�
q = k − k′�

(a)

(b) (c)

FIG. 2. Three types of scattering processes when the rele-
vant momentum states are in the vicinity of the Fermi sur-
face. (a) class I diagram describes direct scattering between
k and k′ mediated by exchanging an nematic boson φq with
q = k′ − k. (b) and (c) are two-electron scatterings medi-
ated by two nematic bosons, described by class I diagram.
(b) describes the momentum exchange scattering, where two
electrons with momentum k and k′ exchange their momen-
tum. (c) describes the head-on scattering, where two electrons
located at k and −k are scattered into k′ and −k′.

depicted in Figure 2. Class I diagram describes the direct
scattering between k and k′ states mediated by a nematic
boson with momentum q = k′ − k. Class II diagram de-
scribes two-electron scattering which involves two addi-
tional momentum states k + q and k′ ± q. We consider
a convex Fermi surface with inversion symmetry65. Due
to the one-dimensionality of the Fermi surface, there are
only two allowed scattering processes which satisfy that
all four momentum states are on the Fermi surface, as
shown in Figs. 2(b) and (c). Panel (b) describes mo-
mentum exchange scattering, with q = k′ − k. Here two
electrons at k and k′ are scattered into each other. (c) is
a head-on collision, with q = k + k′. Here two electrons
initially at k and −k are scattered into k′ and −k′.

Since the dominant contribution to the memory ma-
trix comes from the vicinity of the Fermi surface, we can
approximate R defined in Eq. (9) as follows:

Rk,k′+q,νn ≈ −π|νn|δ (εk) δ (εk+q) . (11)

This approximation is justified in Appendix C. After per-
forming summation over the bosonic Matsubara frequen-
cies, we can simplify the memory matrix to be:
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M
(1)
αk,βk′ = δαα′

2πλ2

N

∑

q

Vq(T ) (δkk′ − δk′−k,q)

× f2
k,k+qδ (εk) δ (εk+q) ,

(12)

and

M
(2)
αk,βk′ = −2π2λ4

N2

∑

q

Vq(T )

γq
f2
k,k+qδ (εk) δ (εk+q)

×
∑

ζ′=±1

ζ ′f2
k′,k′+ζ′qδ (εk′) δ (εk′+ζ′q) ,

(13)

where we have defined

Vq(T ) ≡
ˆ ∞
−∞

dω

π
ωImDq,ω

(
−∂nB(ω)

∂ω

)
, (14)

The imaginary part of the nematic propagator is
ImDq,ω = γqω/(r

2
q + γ2

qω
2), and nB(ω) is the Bose-

Einstein distribution function.
In the case of a single convex Fermi sheet with no umk-

lapp scattering, there are additional conservation laws
that emerge at low temperature. In particular, all the
odd-parity deformations of the Fermi surface are quasi-
conserved, in the sense that the lifetimes of these modes
are parametrically larger than those of the even-parity
modes5,46,66. This is because the only possible collisions
on a one dimensional convex Fermi surface are either for-
ward scattering or head-on collisions, and in both cases
the odd moments of the distribution function do not
change. These approximate conservation laws are man-
ifest in the structure of the memory matrix, as demon-
strated in Appendix D.

IV. CURRENT RELAXATION MECHANISMS
AND DC RESISTIVITY

We now turn to discuss how the quantum critical fluc-
tuations manifest themselves in the temperature depen-
dence of the dc resistivity, ρ(T ), through different cur-
rent relaxation mechanisms. In a metal with a generic
electron density, the electrical current cannot relax com-
pletely (and hence ρ = 0) unless momentum conservation
is violated. Having a non-zero resistivity therefore relies
crucially on the momentum relaxation mechanism, either
through impurity or umklapp scattering. In the special
case of a compensated metal with an equal density of
electrons and holes, the resistivity is finite even if the
total momentum is conserved.

We note that in our calculation, the temperature de-
pendence comes from the scattering rates, encoded in
the memory matrix. The thermodynamic susceptibilities,
χJx,αk and χαk,βk′ , defined in Eq. (4), can be regarded as
temperature independent. While this is not true for the
Ising-nematic (B1g) channel, where the thermodynamic

susceptibility diverges at the QCP, this divergence does
not affect the transport properties, since the current op-
erator (as well as any other odd-partiy deformation of
the Fermi surface) is orthogonal to the nematic order pa-
rameter.

We will present our results for ρ(T ) in dimensionless
units. The temperature is rescaled by the energy scale
set by the Landau damping term: ΩL ≡ ε2

Fλ
−2. As

we discuss in Appendix A 2, the natural scale for the

resistivity in our problem is ρL ≡ ~
e2
λ4

ε2F

1
N2 . Note that in

the large-N or weak coupling limits, where our approach
is valid, ρL is always much smaller than the quantum of
resistance ~/e2.

A. Impurity scattering

We consider quenched disorder, modeled by a ran-
dom potential: Himp = 1√

N

∑
αr Vimp(r)c†αrcαr, where

Vimp(r) has the following properties: Vimp(r) = 0

and Vimp(r)Vimp(r′) = g2
impδ (r− r′), where · · · de-

notes disorder averaging. The time-derivative of the
electron occupation number is given by (ṅαk)imp =
i√
N

∑
q Vimp,q

(
c†αkcαk+q − c†αk−qcαk

)
. As a result, for

weak disorder strength, the leading correction to the
memory matrix is given by

M imp
αk,βk′(iΩn) = δαβ

1

NΩn

∑

q,iνn

Dimp
q,νn

∑

ζ=±1

f2
k,k+ζq

× (δk′−k,ζq − δkk′)Rk,k+ζq,ζνn+ζΩn,

(15)

where the correlator of the disorder potential is static
and momentum-independent, i.e., Dimp

q,νn = g2
impδνn,0.

To leading order in impurity strength, we neglect the
cross-terms involving both impurity and quantum critical
scattering67. At low temperatures, T � εF , we project
the processes onto the Fermi surface, and approximate
R(k,k + q, iΩn) ≈ −π|Ωn|δ (εk) δ (εk+q). As a result, in
the dc limit,

M imp
αk,βk′ = δαβ

2πg2
imp

N

∑

q

(δkk′ − δk′−k,q) δ (εk) δ (εk+q) .

(16)
One can verify that momentum is no longer conserved
under impurity scattering, by observing that

∑

αk

kM imp
αk,βk′ = −2πg2

imp

∑

q

qδ (εk′) δ (εk′+q) . (17)

This expression does not vanish for a general value of k′,
due to the asymmetry of momentum states k′ ± q.

We first show that when there is only a single convex
electron Fermi surface, quantum critical scattering does
not contribute to the dc resistivity within our lowest-
order approximation in T/εF . In this case, ρ ≈ ρ0 ∝
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g2νF coming from impurity scattering, where νF is the
density of states at the Fermi level. To see this, we work
in the basis of Fermi surface harmonics, einθk , where θk is
the angle between a point k on the Fermi surface and the
x axis. Since our problem is inversion-symmetric on av-
erage, M imp

αn,βm is non zero only if m and n have the same
parity. Electron-electron scattering on a single, convex
Fermi surface conserves all the odd-parity modes5,46,66

(See Appendix D). Since the electrical current is parity-
odd, it is completely decoupled from the quantum critical
scattering to lowest order in T/εF . Hence, to lowest or-
der in T/εF , ρ is temperature independent. Scattering
processes away from the Fermi surface can give rise to
ρ(T ) ∼ T 2+α, with α = 4/3, as argued in Ref.5.

Next, we study the case of multiple Fermi sheets. Dif-
ferent sheets generically have different energy disper-
sions and are separated in momentum space. The small-
momentum nematic fluctuations induces intra-sheet scat-
tering, while impurity scattering can be either intra- or
inter-sheet. We write the electrical current operator as

J =
∑
ik vi,kc

†
i,kcik, where i is the sheet index. Due to

differences in the Fermi velocities in each Fermi sheet,
the current is not conserved by nematic scattering (un-
like total momentum). As a result, the resistivity ac-
quires a temperature-dependent correction ∼ Tα, whose
exponent is determined by the decay of odd-parity modes
on the Fermi surface. Scaling arguments suggest that ne-
matic contrinbution to the current decay rate scales as
q̄2τ−1

sp , where q̄ ∼ T 1/3 is the typical momentum trans-

fer following quantum critical scaling, and τ−1
sp ∼ T 2/3 is

the single-electron decay rate. As a result, for a multi-
band system subject to impurity scattering, we expect
that ρ− ρ0 ∝ T 4/3 .

In Figure 3, we present a numerical calculation of ρ(T )
for system with either a single Fermi surface or multiple
Fermi sheets, supporting the scaling argument discussed
above. More details of the numerical procedure are given
in Appendix J. In the single Fermi surface case, the re-
sistivity is completely temperature-independent; we ex-
pect that inclusion of scattering processes away from
the Fermi surface will give rise to a weak temperature
dependence. In the multi-Fermi sheet case, we find a
substantial temperature dependence. In panel (b) we
showd ln (ρ− ρ0) /d lnT as a function of T for the multi-
sheet case. At low temperature, the exponent approaches
4/3, as expected from the qualitative analysis above.
However, at intermediate temperatures, the exponent
drifts below 4/3 and can even exhibit sublinear behavior.
The cause of the drifting exponent will be discussed in
Sec. IV D.

B. Umklapp scattering

In the presence of an underlying lattice, the electronic
momentum is only conserved up to a reciprocal lattice
vector G. In an umklapp scattering process, two of the
initial states and one of the final states are on the Fermi

(a) (b)

FIG. 3. (a) Resistivity due to impurity scattering for a system
with a single Fermi surface (blue) and multiple Fermi sheets
(red). In (b) we plot d ln (ρ− ρ0) /d lnT for multi-sheet case
to extract the power-law dependence on temperature. The
dashed line marks the value 4/3. The dispersion used for one-
band case is εk = −2t (cos kx + cos ky) − 4t′ cos kx cos ky − µ
, with t = 1, t′ = −0.3 and µ = −1. In the multi-sheet case,
we used three circularly-shaped Fermi pockets of equal size,
with two electron-like and one hole-like dispersions. Impu-
rity scattering strength is taken to be gimp = 0.02εF . The
nematic-electronic coupling strength is λ2 ≈ 0.83εF . The
Fermi energy is defined as εF = 〈vF kF 〉FS.

q0

FIG. 4. Two-particle collision involving a Umklapp process.
One of the final states is a different Brillouin zone. Therefore,
the total momentum changes by the crystal momentum G. q0

is the minimal momentum transfer in an umklapp scattering
event.

surface in the first Brillouin zone, while the other final
state is in a neighboring Brollouin zone. An umklapp
scattering process on the Fermi surface involves a mini-
mum momentum transfer q0 that depends on the geome-
try of the Fermi surface, as illustrated in Figure 4. Since
the critical nematic fluctuations carry small momentum,
they cannot induce umklapp scattering at asymptotically
low temperatures. Therefore, below a characteristic tem-
perature T0 that depends on q0, we expect the dc trans-
port to be governed by non-critical fluctuations. For
T � T0, the Fermi liquid behavior ρ(T ) ∼ T 2 behav-
ior should be recovered5. On scaling grounds, we ex-
pect T0 ∼ |q0|z, where z is the dynamical critical expo-
nent of the transition. At temperatures T > T0 , there
are two main factors determining the transport behav-
ior: (1) As the typical wavevector for critical fluctua-
tions |q| ∼ T 1/z > |q0|, critical fluctuations contribute
to umklapp scattering and directly modify the dc trans-
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port properties. (2) The umklapp processes also mod-
ify the spectrum of the nematic critical fluctuations. In
particular, they modify the coefficient γq of the Landau
damping term in the bosonic self-energy, which depends
on the angle between the Fermi velocities at the points
k and k + q on the Fermi surface. This can lead to a
breakdown of the z = 3 quantum critical scaling, which
relies on the relation γq ∼ 1/|q|.

We study ρ(T ) for a model with a generic, large Fermi
surface, similar to the one shown in Fig. 4. This is
done by numerically computing the memory matrix from
Eqs. (12,13), including the effects of umklapp scattering,
and inverting it to obtain the dc conductivity according
to Eq. (4). In Fig. 5(a) and (c), we present ρ(T ) at
and away from the Ising-nematic QCP, with a nematic
correlation length ξ−2(T ) = T + r− rc. Here, we assume
that the at r = rc, there is a “thermal mass” assumed to
be proportional to T . The model parameters, listed in
the caption of Fig. 5, are chosen to be similar to the ones
used in the quantum Monte Carlo simulations in Ref.44.
Figure 5(b) shows d ln ρ/d lnT as a function of T and r−
rc. As expected, at sufficiently low temperatures, ρ ∼ T 2.
At higher temperature, d ln ρ/d lnT decreases, becoming
sublinear at temperatures of the order of ΩL. Defining
T0 as the temperature where d ln ρ/d lnT = 1.8, we find
that at the QCP, T0 ∝ |q0|3 [Fig. 5(d)]. Away from the
QCP, the crossover to T 2 occurs at higher temperatures,
and T0 scales linearly with the distance to the QCP r.

Although for r = rc and T > T0, there is a temper-
ature window where ρ(T ) appears to be approximately
linear (Fig. 5c), it is important to note that d ln ρ/d lnT
actually changes continuously in this regime. It is also
worth noting that the dc resistivity obtained in our cal-
culation reproduces many of the qualitative features ob-
served in the QMC simulations of Ref.44, including the
broad quasi-linear regime near the QCP, and the gradual
change of the slope of ρ(T ) as r is tuned away from the
QCP.

C. Compensated metal

The mechanisms for current dissipation discussed so
far rely on breaking the conservation of total electron
momentum, either by impurity or by umklapp scatter-
ing. It is well-known that in a compensated metal with
equal number of electron and hole-like charge carriers,
electron-electron interactions alone can lead to a finite
electrical resistivity, even in the absence of momentum
relaxation68. This is because scattering events between
electrons and holes can relax the current, despite the fact
that momentum is conserved. In a compensated metal,
the electrical current and the total electronic momentum
are orthogonal to each other: χJP = 0, and the current
dissipation is driven by relaxation of other odd-parity
modes of the Fermi surface. For completeness, this re-
sult is re-derived in Appendix H.

Several of the iron-based superconductors known

(a) (b)

(c) (d)

FIG. 5. (a) Resistivity from umklapp scattering at and away
near an Ising-nematic QCP, as a function of r − rc and T .
Here, we use the same band dispersion studied for the single-
band case for impurity scattering (see caption of Fig. 3). The
coupling strength λ2 = 1.88εF . (b) d ln ρ/d lnT as a function
of r−rc and T . (c) Temperature cuts at the QCP (green) and
in the disordered state (r > rc, red). (d) Crossover tempera-
ture to Fermi-liquid T 2 behavior as a function of the umklapp
threshold wavevector |q0|3. q0 was varied by changing the
chemical potential µ. We define T0 as the temperature where
d ln ρ/d lnT = 1.8.

for exhibiting non-Fermi liquid transport, such as
FeSe1−xSx

10 and BaFe2(As1−xPx)2
13, are isovalently

doped. These systems have multiple small Fermi sur-
faces (pockets) that are of either electron or hole char-
acter, with an equal density of electron and hole carri-
ers. It is reasonable to assume that such materials are
not far from being a compensated metal, and that nor-
mal electron-hole scattering mediated by quantum criti-
cal fluctuations plays an important role in their transport
behavior.

In this Section, we study the temperature dependence
of dc resistivity for a compensated metal near a nematic
quantum critical point. Motivated by the case of the
iron-based superconductors, we focus on the case where
the electron and hole pockets are much smaller than the
Brillouin zone size, such that umklapp scattering is negli-
gible. Since the nematic critical fluctuations are centered
at small momenta, we assume that they cannot scatter
electrons from one pocket to the other. The Hamiltonian
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is given by

H =

n∑

i=1


∑

k

εikc
†
ikcik + λ

∑

kq

φqfi,k,k+qc
†
ik+qcik


 ,

(18)
where i = 1, . . . , n is the pocket index, and the pocket
dispersions εik are assumed to be such that the total area
enclosed by the electron-like pockets is equal to that of
the hole-like pockets. fi,k,k+q is the Ising-nematic form
factor of the ith pocket, centered at wavevector Qi. Im-
portantly, depending on the position of the Fermi pocket
in the Brillouin zone, the form factor may or may not
contain “cold spots” – points on the Fermi pocket where
the form factor vanishes. For example, a pocket centered
at the Γ point [Qi = (0, 0)] has cold spots where the diag-
onals kx = ±ky intersect the Fermi surface. In contrast,
a pocket at the X or Y points [Qi = (π, 0) or (0, π),
respectively] does not have any symmetry-imposed cold
spots. The band structures of most of the iron-based su-
perconductors contain pockets centered at both the Γ, X,
and Y points (in the one Fe per unit cell scheme). As we
shall see below, the presence of cold spots on the Fermi
pockets, and whether they occur on all or only some of
the pockets, changes qualitatively transport behavior at
low temperature.

We study ρ(T ) in four different scenarios: in a clean
system where (1) all the pockets have cold spots, (2) the
hole pockets have cold spots but the electron pockets do
not, (3) no pockets have cold spots, and (4) a disordered
system where all the pockets have cold spots. For simplic-
ity, we considered a model with two circular pockets with
identical radii, one electron-like and one hole-like. We do
not expect the results to change qualitatively for pockets
of a general shape, as long as the system is perfectly com-
pensated (see Appendix I). The results are summarized in
Fig. 6. In the case when cold spots are absent or if there
is weak impurity scattering (Fig. 6 green and magenta
lines), ρ(T ) − ρ0 ∝ T 4/3, which is the naive quantum
critical scaling exponent discussed previously5,32. How-
ever, in a clean compensated metal with cold spots on
one or both of the Fermi pockets, the asymptotic low-
temperature behavior is different. When cold spots are
present on some (but not all) of the pockets, ρ ∼ T 5/3

(blue curve), whereas when cold spots are present on all
the pockets, ρ ∼ T 2 (red curve).

To understand the origin of the strong sensitivity of
the low-temperature transport behavior to the presence
of cold spots, we examine the non-equibrium distribu-
tion function in the presence of a current. It is con-
venient to parametrize the distribution function δnik
in terms of another function Φik such that δnk =
[−∂εiknF (εik)] ΦikEx, where i is the band index, k is a
point on the Fermi surface and E = Exx̂ is the elec-
tric field applied along the x axis. Φik can be com-
puted from the memory matrix according to: Φik =(
M−1

)
ik,jk′ χjk′,Jx . More details on relation between

our memory matrix approach and the non-equilibrium

f1 ≠ 1, f2 ≠ 1
f1 ≠ 1, f2 = 1

f1 = 1, f2 = 1
f1,2 ≠ 1, gimp ≠ 0

(a) (b)

FIG. 6. ρ(T ) and the log-derivative plot at the QCP in
a perfectly compensated metal with different arrangements
of cold spots on the Fermi pockets. The model consists of
two circular pockets with equal radii, one electron-like and
one hole-like. The nematic form factor is either taken to be
cos 2θk when the corresponding pocket has cold spots, or unity
for the case with no cold spots. The coupling constant is
λ2 ≈ 0.84εF . Red curve: both pockets have cold spots along
the diagonals. Blue curve: cold spots on the hole pocket, but
not the electron pocket. Green curve: neither pocket has cold
spots. Magenta curve: both pockets have cold spots, but also
subject to impurity scattering of strength gimp ≈ 0.1εF . The
black dashed lines in (b) correspond to exponents of 4/3, 5/3
and 2.

distribution function are given in Appendix F. Fig. 7(a)
shows the clean case without hot spots. In this case,
Φ1θk = −Φ2θk = cos θk. However, when cold spots are
present on at least one Fermi pocket, the distribution
function on both pockets changes dramatically, as seen
in Fig. 7(b) and (c). In this case, the distribution func-
tion is nearly constant on different quadrants of the Fermi
surface, bounded by the cold spots. In the presence of
disorder, the distribution function becomes more regular
and approaches a cosine at low temperatures, as seen in
Fig. 7(d).

The shape of the non-equilibrium distribution function
in the presence of cold spots can be understood qualita-
tively as follows: at low temperatures, the characteristic
momentum transfer q due to quantum critical scatter-

ing, q ∼ kF (T/ΩL)
1/3

, is small. The scattering rate
from a point k near one of the cold spots to a nearby
point k + q is suppressed by the nematic form factor.
Therefore, the cold spots effectively cut the Fermi surface
into four nearly-disconnected patches. The equilibration
within each patch is much faster than the equilibration
between patches (see Fig. 8). In this situation, the non-
equilibrium distribution is nearly constant in each patch,
and the bottleneck for current relaxation becomes the
slow inter-patch scattering. As a result, the resistivity
in the presence of cold spots is reduced than the resis-
tivity with no cold spots. In Appendix I, we analyze
the transport properties in the presence of cold spots,



10

(a) (b)

(c) (d )

FIG. 7. The function Φi,θk ∝ δni,θk on Fermi pocket i =
1, 2 in the presence of a current in the x direction, for the
same model as in Fig. 6. Here θk is the angle measured
with respect to the x-direction. The solid (dashed) curve is
the distribution function on the electron (hole) pocket. The
colors correspond to the same cases shown in Fig. 6. All four
distribution functions are calculated at the same temperatures
T ≈ 0.002εF .

FIG. 8. Electron scattering on the Fermi surface due to
small wavevector nematic fluctuations. The intersection be-
tween the Fermi surface and the dashed lines are where the
nematic form factor vanishes — the nematic “cold spots”.
Small wavevector scattering across the cold spots are strongly
suppressed by the nematic form factor.

using a piecewise-constant distribution function of the
form shown in Fig. 7(b,c) as a variational ansatz. We
find that the power-law exponents observed in Figure 6
are exactly reproduced.

D. Quasi-elastic thermal fluctuations and
intermediate temperature behavior

Having analyzed the asymptotic low-temperature be-
havior of the resistivity due to different scattering mecha-
nisms, we turn to discuss the crossover behavior at higher
temperatures. In particular, depending on microscopic
parameters, there may be a regime where the temper-
ature is comparable to or larger than the energy scale

set by the Landau damping, ΩL, but still much smaller
than the Fermi energy. Since ΩL = ε2

F /λ
2, this regime is

accessible within our model at strong coupling (or, equiv-
alently, if the Fermi energy is small). Formally, the cal-
culation in this regime can still be controlled in the large
N limit, as long as T � ΩNFL. As we shall now show,
the resistivity is determined by quasi-elastic scattering of
electrons off thermally excited nematic fluctuations. De-
pending on the evolution of the correlation length with
temperature, this may lead to either ρ ∼ T or ρ ∼ const.
in the crossover regime.

We begin by examining the temperature dependence
of the scattering cross-section between electrons and ne-
matic fluctuations, Vq(T ) [see Eqs. (12–14)]. We write

Eq. (14) as Vq(T ) = 1
γq
F
(
T
ωq

)
, where ωq ≡ rqγ

−1
q (re-

call that the nematic propagator is written as D−1
q,νn =

rq + γq|νn|) and

F (x) ≡ 1

x

ˆ +∞

−∞

du

π

u2

1 + u2

1

sinh2
(
u
2x

) . (19)

F (x) has the following asymptotic properties: for x� 1,
F (x) ≈ πx2/3, whereas for x� 1, F (x) ≈ 4x.

We can now estimate the resistivity in the regime
T � ΩL ∼ ωq∼kF , that corresponds to x � 1 in
Eq. (19). In this regime, the dominant contribution to
Vq(T ) is from energies ω ∼ ωq � T , corresponding to
quasi-elastic scattering of electrons off thermally excited
nematic fluctuations. We focus on the case of a com-
pensated metal, where momentum conservation does not
limit the resistivity. At high temperatures, we do not
expect the nematic form factor to have a strong effect on
the results, and will henceforth neglect it. The resistivity
can then be estimated by overlapping the memory matrix
described by class I diagram with the current operator:

ρ(T ) ∝
∑

kk′

(vk · vk′)M
(1)
kk′ ∼

ˆ kF

0

dqq2Vq (T ) . (20)

Placing both k and k + q on the Fermi surface (re-
call that we are still considering T � εF ) constrains
the allowed wave-vector q to a one-dimensional mani-
fold. The first q2 term in the integrand is the well-
known transport factor that suppresses the contribution
of small angle scattering. This factor arises from the term∑

q,kk′ (vk · vk′) (δkk′ − δk′−k,q) ∼ ∑
q,k (vk − vk+q)

2

that appears when inserting Eq. (12) in Eq. (20).
When T > ΩL, nematic fluctuations with a large

wavevector q ∼ kF become thermally excited. From the
discussion above [Eq. (19)], we find that in this regime
Vq(T ) ∼ T/rq, and hence

ρ(T ) ∝ T
ˆ kF

0

dq
q2

ξ−2(T ) + q2
, (21)

where we have expressed rq(T ) = ξ−2(T ) + q2. If ξ ≈ ξ0
is only weakly dependent on temperature, or if ξ−1 �
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FIG. 9. ρ(T ) in the high temperature regime T > ΩL, cal-
culated for a compensated metal without cold spots. r(T ) ≡
ξ−2(T ) is the thermal mass for nematic fluctuations. The cal-
culation assumes strong coupling λ2 � εF and large fermion
flavor N , so that ΩL � εF , and our memory matrix approach
remains valid.

kF , then ρ(T ) ∼ T . In contrast, if ξ−1(T ) � kF , then
the behavior of ρ(T ) is determined by the temperature
dependence of ξ(T ). For ξ−2 ∼ T (as was observed in the
QMC simulations of Ref.4, and experimentally in Ref.69),
ρ(T ) saturates to a constant at high temperature. In
Figure 9, we illustrate both types of high temperature
behavior for a compensated metal without cold spots, as
discussed in the previous section.

V. CONCLUSION

In summary, we have developed a memory matrix ap-
proach to derive a kinetic equation applicable in a broad
temperature regime near an Ising-nematic QCP. The for-
malism is applied to study the behavior of the dc resistiv-
ity in the vicinity of the QCP. The resistivity exhibits a
rich behavior that depends on the dominant mechanism
for current dissipation and on the structure of the Fermi
surface.

We find several regimes where the resistivity is strongly
affected by nematic critical fluctuations, despite their
long–wavelength nature. As long as the Fermi surface
is not very small compared to the size of the Brillouin
zone, there is a broad temperature range where the re-
sistivity is strongly enhanced near the QCP due to umk-
lapp scattering; in this regime, the umklapp processes
also modify the spectrum of the critical nematic fluctu-
ations, and z = 3 dynamical scaling does not hold. At
asymptotically low temperatures, however, z = 3 scaling
is recovered, and ρ ∼ T 2. In multi-band systems in the
presence of impurities, ρ − ρ0 ∝ T 4/3 down to the low-
est temperatures, as anticipated from z = 3 dynamical
scaling. In a compensated metal with an equal density

of electrons and holes, the quantum critical fluctuations
can affect the resistivity even in the absence of impurities
and at arbitrarily low temperatures. In this case we find
that the dc resistivity is strongly affected by the presence
of “cold spots” on the Fermi sheets, due to the symme-
try of the nematic order parameter. In the clean limit,
ρ ∼ Tα, where α = 2, 5/3, or 4/3, depending on whether
there are cold spots on all the Fermi sheets, on some of
the sheets, or on none, respectively.

It is important to note that we have assumed a purely
electronic mechanism for the Ising-nematic QCP, and
have neglected the effect of coupling to the lattice. This
effect is known to change the properties of the QCP,
quenching most of the long-wavelength nematic fluctua-
tions and making the transition more mean-field like70–72.
As a result, the effect of the critical fluctuations on the
resistivity is suppressed, recovering Fermi liquid behav-
ior ρ − ρ0 ∝ T 2 at the lowest temperatures. The scale
at which the crossover to Fermi liquid behavior occurs
depends on the strength of the coupling to the lattice.

Our analysis can be extended straightforwardly to
other metallic QCPs in d = 2 dimensions that do not
involve breaking of translational symmetry, such as ferro-
magnetic transitions. In the latter case, there are gener-
ically no cold spots on the Fermi surface.

The diversity of possible behaviors found in our study
suggest that experiments in critical metals should be in-
terpreted with great care. Nevertheless, it would be in-
teresting to consider our results in the context of ongo-
ing experiments16 in FeSe1−xSx, which is a compensated
system that exhibits an apparent nematic QCP with no
nearby magnetic phase.
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Appendix A: Memory matrix approach to transport properties

1. General formalism

In this section, we briefly review the memory matrix formalism and its application to transport. We then discuss
the validity of the approach in the vicinity of a QCP.

We closely follow the discussion of the memory matrix approach in Ref.57. To set up the formalism, we first define
an inner product in the Hilbert space of operators. For two Hermitian operators A, B, the inner product is given by

(A|B) = T

ˆ β

0

dτ [〈A(τ)B〉 − 〈A〉〈B〉] ≡ TχAB . (A1)

Here, χAB is a theormodynamic susceptibility relating the operators A and B.
The Liouville “super operator” is defined as L = −[H, ·]. The operators satisfy the Heiseberg equation of motion:

Ȧ = i[H,A] = −iLA. We are interested in calculating a retarded correlation function of two operators, characterizing
the response of the system. This can be done through the relation57

GRAB(t) ≡ iΘ(t)〈[A(t), B(0)]〉 = − 1

T
Θ(t)∂tCAB(t), (A2)

where CAB(t) ≡ (A(t)|B). Fourier transforming both sides, we obtain

C̃AB(z) =
T

iz

[
G̃RAB(z)− G̃RAB(0)

]
, (A3)

where C̃AB(z) ≡
´∞

0
eiztCAB(t), z is a complex number in the upper half plane, and similarly for G̃RAB(z) =´∞

0
eiztGRAB(t). For example, the frequency-dependent conductivity can be written as

σ(Ω) ≡ 1

iΩ

[
G̃RJxJx(Ω)− G̃RJxJx(0)

]
=

1

T
C̃JxJx(z = Ω + i0+). (A4)

The key step in the memory matrix technique is to identify a set of slow (or nearly-conserved) operators, and project
the dynamics onto these operators. We denote the set of slow operators by |Aα). We assumne that the current is a

linear combination of |Aα)’s. Then, to compute C̃JxJx(z), it is sufficient to compute matrix elements of the resolvent

(or Green’s function) Ĝ(z) = i
z−L in the subspace of |Aα). To do this, we define the projection operator

P̂ =
1

T

∑

α,β

|Aα)(χ−1)αβ(Aβ | (A5)

onto the slow subspace, and Q̂ = 1 − P̂ is a projection onto the complementary subspace. The equation for the
Green’s function G is

(
zP̂ − P̂LP̂ −P̂LQ̂
−Q̂LP̂ zQ̂− Q̂LQ̂

)(
P̂ ĜP̂ P̂ ĜQ̂

Q̂ĜP̂ Q̂ĜQ̂

)
=

(
i 0
0 i

)
. (A6)

From this we obtain the two equations

(
zP̂ − P̂LP̂

)
P̂ ĜP̂ − P̂LQ̂

(
Q̂ĜP̂

)
= i, (A7)

(
zQ̂− Q̂LQ̂

)
Q̂ĜP̂ − Q̂LP̂

(
P̂ ĜP̂

)
= 0. (A8)

Solving (A8) for Q̂ĜP̂ and inserting it in (A7), we arrive at

[
zP̂ − P̂LP̂ − P̂LQ̂

(
z − Q̂LQ̂

)−1

Q̂LP̂
]
P̂ ĜP̂ = i. (A9)

The matrix elements of Ĝ between two operators in the slow subspace can be computed from Eq. (A9). It is given by
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C̃αβ(z) = (Aα|
i

z − L|Aβ) = T

(
χ

1

−izχ+N +M(z)
χ

)

αβ

, (A10)

where we have defined the matrices

Nαβ =
i

T
(Aα|L|Aβ), (A11)

Mαβ(z) =
i

T
(Aα|LQ̂

1

z − Q̂LQ̂
Q̂L|Aδ). (A12)

So far, the manipulations have all been exact - we have not used the fact that the operators |Aα) are “slow”. The
slowness of the operators Aα is typically employed when computing Mαβ(z). We imagine that the Hamiltonian
depends on a parameter g, such that to zeroth order in g, L(g = 0)|Aα) = 0. Then, to leading order in g, we can drop

the factors of Q̂ in the evaluation of the denominator in Eq. (A12), and the memory matrix becomes an ordinary
dynamical correlation function with H(g = 0).

2. Application to the quantum critical problem

In our quantum critical system, we choose the set of operators to be the occupations of particles per flavor in
momentum space, {nαk}. In order to evaluate the memory matrix, Eq. (A12), we note that in the N →∞ limit, the
operators {nαk} become conserved quantities. This is since

ṅαk = −iLnαk =
iλ√
N

∑

q

φq

(
fk,k−qc

†
αkcαk−q − fk,k+qc

†
αk+qcαk

)
. (A13)

We use a normalized set of operators, |ñαk) = (nαk|nαk)−1/2|nαk). In the presence of time reversal and inversion
symmetries, (ñαk|L|ñα′k′) = 0. Consider the matrix element of L between |ñαk) and the normalized operator

|L̃nα′k′) ≡ (Lnα′k′ |Lnα′k′)−1/2|Lnα′k′):

(ñαk|L|L̃nα′k′) = − (Lnαk|Lnα′k′)

(nαk|nαk)1/2(Lnα′k′ |Lnα′k′)1/2
. (A14)

We can easily check that (ñαk|L|L̃nα′k′) = O(N−1/2) 73.
This implies that, to leading order in 1/N , the memory matrix can be written as

Mαk,α′k′ =
i

T
(ṅαk|

1

z − L|ṅα′k′), (A15)

where the correlation function is evaluated in the N →∞ limit. In this limit, L does not connect the slow operators
nαk to other operators, and the projector Q̂ in the denominator of Eq. (A12) is automatically accounted for.

To compute the memory matrix, we use Eq. (A3). The retarded response function can be computed from imaginary-
time-ordered correlation function via analytic continuuation. In Matsubara frequency:

Gαk,α′k′(iΩn) = −
ˆ β

0

dτeiΩnτ 〈ṅαk(τ)ṅα′k′(0)〉. (A16)

Here ṅαk ≡ − [H,nαk] denotes imaginary-time derivative. Let us first observe the general structure of the response
function by treating λ as a small perturbation. To order O(λ2):

G(1)
αk,α′k′(iΩn) = δαα′

λ2

N

ˆ
τ

eiΩnτ
∑

q

D0(q, τ)
{

(δk′−k,q − δkk′) f2
k,k+qG0(k, τ)G0(k + q,−τ) + (τ ↔ −τ,q↔ −q)

}
.

(A17)

After Fourier transformation:

G(1)
αk,α′k′(iΩn) = −δαα′

λ2T

N

∑

qνn

D0(q, iνn + iΩn)
∑

ζ=±1

(δk′−k,q − δkk′) f2
k,k+ζqR (k,k + ζq, iζνn) . (A18)
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where we have defined

R(k,k + q, iνn) ≡ −T
∑

ωk

G0(k, iωk)G0(k + q, iωk + iνn). (A19)

To the next order O(λ4), to see that

G(2)
αk,α′k′(iΩn) = − λ4

N2T

ˆ
τ

eiΩnτ 〈φqφq1
φq2

φq′〉0〈
(
fk,k−qc

†
kck−q − fk,k+qc

†
k+qck

)(
fp1,p1+q1c

†
p1+q1

cp1

)
〉0

× 〈
(
fp2,p2+q2

c†p2+q2
cp2

)(
fk′,k′−q′c†k′ck′−q′ − fk′,k′+q′c†k′+q′ck′

)
〉0.

(A20)

Here for convenience we have omitted the summation over repeated indices. The connected random phase diagram
has the structure shown in Fig. 3 (b,c) in the main text. The idea is to contract the electron momenta {k,p1} and
{k′,p2}, and bosonic momenta as 〈φqφq′〉〈φq1φq2〉 (b) or 〈φqφq2〉〈φq′φq1〉. In either cases, we obtain:

q = −q1;q′ = −q2;q′ = ±q.

After Fourier transformation:

G(2,b)
αk,α′k′(iΩn) =

λ4T

N2

∑

q,iνn

∑

iωl,iωs

D0(q, iνn)D0(q, iνn + iΩn)

×
∑

ζ=±1

ζf2
k,k+ζqR (k,k + ζq, iζνn)

×
∑

ζ′=±1

ζ ′f2
k′,k′+ζ′qR (k′,k′ + ζ ′q, iζ ′νn) ,

(A21)

and

G(2,c)
αk,α′k′(iΩn) = −λ

4T

N2

∑

q,iν

∑

iωl,iωs

D0(q, iνn)D0(q, iνn + iΩn)

×
∑

ζ=±1

ζf2
k,k+ζqR (k,k + ζq, iζνn)

×
∑

ζ′=±1

ζ ′f2
k′,k′+ζ′qR (k′,k′ + ζ ′q, iζ ′νn + iζ ′Ωn)

(A22)

Within random phase approximation corresponding to leading order in 1/N , we use the dressed nematic propagator
to be D−1 = D−1

0 −Π, but keep the fermion Green’s function and the coupling vertex unrenormalized.
We obtain the following expression for the memory matrix within the random phase approximation:

M
(1)
αk,α′k′(iΩn) = δαα′

λ2T

NΩn

∑

q,νn



Dq,νn+Ωn

∑

ζ=±1

(δk′−k,ζq − δkk′) f2
k,k+ζqR (k,k + ζq, iζνn)





M
(2)
αk,α′k′(iΩn) = − λ4T

N2Ωn

∑

q,νn

Dq,νnDq,νn+Ωn

∑

ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′qR(k,k + ζq, iζνn)

× [R(k′,k′ + ζ ′q, iζ ′νn)−R(k′,k′ + ζ ′q, iζ ′νn + iζ ′Ωn)] .

(A23)

Here for simplicity of writing we have omitted the Ωn = 0 term inside the brackets. However, in following calculations
the static contribution is always subtracted. We refer to the two contributions to the memory matrix in Eq. (A23)
as class-I and class-II diagrams, respectively.

Naively, the class II diagrams are O(N−2) while the class I diagram is O(N−1), both contributions need to be kept
when studying transport properties. This is because in class I, the flavor indices α, α′ are constrained to be the same,
while in class II they are not.

In the {nαk} basis, the optical conductivity is expressed as:

σ(Ω) =
∑

α,β,k,k′

χJx,αk

(
1

M(Ω)− iΩχ

)

αk,βk′
χβk′,Jx (A24)
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-π 0 π
-π

0

π
-π 0 π

-π

0

π⋯
θ1

θ2θ3

FIG. 10. Patches of momentum states. The blue circle is the Fermi surface. The width of the patch is determined by the
typical scattering momentum due to critical nematica fluctuations. Near the QCP, the total quasi-particle density within each
patch can be treated as a slow variable.

where χJx,αk ≡
´ β

0
dτ〈Jx(τ)nαk(0)〉 and χαk,βk′ ≡

´ β
0

dτ [〈nαk(τ)nβk′(0)〉 − 〈nαk〉〈nβk′〉] are thermodynamic suscep-
tibilities.

A straightforward analysis from Eq. (A24) shows that σ(Ω) ∼ O
(
N2
)
, where one factor of N comes from the

number of conducting channels, and the other factor comes from the fact that the eigenvalues of the memory matrix
relevant to transport scale as O

(
N−1

)
. As a result, the dc resistivity is ρ ∼ O

(
N−2

)
in the large N limit, where our

computation is formally justified.

3. Patch formulation

Here we present an alternative formulation which does not rely on the electron occupation number nαk being a
quasi-conserved mode in small λ or large N limit. Instead, we use the electron density on a “patch” of the Fermi
surface as the slow variable.

At low temperatures, T � εF , quantum critical fluctuations carry a small typical momentum, |q| ∼ T 1/z, where
z is the dynamical critical exponent. As a result, electrons equilibrate rapidly within a “patch” on the Fermi surface
whose width scales with the characteristic momentum for critical fluctuations. However, the inter-patch relaxations
are much slower. As depicted in Fig. 10, we divide the Fermi surface into patches along the Fermi surface, and treat

the patch density as a slow operator: Nαi ≡
´ θi+1

θi
nαkkF (θ)dk⊥dθ, where k⊥ is the momentum perpendicular to the

Fermi surface. We obtain the following memory matrix expression for the optical conductivity:

σ(Ω) ≈
∑

α,β,i,j

χJx,αi

(
1

M(Ω)− iΩχ

)

αi,βj

χβj,Jx . (A25)

Since Eq. A25 does not rely on individual momentum states being quasi-conserved, it can in principle be applied to
study electrical transport in the non-Fermi liquid regime.

In the coherent electron regime, the dominant scattering processes relate momentum states in the vicinity of the
Fermi surface. As a result, to leading order in T/εF , Eq. A24 gives the same result when compared to Eq. A25,
where every nαk are treated as a slow operator. In the main text and in later sections of the Appendix, we focus our
discussion on the latter approach.

Patch theories of the Fermi surface have been studied over two decades61,74–76. In Ref.61, the patch theory has
been applied to study the violation of the Wiedmann-Franz law when electron-electron scattering are mediated by
long wavelength fluctuations.

Appendix B: Momentum conservation

We now demonstrate that in absence of umklapp scattering and impurity scattering, the total electronic momen-
tum is exactly conserved within our formalism. To derive momentum conservation, it is sufficient to show that∑
α′k′ kMαk,α′k′ = 0. We first look at the class I diagram contribution:
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∑

α′k′

k′M (1)
αk,α′k′ =

λ2T

NΩn

∑

k′qνn

k′Dq,νn+Ωn

∑

ζ=±1

(δk′−k,ζq − δkk′) f2
k,k+ζqR (k,k + ζq, iζνn)

=
λ2T

NΩn

∑

qνn

Dq,νn+Ωn

∑

ζ=±1

ζqf2
k,k+ζqR (k,k + ζq, iζνn)

(B1)

Similarly the class II diagram contribution is:

∑

α′k′

k′M (2)
αk,α′k′(iΩn) = − λ4T

NΩn

∑

k′qνn

k′Dq,νnDq,νn+Ωn

∑

ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′qR(k,k + ζq, iζνn)

× [R(k′,k′ + ζ ′q, iζ ′νn)−R(k′,k′ + ζ ′q, iζ ′νn + iζ ′Ωn)] .

(B2)

By change of variables k′ → k′ − ζ ′q, and ζ ′ → −ζ ′, we get

∑

α′k′

k′M (2)
αk,α′k′(iΩn) = − λ2T

NΩn

∑

qνn

Dq,νnDq,νn+Ωn (Πq,νn+Ωn −Πq,νn)

×
∑

ζ=±1

ζqf2
k,k+ζqR(k,k + ζq, iζνn),

(B3)

where

Πq,νn = λ2
∑

k′

f2
k′,k′+qR (k′,k′ + q, iνn) (B4)

is the polarization bubble. Making use of Dyson’s equation D−1 = D−1
0 −Π, we obtain:

∑

α′k′

kM
(2)
αk,α′k′(iΩn) = − λ2T

NΩn

∑

qνn

(Dq,νn+Ωn −Dq,νn)
∑

ζ=±1

ζqf2
k,k+ζqR(k,k + ζq, iζνn)

− λ2T

NΩn

∑

qνn

Dq,νnDq,νn+Ωn

(
D−1

0,q,νn+Ωn
−D−1

0,q,νn

) ∑

ζ=±1

ζqf2
k,k+ζqR(k,k + ζq, iζνn).

(B5)

Summing up the two classes of diagrams:

∑

α′k′

k′M (1+2)
αk,α′k′(iΩn) =

λ2T

NΩn

∑

qνn

Dq,νn

∑

ζ=±1

ζqf2
k,k+ζqR(k,k + ζq, iζνn)

− λ2T

NΩn

∑

qνn

Dq,νnDq,νn+Ωn

(
D−1

0,q,νn+Ωn
−D−1

0,q,νn

) ∑

ζ=±1

ζqf2
k,k+ζqR(k,k + ζq, iζνn).

(B6)

The first term is the static contribution Gαk,α′k′(Ωn = 0) , and should be subtracted at the end of the computation.
If the dynamics of nematic fluctuations is generated by coupling to the electrons, as discussed previously, then D0

is frequency independent. In that case, the second term vanishes as well, and momentum is conserved. Whether
nematic fluctuations can act as a “momentum sink” is fundamentally dependent on whether their propagator has its
own independent dynamics.

Appendix C: Low temperature and dc limit

We derive the expressions of the memory matrix in the dc limit and for temperature T much smaller than the Fermi
energy εF . It is convenient to invoke spectral representation for the nematic propagator. Define D−1

q,νn ≡ rq + γq|νn|,
we have

Dq,νn =

ˆ
dω

π

ImDq,ω

ω − iνn
, (C1)

where the spectral function is

ImDq,ω =
γqω

r2
q + γ2

qω
2
. (C2)
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For a given momentum transfer, the spectral function is peaked at ωq ≡ rq
γq
∼ ε2F

λ2

(
|q|
kF

)3

. This can be interpreted

as the dispersion relation of Landau-damped nematic fluctuations. At small wave-vectors, ωq � εF .
First, consider the class I diagram. The sum over bosonic Matsubara frequency νn can be explicitly performed

using spectral representation, giving rise to:

M
(1)
αk,α′k′(iΩn) = δαα′

λ2

NΩn

∑

q

(δk′−k,q − δkk′) f2
k,k+q

ˆ
dω

π
ImDq,ω (nF,k+q − nF,k)

×
{
nB (ω)− nB (εk+q − εk)

ω − iΩn − (εk+q − εk)
+ h.c.− static part

} (C3)

where nF,k is short for the Fermi-Dirac distribution function nF (εk), and nB(ω) is the Bose-Einstein distribution
function. Following an analytic continuation iΩn → Ω + iδ, we obtain:

M
(1)
αk,α′k′(Ω + iδ) = − 1

iΩ
δαα′

λ2

N

∑

q

(δk′−k,q − δkk′) f2
k,k+q

ˆ
dω

π
ImDq,ω (nF,k+q − nF,k)

×
{
nB (ω)− nB (εk+q − εk)

ω − (εk+q − εk)− Ω− iδ +
nB (ω)− nB (εk+q − εk)

ω − (εk+q − εk) + Ω + iδ
− static part

} (C4)

Making use of 1
ω−iδ = P 1

ω + iπδ (ω), and taking the dc limit Ω→ 0, we observe that the principle part on the second
line cancels the static part, and only the imaginary part contributes to the real frequency memory matrix. We obtain:

M
(1)
αk,α′k′ → δαα′

2πλ2

N

∑

q

(δk′−k,q − δkk′) f2
k,k+q (nF,k+q − nF,k)

×
ˆ

dω

π
ImDq,ω

(
−∂nB
∂ω

)
δ (ω − εk+q + εk) .

(C5)

This is equivalent to the linearized collision integral studied in many previous works, e.g. Ref.21, where the class II
diagrams were not considered. From the second line, we see that the leading contribution to the frequency integration
comes from low frequencies, ω ∼ min (ωq, T )� εF . As a result, the above expression can be further simplified to be:

M
(1)
αk,α′k′ ≈ δαα′

2πλ2

N

∑

q

(δkk′ − δk′−k,q) f2
k,k+qVqδ (εk) δ (εk+q), (C6)

where we have used nF,k+q − nF,k ≈ −ωδ (εk), and defined

Vq ≡
ˆ

dω

π
ωImDq,ω

(
−∂nB
∂ω

)
. (C7)

We see that the dominant processes contributing to class I diagram comes from the Fermi surface.
Next we derive the expression for class II diagrams in the dc limit. There are two terms shown in Eq. (A23),

corresponding to Figs. 1(c) and (d) of the main text. We discuss the (c) contribution first. We can rewrite the
memory matrix in the following way:

M
(2,c)
αk,α′k′(iΩn) = − λ

4

N2

∑

q;ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′q

[
T

Ωn

∑

νn

f (iνn) g (iνn + iΩn)

]
,

f (iνn) = Dq,νnR(k,k + ζq, iζνn)R(k′,k′ + ζ ′q, iζ ′νn),

g (iνn + iΩn) = Dq,νn+Ωn .

(C8)

Here we defined two analytic functions f and g. Both f and g are analytic everywhere except on the real axis. Hence,
we can use a spectral representation for both functions, to obtain:

M
(2,c)
αk,α′k′(iΩn) = − λ

4

N2

∑

q;ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′q

× 1

Ωn

ˆ
dω1dω2

π2

ˆ
dz

2πi
nB (z)

Imf (ω1)

z − ω1

Img (ω2)

z − ω2 + iΩn

(C9)
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Carrying out the Matsubara sum:

M
(2,c)
αk,α′k′(iΩn) = − λ

4

N2

∑

q;ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′q

× 1

Ωn

ˆ
dω1dω2

π2
Imf (ω1) Img (ω2)

nB (ω2)− nB (ω1)

ω1 − ω2 + iΩn

(C10)

Following an analytic continuation, iΩn → Ω + iδ, and taking the zero-frequency limit, we obtain:

M
(2,c)
αk,α′k′(Ω→ 0) =

λ4

N2

∑

q;ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′q ×

ˆ
dω

π
Imf (ω) Img (ω)

(
−∂nB
∂ω

)
. (C11)

The imaginary part of the f and g functions are, respectively:

Imf (ω) = Im (DR1R2)

= ImD (ReR1ReR2 − ImR1ImR2) + ReD (ReR1ImR2 + ImR1ReR2)

and

Img (ω) = ImD

Here we have used a short-hand notation: R1 = R(k,k + ζq, iζνn) and R2 = R(k′,k′ + ζ ′q, iζ ′νn).
Following a similar analysis, the second term in the bracket in the expression for M (2) [Eq. (A23)] can also be

carried out, except in this case,

f̃ (iνn) = Dq,νnR(k,k + ζq, iζνn),

g̃ (iνn + iΩn) = Dq,νn+ΩnR(k′,k′ + ζ ′q, iζ ′νn + iζ ′Ωn).
(C12)

As a result,

Imf̃ (ω) = ImDReR1 + ReDImR1,

Img̃ (ω) = ImDReR2 + ReDImR2.
(C13)

Combining the two contributions, we get the following expression for class II diagram in dc limit:

M
(2)
αk,α′k′ = − λ

4

N2

∑

q;ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′q

×
ˆ

dω

π
|Dq,ω|2ImR (k,k + ζq, ζω) ImR (k′,k′ + ζ ′q, ζ ′ω)

(
−∂nB
∂ω

), (C14)

where

ImR (k,k + ζq, ζω) = Im
nF,p − nF,k

εk − εk+ζq + ζ (ω + iδ)
= −πζ (nF,k+ζq − nF,k) δ (εk − εk+ζq + ζω) , (C15)

and

ImR (k′,k′ + ζ ′q, ζ ′ω) = −πζ ′ (nF,k′+ζ′q − nF,k′) δ (εk′ − εk′+ζ′q + ζ ′ω) . (C16)

We see again that the frequency integration is constrained to be at small frequencies ω < min (T, ωq). Approximating
−πζ (nF,k+ζq − nF,k) ≈ πωδ (εk) and −πζ ′ (nF,k′+ζ′q − nF,k′) ≈ πωδ (εk′), we see that:

M
(2)
αk,α′k′ = −πλ

4

N2

∑

q;ζζ′=±1

ζζ ′f2
k,k+ζqf

2
k′,k′+ζ′qδ (εk) δ (εk′)

×
ˆ

dωω2|Dq,ω|2
(
−∂nB
∂ω

)
δ (εk+ζq − ζω) δ (εk′+ζ′q − ζ ′ω)

(C17)
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Since the frequency is small compared to the Fermi energy, we can further approximate the two δ-function constraints
as δ (εk+ζq) δ (εk′+ζ′q), placing all four momentum states on the Fermi surface. We then make use of the identity:

ˆ
dωω2|Dq,ω|2

(
−∂nB
∂ω

)
=

1

γq

ˆ
dωωImDq,ω

(
−∂nB
∂ω

)
=
πVq(T )

γq
, (C18)

where Vq(T ) is defined in Eq. (14). The final expression for class II contribution to the memory matrix is:

M
(2)
αk,α′k′ ≈ −

2π2λ4

N2

∑

q;ζ′=±1

ζ ′
Vq
γq
f2
k,k+qf

2
k′,k′+ζ′qδ (εk) δ (εk+q) δ (εk′) δ (εk′+ζ′q) (C19)

Here we have made use of the invariance under (ζ, ζ ′)→ (−ζ,−ζ ′) to eliminate ζ in the expression.

Appendix D: Harmonic basis and additional conservation laws

In this section we show that in a two-dimensional system with a single, convex Fermi surface and with no umklapp
scattering, there are additional approximately conserved modes that emerge at low temperatures and frequencies due
to projection of scattering processes onto the Fermi surface.

We start from Eqs. (12) and (13) for the memory matrix in the dc limit. It is convenient to split M
(2)
αk,α′k′ as

follows:

M
(2,+)
αk,α′k′ = −2π2λ4

N2

∑

q

Vq
γq
f2
k,k+qf

2
k′,k′+qδ (εk) δ (εk+q) δ (εk′) δ (εk′+q) ,

M
(2,−)
αk,α′k′ =

2π2λ4

N2

∑

q

Vq
γq
f2
k,k+qf

2
k′,k′−qδ (εk) δ (εk+q) δ (εk′) δ (εk′−q) .

(D1)

The two class II terms are related to each other via

M
(2,+)
αk,α′k′ = −M (2,−)

αk,α′−k′ . (D2)

The Landau damping parameter γq appearing in M
(2,±)
αk,α′k′ is self-consistently calculated from the electron polariza-

tion bubble:

γq = πλ2
∑

k

f2
k,k+qδ (εk) δ (εk+q) . (D3)

Note that γq ∼ O
(
N0
)
, since nematic boson can decay into all flavors of electrons.

We define memory matrix in the harmonic basis:

Mαn,α′m ≡
∑

kk′

h∗nkhmk′Mαk,α′k′ , (D4)

where hnk = exp (inθk), and hn,−k = (−1)
n
hnk. By introducing a short-hand notation dnkk′ ≡ hnk − hnk′ , Class I

contribution becomes:

M
(1)
αn,α′m = δαα′

πλ2

N

∑

kk′

d∗nkk′dmkk′f2
k,k′Vk′−kδ (εk) δ (εk′) (D5)

Here we made use of symmetry under k↔ −k′ to derive the above expression. Similarly, class II contributions can
be shown to be of the form

M
(2)
αn,α′m =

π2λ4

N2

1− (−1)
n

2

1− (−1)
m

2

∑

kq

Vq
γq
f2
k,k+qδ (εk) δ (εk+q)

×
[
d∗nkk′

∑

k′

hmk′f2
k′,k′−qδ (εk′) δ (εk′−q)

] (D6)
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For a convex Fermi surface and a given momentum transfer q, to place all four momentum states {k,k + q,k′,k′ − q}
on the Fermi surface implies that k′ = −k or k′ = k + q. As a result, the bracket on the second line can be simplied
to be

γq
2πλ2

d∗nkk′ (hmk+q + hm,−k) .

By change of variables: k + q→ k′, we can combine the two class of diagrams to arrive at the final expression for
memory matrix in the harmonics basis:

Mαn,α′m =
πλ2

N

∑

kk′

d∗nkk′dmkk′Vk′−kf
2
k,k′δ (εk) δ (εk′)

×
[
δαα′ − 1

N

1− (−1)
n

2

1− (−1)
m

2

] (D7)

Eq. (D7) shows a dichotomy between even/odd parity modes. The second term in the bracket vanishes for even
parity modes, and as a result, these modes are fast-relaxing from critical nematic fluctuations. In contrast, the
relaxation of odd-parity modes is strongly renormalized by scattering processes described by class II diagrams. For a
given pair of odd values of {n,m}, Mαn,α′m has a simple N ×N matrix structure in the flavor basis, given by 1− 1

N

along the diagonal and − 1
N otherwise:




1− 1
N − 1

N · · ·
− 1
N 1− 1

N · · ·
...

...
. . .



N×N

There is one zero mode associated with this matrix structure, with an eigenvector given by 1√
N

(1, 1, · · · ). This

corresponds to a conservation of the generalized current Jn ≡
∑
αk hnkc

†
αkcαk, whenever n is odd. Note that the total

electron momentum P can be represented as a linear combination of Jn, and therefore is also conserved.
We point out that except for momentum, all other odd-parity currents are only quasi-conserved. Scattering processes

away from the Fermi surface will lift these zero modes to a decay rate which is O
(
T 2/ε2

F

)
smaller than the relaxation

of even-parity modes5,46.

Appendix E: Generalization to systems with multiple Fermi sheets

The generalization of the memory matrix to multiple electron bands is straightforward. For simplicity we omit
the flavor index, and consider the case N = 1. The generalization to the case of a general N is straightforward.
In addition, we assume that the critical nematic fluctuations can only scatter electrons within each band, since the
fluctuations carry a small momentum. The Lagrangian is taken to be:

Lmulti = L0,multi + λ
∑

ikq

φqfi,k,k+qc
†
ik+qcik (E1)

where

L0,multi =
∑

i,k

c†ik(∂τ + εik)cik +
1

2

∑

q

D−1
0,q|φq|2. (E2)

Here i = 1 . . . Nband is the band label, and εik is the dispersion for the i-th electron band. The other terms in
The derivation of the memory matrix parallels that of the multi-flavor, single-band scenario, with the only difference
coming from different dispersions and form factors for different electron bands. There are two class of Feynman
diagrams for the memory matrix, and at low temperatures and in the dc limit, the expressions for the two class of
diagrams are:

M
(1)
ik,jk′ = δij2πλ

2
∑

q

(δkk′ − δk′−k,q) f2
i,k,k+qVqδ (εik) δ (εik+q) ,

M
(2,+)
ik,jk′ = −2π2λ4

∑

q

Vq
γq
f2
i,k,k+qf

2
j,k′,k′+qδ (εik) δ (εik+q) δ (εjk′) δ (εjk′+q) ,

M
(2,−)
ik,jk′ = 2π2λ4

∑

q

Vq
γq
f2
i,k,k+qf

2
j,k′,k′−qδ (εik) δ (εik+q) δ (εjk′) δ (εjk′−q) .

(E3)
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The Landau damping coefficient describes a sum of scattering processes on each electron band:

γq = πλ2
∑

ik

f2
i,k,k+qδ (εik) δ (εik+q) . (E4)

Similar to the discussion in Sec. IV, we can rewrite the memory matrix in the harmonics basis. Class I diagram can
be shown to be:

M
(1)
in,jm = δijπλ

2
∑

kk′

d∗in,kk′djm,kk′f2
i,k,k′Vk′−kδ (εik) δ (εik′) (E5)

where we have defined a short-hand notation: din,kk′ = hink − hink′ . Similarly, class II diagrams are expressed as:

M
(2)
in,jm = π2λ4 1− (−1)

n

2

1− (−1)
m

2

∑

kq

Vq
γq
f2
i,k,k+qδ (εik) δ (εik+q)

×
[
d∗in,kk′

∑

k′

hjmk′f2
j,k′,k′−qδ (εjk′) δ (εjk′−q)

]
.

(E6)

The term on the second line evaluates to:

γjq
2πλ2

d∗in,kk′

∑

pj

hjmpj (E7)

where γjq is the Landau damping due to j-th band, such that γq =
∑
j γjq. In Eq. (E7), the pj ’s are solutions of the

two equations εjpj = 0, εjpj−q = 0. Since the momentum is two-dimensional, there is a discrete set of such solutions.
For a convex, inversion symmetric Fermi surface of the jth band, there are two solutions: pj and − (pj − q). We
perform change of variables k′ = k + q, and the terms corresponding to the two classes to obtain the final expression:

Min,jm = πλ2
∑

kk′

Vk′−kf
2
i,k,k′δ (εik) δ (εik′)

×


δijd∗in,kk′djm,kk′ +

γjk′−k
γk′−k

1− (−1)
n

2

1− (−1)
m

2
d∗in,kk′

∑

pj

hjmpj




(E8)

It is easy to see how this reduces to the one band expression in Eq. (D7). In that case, the solutions to the equations
εp = εp−q = 0 are p = −k or k′. One for the second term in Eq. (E8), we get:

[
1− 1− (−1)

n

2

1− (−1)
m

2

]
d∗n,kk′dm,kk′

which is the same expression compared to Eq. (D7) in the case N = 1.

Appendix F: Connection to the Boltzmann equation and the non-equilibrium distribution function

Here we make explicit connection between our memory matrix approach with the familiar Boltzmann equation,
and identify the non-equilibrium distribution function in the presence of an applied electric field within the memory
function approach.

We begin with writing down the Boltzmann equation for the quasiparticle distribution function {nαk(t)}:

∂tnαk + eEx∂kxnαk = Icoll (F1)

In the absence of an electric field, the steady state is given by the equilibrium Fermi-Dirac distribution nF,αk. When a
small electric field E = Exx̂ is applied, the distribution function deviates away from nF,αk, with the dominant response

occuring near the Fermi surface. We write nαk = nF,αk + (∂εnF,αk) Φ̃αk, and the linearized Boltzman equation for
the non-equilibrium distribuion {Φαk(t)} has the form

(eExvαk,x) (∂εnF,αk) = − (∂εnF,αk) ∂tΦ̃αk +
∑

α′k′

ˆ
t′
Wαk,α′t′ (t− t′) Φ̃α′k′ (F2)
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(a) (b) (c)

(e)(d)

FIG. 11. Interaction contributions to optical conductivity, to leading order in 1/N . (a,b) are DOS diagrams, (c) is MT,
and (d,e) are AL diagrams. The current vertices are labeled by circles. Open/solid circles represent the inflow/outflow of the
external frequency Ω.

Fourier transformation gives:

(−iΩχ+W ) Φ̃ = −eχVxEx (F3)

where

χαk,α′k′ ≡ −∂nF,αk
∂εαk

δαα′δkk′ (F4)

is a thermodynamic susceptibility. Φ̃ ≡
(

Φ̃α1k1
, Φ̃α2k2

· · ·
)T

and Vx ≡ (vα1k1x, vα2k2x · · · )T are vectors. The electrical

conductivity is given by

σ (Ω) =
∑

αk

evαk,x (nαk − nF,αk) = e2V Tx χΦ (F5)

where Φ = Φ̃/Ex. In matrix form, we get

σ (Ω) = e2V Tx χ
1

W − iΩχχVx (F6)

Comparison between Eq. (F6) and Eq. (4) in the main text shows that our memory matrix M corresponds to the
collision kernel W of the Boltzmann equation.

Due to the structure of the collision kernel, the non-equilibrium distribution function due to an applied electric field
can be very different from the quasiparticle velocity vector Vx . In particular we have shown that

Φ = − 1

W − iΩχeχVx (F7)

In the main text, we address the functional form of Φ due to critical nematic fluctuations and how they lead to a
temperature dependent resistivity very different than previously calculated.

Appendix G: Connection to standard feynman diagrams for the optical conductivity

In this section we show that at high external frequencies, our derivation of optical conductivity gives the same
results as the standard perturbative calculation. From Kubo linear response theory, the dissipative part of optical
conductivity is calculated from the imaginary part of the retarded current-current response function:

σ′ (Ω) =
1

Ω
ImGJJ (Ω) (G1)
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To leading order in 1/N , there are three types of diagrams that contribute to σ(Ω), depicted in Figure 11(a-e). These
are the so-called density of states (DOS), Maki-Thompson (MT), and Aslamazov-Larkin (AL) diagrams. We discuss
these contributions in Matsubara frequency, and comment on the analytic continuation iΩn → Ω + iδ.

The DOS diagrams contribute two terms (a,b), related to each other by a change of iΩn → −iΩn. They can be
expressed as:

GDOS
JJ (iΩn) = −λ2T 2

∑

νnωn

∑

kq

v2
k,xf

2
k,k+qDq,νnGk+q,ωn+νn

×G2
k,ωn (Gk,ωn+Ωn +Gk,ωn−Ωn) .

(G2)

Here Gk,ωn is short hand notation for the non-interacting fermionic Green’s function G0 (k, iωn) = (iωn − εk)
−1

.
Making use of the identity Gk,ωnGk,ωn+Ωn = 1

iΩn
(Gk,ωn −Gk,ωn+Ωn), it is straightforward to show:

GDOS
JJ (iΩn) =

λ2T 2

Ω2
n

∑

νnωn

∑

kq

v2
k,xf

2
k,k+qDq,νnGk+q,ωn+νn (Gk,ωn+Ωn +Gk,ωn−Ωn)

− λ2T 2

Ω2
n

∑

νnωn

∑

kq

v2
k,xf

2
k,k+qDq,νnGk+q,ωn+νnGk,ωn .

(G3)

The term on the second line does not contribute to σ′ (Ω), since following analytic continuation, it is the real part of
the retarded response function. Focusing on the first term, by a suitable change of variables, the dependence on the
external frequency can be shifted entirely into the nematic propagator:

GDOS
JJ (iΩn) = −λ

2T

Ω2
n

∑

νnωn

∑

kq

v2
k,x

∑

ζ=±1

f2
k,k+ζqDq,νn+ΩnR (k,k + ζq, iζνn) (G4)

Here, as before R (k,k + q, iνn) ≡ −T∑ωn
Gk+q,ωn+νnGk,ωn .

The MT term (c) can be expressed as:

GMT
JJ (iΩn) = −λ2T 2

∑

νnωn

∑

kk′q

vk,xvk′,xf
2
k,k′Dq,νn

×Gk,ωnGk+q,ωn+ΩnGk′,ωn+νn+ΩnGk′,ωn+νn

(G5)

Following similar procedure as above, the MT contribution can be reduced to:

GMT
JJ (iΩn) =

λ2T

Ω2
n

∑

kk′

vk,xvk′,x

∑

qνn

Dq,νn+Ωn

∑

ζ=±1

δk′−k,ζqf
2
k,k+ζqR (k,k + ζq, iζνn) (G6)

Eqs. (G4) and (G6) share a similar structure. The combination gives:

GDOS+MT
JJ (iΩn) =

λ2T

Ω2
n

∑

kk′

vk,xvk′,x

∑

qνn

Dq,νn+Ωn

×
∑

ζ=±1

(δk′−k,ζq − δkk′) f2
k,k+ζqR (k,k + ζq, iζνn) .

(G7)

The AL contribution (d,e) can be expressed as:

GAL
JJ (iΩn) = λ4T

∑

q,νn

Dq,νnDq,νn+Ωn

× T
∑

kωn

vk,xGk,ωn−ΩnGk,ωnGk+q,ωn+νn

× T
∑

k′ω′
n

vk′,x
(
Gk′,ω′

n−ΩnGk′,ω′
n
Gk′+q,ω′

n+νn +Gk′,ω′
n+ΩnGk′,ω′

n
Gk′−q,ω′

n−νn
)
.

(G8)
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∑ Pi = ∑ Pf

∑ vi ≠ ∑ vf

FIG. 12. Sketch of a two-electron scattering process for compensated metal. Blue Fermi pockets are electron-like and red Fermi
pocket is hole-like. The purple (green) arrows label the Fermi velocities in the initial (final) states. Such a process flips the
direction of electrical current from upward to downward.

Here the terms on the second and third lines represent the fermionic triangle. Similarly, it can be reduced to:

GAL
JJ (iΩn) = −λ

4T

Ω2
n

∑

kk′

vk,xvk′,x

∑

q,νn

Dq,νnDq,νn+Ωn

× f2
k,k+q [R (k,k + q, iνn)−R (k,k + q, iνn + iΩn)]

×
∑

ζ′=±1

f2
k′,k′+ζ′q [R (k′,k′ + ζ ′q, iζ ′νn)−R (k′,k′ + ζ ′q, iζ ′νn + iζ ′Ωn)] .

(G9)

Comparing Eqs. (G7) and (G9) with our class I and class II diagrams for the memory matrix in Eqs (A23), we see
that DOS+MT correspond to class I diagram, and AL correspond to class II diagram. Specifically,

GDOS+MT
JJ (iΩn) =

1

Ω2
n

∑

kk′

vk,xM
(1)
kk′ (iΩn) vk′,x

GAL
JJ (iΩn) =

1

Ω2
n

∑

kk′

vk,xM
(2)
kk′ (iΩn) vk′,x

(G10)

We note, however, that σ(iΩn) computed to lowest order in perturbation theory is equivalent to our memory matrix
approach only at the high frequency limit. This is seen by expanding Eq. (A24) to leading order in the memory
matrix:

σ (iΩn) ≈ 1

Ωn

(
χJxkχ

−1
kk′χk′Jx

)
− 1

Ω2
n

χJxkχ
−1
kk1

Mk1k2χ
−1
k1k′χk′Jx

≈ 1

Ωn

∑

k

v2
k,x

∂nF
∂εk

− 1

Ω2
n

∑

kk′

vk,xMkk′(iΩn)vk′,x

(G11)

Repeated indices are summed over. In the second step we made use of J =
∑

k vkc
†
kck, and χkk′ = δkk′ (−∂εknF ).

In the dc limit, σ′(Ω → 0) ∝ M−1, which cannot be obtained perturbatively without resumming an infinite set of
diagrams.

Appendix H: Totally compensated metal

In a general band structure, the momentum and the current operators are not identical, and therefore electron-
electron collisions can change the total current even if they conserve momentum. However, since the total electrical
current has a finite overlap with the total momentum, meaning that the thermodynamic susceptibility χJP 6= 0, the
dc resistivity is still zero as long as momentum is conserved, because then the current cannot relax to zero.

It is well-known, however, that this is not the case for a totally compensated metal, where the densities of electron
and hole-like charge carriers are equal. This is because in a compensated metal, χJP = 0. Below, we derive this
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result for completeness, first for non-interacting electrons and then a general interacting model. , As a result, in a
compensated metal, the dc resistivity is non-zero even if momentum is perfectly conserved.

1. Non-interacting electrons

We consider a system with i = 1, . . . , l Fermi sheets. The current operator is given by J = −e∑ik vikc
†
ikcik,

where vik = ∇kεik, and εik is the dispersion relation of the ith sheet, while the momentum operator is given by

P =
∑
ik kc

†
ikcik. In the free electron limit, the thermodynamic susceptibility: χJP =

´ β
0

dτ〈J (τ) ·P(0)〉 is given by:

χJP = e
∑

ik

k · vikT
∑

iωn

G2
0i (iωn, εik) (H1)

Summing over Matsubara frequency gives ∂nF (εik)
∂εik

. At temperatures much smaller than the Fermi energy of any of

the Fermi sheets, we may approximate ∂nF (εik)
∂εik

≈ −δ(εk). Then we have

χJP = −eL2
∑

i

ˆ
d2k

(2π)
2k · vikδ(εik) = − eL2

(2π)
2

∑

i

˛
FS

dkk · v̂ik. (H2)

Here, L2 is the total area of the system. Note that
¸
FS

dkk · v̂ik is the area of the ith sheet in momentum space,
with a positive sign if vik is pointing outward (electron-like), and a negative sign if vik is pointing inward (hole-like).
Thus, by Eq. (H2), χJP is proportional to the total area of all the Fermi pockets, each weighted with a sign that
corresponds to the type of carriers. In a compensated metal, this is zero by definition, and hence χJP = 0.

2. Interacting compensated metal

We now derive this result in the presence of arbitrary interactions. We consider a general first-quantized Hamiltonian
of the form

H =
∑

j

εj (−i∇j + qjA) + V ({rj}) (H3)

where εj(k) is the dispersion relation of the jth particle, and V ({rj}) is an arbitrary interaction potential, assumed
to be translationally invariant. Here, we have allowed for different types of carriers with different charges qj . We
would like to compute the overlap between the momentum and current operators:

χJP =

ˆ β

0

dτ

〈
P(τ) ·

(
∂H

∂A

)

A=0

〉
(H4)

where A is spatially uniform. Since momentum is conserved, we can replace P(τ) = P(0) = P. We write χJP as

χJP =
1

T

1

Z
Tr

[
e−βH(A)

(
∂H

∂A

)

A=0

·P
]

= − 1

T

1

Z

{
∂

∂A
· Tr

[
e−βH(A)P

]}

A=0

= − 1

T

1

Z





∂

∂A
· Tr


e−βH(A=0)(P−

∑

j

qjA)





 =

∑

j

qj

(H5)

where in the last line, we have performed a gauge transformation that shifts −i∇j → −i∇j− qjA, and hence removes
the A dependence from H77. In particular, if

∑
j qj = 0, i.e., in a totally compensated metal, then χJP = 0. .

Appendix I: Effect of the form factor and cold spots in compensated metal

In this Appendix, we derive the we derive the asymptotic behavior of ρ(T ) for a clean, compensated metal discussed
in Sec. IV C. As indicated in Fig. 7, the results depend qualitatively on the configuration of “cold spots” on the
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different Fermi sheets. Using a variational ansatz for the non-distribution function, we show that one can readily
recover the different low-temperature exponents obtained numerically.

We use Eqs. (F6,F7) to write the dc resistivity as:

ρ(T ) =
ΦTMΦ

e2(ΦTχVx)2
, (I1)

where, as before, we treat Φ as a vector in momentum, Fermi sheet, and flavor space. The computation of the
resistivity can be treated as a minimization problem: Φ that satisfies Eq. (F6) also minimizes the functional on
the right hand side of Eq. (I1)78. Hence, we can use Eq. (I1) to bound the resistivity from above, by inserting
a variational ansatz for Φ. Crucially, for the ansatz we use below, the denominator of Eq. (I1) will be essentially
temperature independent. Hence, to find the temperature dependence of ρ(T ), we need to compute the numerator of
(I1) with our variational ansatz for Φ.

From Eq. (E8), we observe that

ρ (T ) ∝λ2
∑

ij;kk′

Vk′−kf
2
i,k,k′δ (εik) δ (εik′)

×
[
δij (Φik − Φik′)

2 − γjk′−k
γk′−k

(Φik − Φik′) (Φjk − Φjk′)

] (I2)

where i, j are band labels, and we have replaced hink with Φiθk , and replaced din,kk′ with Φik−Φik′ . By symmetry,
Φik = −Φi,−k. For concreteness, it is useful to consider a simple model with two circular Fermi pockets with opposite
Fermi velocities; we will comment about the generalization to more generic situations below. In the two-pocket model,
since the Fermi velocities of the two pockets are opposite, Φ1k = −Φ2k. Carrying out the summation over band as
well as performing momentum integration along the direction perpendicular to the Fermi surface, we get:

ρ (T ) ∝k
2
Fλ

2

v2
F

‹
θθ′

(Φθ − Φθ′)
2
Vk′−k(T )

f2
1k,k′f2

2k,k′

f2
1k,k′ + f2

2k,k′
(I3)

Here, as before, Vq(T ) = F (T/ωq)/γq, where ωq = rq/γq, |k− k′| = 2kF sin | θ−θ′2 |, and F (x) =
1
x

´ +∞
−∞

du
π

u2

1+u2 sinh−2
(
u
2x

)
. The asymptotic behavior of F (x) is: for x � 1, F (x) ∝ x2; whereas for x � 1,

F (x) ∝ x.
Equation (I3) forms the basis for carrying out scaling analysis. We analyze cases where either there are no cold

spots on either pocket, a case with cold spots on both pockets, and a case where one pocket has cold spots and the
other does not.

1. Absence of cold spots on either Fermi surface

In this case, we assume for simplicity that f1 = f2 = 1. Since our the problem is rotationally invariant, the angular
distribution function for an electric field in the x direction is Φθ = cos θ The dominant contribution to resistivity is
due to small angle scattering. We define relative angle α ≡ |θ − θ′|, and the integrand of Eq. (I3) for α� 1:

ρ (T ) ∝
ˆ θ0

0

dαα3F

(
θT
α3

)
(I4)

Here θ0 ∼ 1 is an upper cutoff. We defined θT ≡ T/ΩL to be a dimensionless temperature.
The integral is convergent both for α → 0 and α → ∞, due to the asymptotic behavior of the scaling function

F discussed above. Therefore, we can rescale α̃ ≡ α/θ
1/3
T , and extend the upper cutoff to infinity, resulting in

ρ(T ) ∝ θ4/3
T ∼ T 4/3.

2. Cold spots on both Fermi surfaces

As shown in Figs. 8(b) and (c), when cold spots are present, Φθ deviates strongly from cos θ. In particular, Φθ
becomes nearly constant between each pair of cold spots. This motivates us to consider the following variational
ansatz for Φθ:
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Φθ ≈





1 θ ∈
(
−π4 , π4

)
,

−1 θ ∈
(

3π
4 ,

5π
4

)
,

0 elsewhere.

(I5)

The contribution to Eq. (I3) then comes purely from scattering processes relating different angular regions. Let us
consider the vicinity of the cold spot at θ = π

4 . Near the cold spot, we get:

ρ (T ) ∝
ˆ θ0

0

αdα

ˆ α

0

dϕF

(
θTϕ

2

α3

)
. (I6)

Here we defined ϕ ≡
∣∣∣ θ+θ′2 − π

4

∣∣∣ and α ≡ |θ − θ′|. Compared to the case when cold spots are absent, the scaling

properties are not only determined the relative angle α between the momentum states, but also the average angle ϕ
with respect to the location of the cold spot. To extract the scaling of the resisitivity with T , we split the integration
domain into two regions:

1. θT < α < θ0: Since in this regime the argument of F in the integrand is smaller than unity, we estimate the
integral by replacing F (x) by its small x behavior: F ∼ x2. The contribution of this regime is then estimated

as ∆ρ2 ∼
´ θ0

0
αdα

´ α
0

dϕ
(
θTϕ

2α−3
)2 ∼ θ0θ

2
T . Notice that this contribution arises from large angle scattering,

and hence it is proportional to θ0. This justifies considering α as much larger than θT .

2. 0 < α < θT : in this regime, we perform a change of variables as follows: α = α̃/θT , ϕ = ϕ̃/θT . The integral

becomes ∆ρ2 ∼ θ3
T

´ 1

0
α̃dα̃

´ α̃
0

dϕ̃F
(
ϕ̃2α̃−3

)
∼ θ3

T . This contribution is subleading compared to ∆ρ1.

As a result, at low temperatures and when the nematic cold spots are present on both Fermi surfaces, ρ(T ) ∝ T 2 due
to scattering off non-critical nematic fluctuations carrying large momenta.

3. Cold spots on part of the Fermi surfaces

We consider a system with cold spots on the first Fermi sheet but not on the second. In this case, we may replace
f2 = 1. For q pointing near the direction of the cold spots, the Landau damping coefficient γq ≈ γ2,q, and we can
neglect its angular dependence. We use the same variational ansatz as for case B [Eq. (I5)]. Again expanding near
θ (θ′) ≈ π

4 , we find that

ρ(T ) ∝
ˆ θ0

0

αdα

ˆ α

0

dϕϕ2F

(
θT
α3

)
, (I7)

where the factor of ϕ2 comes from f1 in Eq. (I3). As a result, ρ(T ) ∼
´ θ0

0
αdα

´ α
0

dϕϕ2F
(
θT
α3

)
∼ θ

5/3
T . In this case,

the resistivity comes mostly from small-angle scattering in the vicinity of θ (θ′) ≈ π
4 .

We comment on the generalization for the more generic case with more two pockets, and where the shape of the
pockets is non-circular. In this case, we use a variational ansatz where Φ is of the form (I5) on the pockets with cold
spots, and zero on the pockets where cold spots are absent. Evalutaing Eq. (I2) along the same lines as above gives

again ρ(T ) ∼ θ
5/3
T ∼ T 5/3, as in our two-pocket toy model. It is worth noting that this is an upper bound on the

resistivity, and it only provides a lower bound on the resistivity exponent at low temperature. The numerical results
for the two-pocket case [Fig. 6(b)] suggest the exponent is indeed 5/3.

Appendix J: Numerical construction of the memory matrix

In this section we provide details on the construction of the memory matrix in the dc limit, as well as further
numerical results.

We always work in the limit that temperature is much smaller than the Fermi energy. This allows us to project
all scattering processes onto the Fermi surface, and perform integration over the momentum direction perpendicular
to the Fermi surface. In practice, we use expressions in Eqs. (C6) and (C19) to construct the radially-integrated
memory matrix. For a generic multi-Fermi surface system,

Miθ,jθ′ =

ˆ
dki,⊥dk′j,⊥

(2π)
4 Mik,jk′ (J1)
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FIG. 13. Eigenspectrum of the memory matrix Mθ,θ′ for a single Fermi surface when only quantum critical scattering is
considered (black), when umklapp scattering is included (red), and when quenched random impurity is included (blue). In this
calculation, we used the dispersion εk = −2t (cos kx + cos ky) − 4t′ cos kx cos ky − µ , with t = 1, t′ = −0.3 and µ = −1. The
nematic coupling strength is λ2 ≈ 2.62εF , and impurity strength is gimp ≈ 0.02εF . The spectrum is obtained at temperature
T ≈ 0.04εF . We used 200 points to uniformly discretize the Fermi surface.

and the dc conductivity is calculated as

σ =
e2

~

ˆ dki,‖dk′j,‖

(2π)
4 vikM

−1
iθ,jθ′vjk′ (J2)

Here vik is the Fermi velocity of the ith band, and θ is the angle of k with respect to the x direction. dki,‖ = kiF (θ)dθ.
The off-diagonal elements (θ 6= θ′) of the memory matrix are constructed from Eqs. (E3) by solving for the condition

that all participating momentum states are on the Fermi surface. For class I diagram, the following expression is used:

M
(1)
iθ,jθ′ = −δij

λ2

8π3

f2
i,k,k′Vk′−k
vikvik′

(J3)

where on the right hand side both k and k′ are taken to be on the Fermi surface. Class II diagrams are constructed
using:

M
(2,+)
iθ,jθ′ = − λ4

32π4

∑

q=qc

Vq
γq
f2
i,k,k+qf

2
j,k′,k′+q

1

vikvjk′

1

|vik+q × vjk′+q|
,

M
(2,−)
iθ,jθ′ =

λ4

32π4

∑

q=qc

Vq
γq
f2
i,k,k+qf

2
j,k′,k′−q

1

vikvjk′

1

|vik+q × vjk′−q|

(J4)

Here all four momentum states k,k′,k + qc and k′ ± qc are on the Fermi surface. Note that the head-on collisions
(namely when k′ = −k) need to be treated differently, as in this case, there is a one-dimensional manifold of
qc satisfying the momentum-energy conservation constraints. Specifically, we incoporate these processes using the
following expression:

M
(2)
iθ,i(θ+π) =

ˆ
dk′i,‖M

(2,+)
iθ,iθ′

Finally, the diagonal elements of the memory matrix are constructed from number conservation, namely,

Miθ,iθ =
∑

j

ˆ
dk′j,‖Miθ,jθ′

In numerical calculations, we discretize the angle along the Fermi surface. The number of points is usually taken
to be 500. However, to extract proper scaling behavior at the lowest temperatures, we checked the convergence of the
results for up to 2000 points.
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In Figure 13, we illustrate the properties of the eigenvalues of the memory matrix for a single Fermi surface. We
present the case when only quantum critical scattering is present, as well as when current-relaxing mechanisms such
as impurity and umklapp processes are incorporated.

In the absence of impurity or umklapp, there is a large number of zero modes, corresponding to the conservation
of total electron number as well as the conservation of all odd-parity modes. This is expected since we are projecting
scattering processes onto the Fermi surface. When either impurity or umklapp scattering is added, all odd-parity
modes (including momentum) are lifted from zero, and only total number is conserved. However, the way these zero
modes get lifted is different depending on the mechanism. In the case of impurity scattering, all odd-parity modes
gain a finite decay rate ∼ g2

impνF . However when umklapp scattering is dominant, the odd-parity modes are smoothly
lifted from 0, and form a continuous spectrum.
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