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Non-local order parameters in space-time are proposed to characterize the unconventional orbital-
selective conducting state in fulleride superconductors, called the Jahn-Teller metal. In previous
works, it has been argued that this state can be interpreted as a spontaneous orbital-selective Mott
state, in which the electrons in two of the three t1u molecular orbitals are localized, while those
in the third one are metallic. Here, based on the realistic band structure for fullerides, we provide
a systematic study of nonlocal order parameters and characterize the Jahn-Teller metal, for which
there exists no one-body local order parameter in contrast to conventional orderings. It is shown
that the Mottness, or integer filling nature for each orbital due to strong correlation effects, is a
relevant feature of the present orbital order. The local orbital moment thus vanishes and the static
distortion associated with a conventional orbital moment is absent. Transport characteristics are
also investigated, and it is found that the dimensionality is effectively reduced from three to two at
low energies, while the cubic nature is recovered at high energies. This accounts for the high upper
critical field observed in the superconducting state of the fcc fullerides inside the Jahn-Teller metal
regime.

I. INTRODUCTION

Unconventional superconducting states are found in
a broad range of materials with p, d, or f electrons,
and the exploration of the complex physical properties of
these compounds is a central topic in condensed matter
physics. Fullerene-based superconductors1–5, which ex-
hibit a superconducting dome in the vicinity of a Mott in-
sulating phase, are an interesting example6–11. In A3C60,
three electrons are doped onto each fullerene molecule
from intercalated alkaline metals denoted by A12. In
the metallic compounds, the t1u orbitals form three half-
filled narrow bands, and the electronic correlations are
strong13. Even though the symmetry of the pairing state
is s-wave, the superconductivity is different from that of
conventional BCS superconductors10,14. An important
ingredient in the superconducting mechanism is an effec-
tively sign-reversed Hund’s coupling15,16. This antiferro-
magnetic Hund’s coupling favors the low-spin (S = 1/2)
state rather than the high-spin (S = 3/2) state, which is
favored by the usual Hund’s rule coupling. The low-spin
state has doubly occupied orbitals, which can act as a
seed for superconductivity14,17–19.

Recent experiments have revealed the existence of
a highly anomalous metallic state near the Mott
transition20–23. Once the electrons are localized in the
Mott phase, the electron-phonon coupling leads to a de-
formation of the fullerene molecule, which has been de-
tected by IR spectroscopy in the kHz frequency range.
On the other hand, in the conventional metallic regime,
the molecules exhibit a nearly spherical shape. In the
unconventional metallic regime close to the Mott phase,
called the Jahn-Teller metal (JTM)23, a deformation of

the fullerene molecules has been detected. Furthermore,
recent experiments have also been performed under a
magnetic field24 and a very large upper critical field
reaching 90 T has been identified in the superconduct-
ing region at temperatures within the JTM regime.

In order to clarify the microscopic origin of the JTM,
the three-orbital Hubbard model has been investigated
using dynamical mean-field theory (DMFT)25. This
study proposed that the Jahn-Teller metal state may
be interpreted as a spontaneous orbital-selective Mott
(SOSM) state, in which two of the three t1u orbitals
are spontaneously selected to become Mott insulating,
while the third one stays metallic, explaining the ba-
sic properties of the JTM25,26. Figure 1 schematically
illustrates the SOSM state for fcc fullerides. In the
figure, intra-orbital electron pairs are formed in the x
and y orbitals, which pair-hop (with a transition rate
Jpair-hop/~) to the other orbitals. These pairs are spa-
tially localized, which results in a Mott insulator. Dou-
bly occupied orbitals are favored by the antiferromag-
netic Hund’s coupling originating from the coupling to
Jahn-Teller anisotropic phonon modes15,27. The remain-
ing z orbital is metallic, so that the resulting state is a
SOSM state. We note that conventional orbital-selective
Mott states are realized in systems with an originally bro-
ken orbital symmetry, while here it occurs spontaneously
in a system with three degenerate orbitals. Of course,
the x or y orbitals could equally well be selected as the
metallic orbital, since the three orbitals are degenerate
in a cubic structure. Utilizing this degeneracy, it has
furthermore been proposed that the ordered state can
be switched on the electronic timescale by electric field
pulses28. The orbital ordering has also been discussed in
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FIG. 1: Schematic illustration of the SOSM state in the fcc
fullerides A3C60. Three t1u orbitals are schematically drawn
for two fullerene molecules. The orange colored atoms repre-
sent the alkali metal A. A part of this figure is reproduced
from Ref. 33.

a two-dimensional system29 and in the context of non-
equilibrium superconductivity30,31.

The first task in the discussion of spontaneous sym-
metry breaking is to identify order parameters which
are zero outside the ordered state. Several order pa-
rameters have been proposed to characterize the SOSM
state25, such as the orbital-dependent kinetic energy or
the orbital-dependent double occupancy32. We have also
characterized the ordered state by an odd-time depen-
dent orbital moment. However, the reason why these or-
der parameters coexist is still not clear. Furthermore, in
the previous studies we considered simple particle-hole
symmetric conduction bands and we do not know how
this artificial choice affects the values of the order pa-
rameters. Therefore, a systematic understanding of the
order parameters of the SOSM state is still lacking.

Here, based on the realistic band structure for fulleride
superconductors, we show that the recently proposed
SOSM state is characterized by a nonlocal order parame-
ter and can be regarded as an unconventional orbital or-
dering. The physics behind this ordering is Mottness34,
which leads to a localized character of the electrons and
an integer filling per site. As a consequence, as far as lo-
cal quantities are concerned, the one-body order parame-
ters vanish and the orbital-dependent two-body quantity
known as the double occupancy becomes an order param-
eter in the SOSM state25. Thus the presence of Mottness
distinguishes the JTM case from the previously proposed
nonlocal order parameters35–39.

In the present study, we focus on spatiotemporally non-
local single-particle quantities, which are usually more
easily measurable than many-body quantities through,
e.g., transport measurements, while also being easily
computable. Building on the previous DMFT results25,
we characterize the SOSM state based on nonlocal or-
der parameters, and also investigate the characteristic

transport properties using the Boltzmann equation and
through the optical conductivity. Our analysis thus ex-
tends the concepts and theoretical arguments related to
unconventional orders to a more realistic and practical
level that can be directly connected to real materials.
This paper is organized as follows. In the next section,

we first review the nonlocal order parameters previously
proposed, to clarify the novel aspect of this work. We
introduce the model that we use in Sec. III. In Sec. IV,
we analyze the order parameters, excitation spectrum,
and static/dynamical transport coefficients. We discuss
in Sec. V several aspects of the unconventional diag-
onal orders, and summarize the results in Sec. VI. In
Appendix A, the symmetry properties are summarized.
The additional data for the frequency-dependent orbital
moment is shown in Appendix B.

II. OVERVIEW ON NONLOCAL ORDER

PARAMETERS

Order parameters, which characterize spontaneous
symmetry breaking, can generally be expressed in terms
of the Green functions

Mαα′(Ri,Rj , t− t′) = δ〈T c†α(Ri, t)cα′(Rj , t
′)〉, (1)

where Ri,Rj are the spatial coordinates of lattice sites
and α, α′ are flavor (spin/orbital) indices. The symbol
δ on the right-hand side represents the deviation from
the scalar part which exist without symmetry break-
ing, and T is the time ordering operator. The time
dependence enters through the Heisenberg picture as
c(t) = eiH tce−iH t and we note that Eq. (1) is a func-
tion of relative time only if we focus on the equilibrium
state. The flavor dependence of Mαα′ characterizes the
symmetry breaking of the internal degrees of freedom.
In the case of spins, the simplest examples are the Pauli
matrices M ∝ σ.
For conventional diagonal orders such as magnetic,

charge and orbital orderings, the primary order pa-
rameters are considered to be local both in space and
time. The corresponding local quantity can be written
as Mαα′(Ri,Ri, 0), and its Fourier transform is given by

Mαα′(Q) =
1

N

∑

i

Mαα′(Ri,Ri, 0) e
−iQ·Ri, (2)

where N is the total number of sites. Here only the spa-
tial modulation of this local quantity and its flavor struc-
ture matter, and the time-dependence does not necessar-
ily enter (locality in time). On the other hand, there also
exists the possibility that the order parameter is nonlocal
in space or time. We refer to this case as unconventional
diagonal order, following the terminology for supercon-
ductivity.
With the non-locality kept, the single-particle correla-

tion functions (1) can be transformed using Fourier com-
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TABLE I: Previously proposed electronic orderings with nonlocal order parameters in correlated systems. All the listed order
parameters are zero above the transition temperature, i.e. they are associated with a spontaneous symmetry breaking. The
components with r = 0 and t = 0 correspond to a local quantity in space and time, respectively.

Diagonal orders Examples of order parameters Offdiagonal-order analog

Pomeranchuk instability35,40,41 / bond-order wave36 M(k,Q, t = 0) ∝ kµ, kµkν , cos kµ anisotropic pairing

spin nematic37,39 M(k,Q, t = 0) ∝ kµkνσ
λ, kµσ

ν spin-triplet pairing

diagonal odd-frequency order25,38 M(r = 0,Q, ω) ∝ σω odd-frequency pairing

ponents as

Mαα′(k,Q, ω) =
1

N

∑

ij

∫

dt Mαα′(Ri,Rj , t)

× e−ik·(Ri−Rj) e−iQ·(Ri+Rj)/2 eiωt, (3)

where k and Q are wave vectors originating from the
Fourier transform with respect to relative and center-of-
mass spatial coordinates, respectively.
The historically first example of a nonlocal order pa-

rameter is the Pomeranchuk instability, which results in
a spontaneous deformation of the Fermi surface35,40,41.
This mechanism is based on a weak-coupling picture with
well-defined Fermi surfaces, and the order parameter de-
scribing the symmetry lowering is k-dependent and there-
fore nonlocal. A tight-binding analog of this effect has
also been proposed and is called the bond-order wave36.
If the spin-symmetry breaking is considered at the same
time, and a d-wave like k-space structure is assumed,
the resulting state is called “spin nematic”37. For exam-
ple, M(k,Q, t = 0) ∝ d(k) · σ with d(k) ∝ (kykz, 0, 0)
for small wave vectors and Q 6= 0 a center-of-mass mo-
mentum to break the translational symmetry. A p-wave
structure in M has also been proposed recently39, with
the specific form M(k, 0, t = 0) ∝ kµσ

ν and Q = 0.
These order parameters can be classified based on the
point-group symmetry43. In terms of nonlocality of the
order parameter, these concepts are clearly related to un-
conventional superconductivity with p- and d-wave pair-
ings. Pair density waves have also been discussed44–46,
but their properties are associated with the local center-
of-mass coordinates and are not directly related to the
nonlocality of the order parameters.
Concerning time-dependent order parameters, Bal-

atsky and Abrahams considered time-dependent spin cor-
relations in quantum spin systems, and proposed such a
quantity as an order parameter for the chiral spin ne-
matic state42. Although this order is realized in spin
systems and is beyond the scope of this paper, which
focuses on electronic orderings characterized by Eq. (3),
its electronic analogue has also been proposed in a two-
channel Kondo lattice with spontaneous channel sym-
metry breaking. The order parameter is M(r = 0,Q =
0, ω) together with the spatially nonlocal one M(εk,Q =
0, t = 0) where εk is the energy dispersion of the bare
conduction electrons38. This concept is closely related
to the odd-frequency pairings with odd-time-dependent

pair amplitudes47–50. A brief summary of the different
nonlocal order parameters is provided in Tab. I.
In the following, we discuss in detail the nonlocal order

parameter in a model for alkali-doped fullerides, where
the nonlocal orbital moments inevitably coexist with van-
ishing local orbital moments due to Mottness. We also
demonstrate that two or more nonlocal order parameters
can be induced in general.

III. MODEL

Let us consider the orbital symmetry breaking in ful-
leride superconductors. In the following, we focus on the
zero center-of-mass momentum case (Q = 0) for ordered
states. The non-interacting Hamiltonian is given by

H0 =
∑

ij

∑

γγ′

∑

σ

tγγ′(Ri −Rj)c
†
γσ(Ri)cγ′σ(Rj) (4)

=
∑

k

∑

γγ′

∑

σ

εγγ′(k)c†γσ(k)cγ′σ(k). (5)

According to Ref. 13, the hopping matrix is given by

t[r = (a2
a
20)] =







F1 F2

F2 F3

F4






, (6)

t[r = (a00)] =







F5

F6

F7






, (7)

where r = Ri−Rj is a relative space coordinate and a is
the lattice constant (see Fig. 1). The other matrices are
constructed by symmetry considerations. The parame-
ters for Rb3C60, which are considered here for simplicity,
are F1 = −1.6, F2 = −30.6, F3 = 39.2, F4 = −15.9,
F5 = −7.5, F6 = −0.8, and F7 = 1.5 in units of meV13.
Now we consider the SOSM state, where one of the

three orbitals is metallic and the other two are Mott in-
sulating with localized electrons. To qualitatively discuss
the SOSM phase, we introduce the self-energy for the
electron Green function and an orbital dependent chem-
ical potential and write

G−1
γγ′(k,Ω) = [Ω + µγ − Σγ(Ω)] δγγ′ − εγγ′(k), (8)
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where Ω is a complex frequency and we set ~ = 1. The
physical quantities on the real frequency axis ω are de-
rived by the analytic continuation Ω → ω + iη with
η = +0. The local self-energy is justified in the limit
of high dimensions as in DMFT51. We summarize the
symmetry properties in Appendix A. At sufficiently low
energies the self-energies for the SOSM state are given
by

Σx,y(Ω) =
Ũ2

Ω
, (9)

Σz(Ω) = 0, (10)

where Ũ is a constant with the dimension of energy that
is related to the orbital-selective Mott gap. The form of
the self-energy is derived from the results obtained by
DMFT in the three-orbital Hubbard model with an anti-
ferromagnetic Hund’s coupling25, and this parametriza-
tion suffices for the following discussion. In the case
without particle-hole symmetry, the self energy can have
the form Σx,y(Ω) = Ũ2/(Ω −∆). However, ∆, which is
smaller than the Mott gap, can be absorbed into a shift
of the chemical potential. The quasi-particle renormal-
ization is neglected since it only modifies the bandwidth.
Since the Mott insulating (x,y) orbitals have an even-

number of electrons, the single-particle spectrum itself
cannot distinguish a Mott insulator from a band insula-
tor. However, the origin of the gap is very different in
the two cases: the Mott insulator is characterized by a
self-energy of the form ∼ 1/Ω for small Ω, while the band
insulator results from the static one-body hybridization
between the x and y orbitals which leads to bonding
(x + y) and antibonding (x − y) orbitals. In the latter
case, the corresponding order parameter is a conventional
local orbital moment. The previous numerical calcu-
lations clearly demonstrated the frequency-dependence
of the self-energy25, consistent with the realization of a
Mott insulator.
Let us introduce a convenient expression for the above

Green function. By doubling the matrix size, the Green
function can be written as

Ĝ(k,Ω) =





(

Ω1̂ + µ̂− ε̂(k) Û

Û Ω1̂

)−1




11

, (11)

where ‘11’ means that the upper-left 3×3 matrix block is
extracted from the generalized 6×6 matrix. We have de-
fined µ̂ = diag (µx, µy, µz) and Û = diag (Ux, Uy, Uz) =

diag (Ũ , Ũ , 0). This form can be interpreted as a “hy-
bridization” of electrons with the composite particles in-
duced by strong Coulomb interactions52–55. Through di-
agonalization, the Green function can be rewritten as

Ĝ(k,Ω) = V̌ (k)1[Ω1̌− λ̌(k)]−1[V̌ −1(k)]1, (12)

where the check symbol (̌ ) represents the 6 × 6 ma-
trix. V̌ (k)1 is the upper half block of V̌ (k) and is not a
square matrix. Note that the matrix sizes of V̌ (k)1 and

[V̌ −1(k)]1 are 3 × 6 and 6 × 3, respectively. Thus the
energy dispersion for the “quasiparticles” in Mott insu-
lators are described by the eigenenergies λα(k).

The orbital-dependent potential µγ is determined in
such a way that

∑

σ

〈nγσ(Ri)〉 = 1 (13)

is satisfied for every site i and orbital γ. Here we
have introduced the local number operator nγσ(Ri) =
c†γσ(Ri)cγσ(Ri). These constraints are due to the fact
that a Mott insulator can be realized only for integer
filling, so that Eq. (13) reflects the property of Mottness.
Since the total number per site is also fixed to three, each
orbital including the metallic one must have an average
filling of one electron in the orbital selective Mott state
considered here.

Let us add a comment on the constraint for a related
orbital symmetry broken state. Recently, the existence of
another interesting spontaneously orbital-selective state
with two metallic unpaired orbitals has been revealed
at higher temperatures56. Here only one orbital is in
a paired state and this pair can hop from site to site
with the hopping energy t̃2/∆E, where t̃ is a renormal-
ized hopping and ∆E is the energy needed to break the
pair. We call this state the spontaneous orbital-selective
itinerant doublon (SOSID) state, to emphasize its phys-
ical nature, which is different from the SOSM state. In
this case the Mottness constraint is not active since all
the electrons are delocalized, and a local order parame-
ter (conventional orbital moment) can generally appear.
Thus, from the perspective of nonlocality of the order pa-
rameter, the SOSID state is qualitatively different from
the SOSM state realized at low temperatures. We finally
note that, if the system has particle-hole symmetry, the
local order parameter is zero even for the SOSID state.

IV. ANALYSIS

A. Order parameters

Since the orbital symmetry is clearly broken by the
orbital-dependent field Σγ(Ω), we consider the corre-
sponding orbital moment

M(r) =
1

N

∑

ijγγ′σ

λ8
γγ′〈c†γσ(Ri)cγ′σ(Rj)〉δ(r −Ri +Rj),

(14)

M(k) =

∫

drM(r)e−ik·r, (15)

λ8 =

√

1

3







1

1

−2






, (16)
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where the Gell-Mann matrix λ8 describes the symmetry
breaking in orbital space57. With these quantities, the lo-
cal orbital moment is obtained by taking the wave vector
summation as M(r = 0) = N−1

∑

k M(k). Its value is,
however, zero due to the Mottness constraint represented
by Eq. (13). Thus, we need to consider the nonlocal order
parameter, which distinguishes the present system from
the previously discussed conventional ones. The simplest
nonlocal quantity that describes the orbital symmetry
breaking is M(k = 0).
The k = 0 and r = 0 components have the same

symmetry with respect to k-space rotations, and hence
these two quantities can be simultaneously non-zero, as
far as symmetry is concerned. However, due to the Mot-
tness constraint, the spatially local (r = 0) component
becomes zero in the SOSM case, while the k = 0 compo-
nent can be nonzero. This Mottness constraint is distinct
from the symmetries which are usually considered to im-
pose constraints on physical quantities.
We can also consider the following nonlocal order pa-

rameter in imaginary time or the frequency domain:

M(t) =
∑

iγγ′σ

λ8
γγ′〈T c†γσ(Ri)cγ′σ(Ri, t)〉, (17)

M(Ω = iωn) =

∫ β

0

dτ M(−iτ) eiωnτ , (18)

which is now chosen as spatially local. β = 1/kBT
is the inverse temperature and ωn = (2n + 1)π/β is
the fermionic Matsubara frequency. The real-frequency
representation can be obtained by analytic continuation
Ω → ω+iη. In a similar manner to the discussion above,
the t = 0 component (local in time) vanishes due to Mot-
tness, while the frequency dependent component M(Ω)
can be finite. The simplest order parameter is the Ω = 0
component. In this case, the even-frequency orbital mo-
ment is mixed with the dominant odd-frequency moment,
which is discussed in more detail in Sec. IVB.
The short-time behavior can be characterized in an-

other way. As pointed out in Ref. 25, the short-
time t behavior is dominated by the composite order
parameters. Namely, the t-linear coefficient is given

by 〈[c†iγσ,H ]ciγσ′〉, which includes two-body quantities
originating from the commutation relation between the
fermion operator and the interaction term. Thus time-
or frequency-dependent order parameters provide an al-
ternative view of composite order parameters.
Let us comment on the particle-hole asymmetry in the

electronic band structure. In a previous study25, we have
used a particle-hole symmetric density of states (DOS)
with a semi-circular shape to mimic the electron conduc-
tion band. In this case, the moment M(k = 0) at the Γ
point also vanishes, in addition to M(r = 0) (= 0). This
is a peculiar feature of the particle-hole symmetric DOS,
which is generally absent in real materials. The same
observation applies to the frequency dependent case: the
value at ω = 0 also vanishes in the particle-hole symmet-
ric model. We have checked that in the more realistic

model considered here, there is no constraint which en-
forces M(k = 0) and M(ω = 0) (see Sec. IVB). Let us
add a further comment on the k-dependent order param-
eters: the finite orbital moment at the Γ point discussed
above may be regarded as a monopole in terms of the
multipolar expansion in k-space around the Γ point43.
This however vanishes for the particle-hole symmetric
case, and in such a situation higher-order multipoles such
as quadrupoles in k-space must be considered to charac-
terize the ordered state.
Another subtle issue is that there exist two or more

order parameters at the same time. Thus the question
arises: which of these is the primary order parameter?
The comparison of the magnitude is difficult since there
is an ambiguity in the normalization process. Instead, we
have to look at the structure of the potential that induces
the spontaneous symmetry breaking, namely the anoma-
lous self energy. In the present case, the self-energy is
local and frequency dependent (as in DMFT), and the
primary order parameter should be regarded as the odd-
frequency diagonal order parameter given in Eq. (18).
We note that this argument may change depending on the
structure of the self-energy: if the anomalous self-energy
is k-dependent, the primary order parameter would be a
spatially nonlocal order parameter.

B. Single-particle excitation spectra

Here we consider some dynamical quantities relevant
for fulleride superconductors. We define the single-
particle spectrum as

Aγ(k, ω) = −
1

π
ImGγγ(k, ω + iη), (19)

Aγ(ω) = 〈Aγ(k, ω)〉k, (20)

where 〈· · ·〉k denotes the average over k space, which re-
sults in a spatially local quantity. We also define the
quantity

M (k, ω) =
∑

γ

λ8
γγAγ(k, ω), (21)

which gives us information on the spectral decomposition
of the orbital moment.
We first show in Fig. 2(a) the band structure of the ful-

leride superconductor Rb3C60 without any interaction ef-
fects, which has been obtained by density functional the-
ory calculations13. Panels (b1–b3) plot the corresponding
orbital-resolved spectra Ax,y,z(k, ω). Since the spectral
weight is not unique, it is represented as a color map with
an appropriate broadening factor (η = 8 meV is taken
to visualize the spectra). The orbital moment spectrum
M (k, ω) is shown in Fig. 2(c). Although the orbital or-
dered moment is zero for the disordered phase considered
here, M (k, ω) can be nonzero for low-symmetry k points
other than e.g. the Γ and L points. In the following, we
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FIG. 2: (a–c) Single particle spectra for the fulleride Rb3C60 without orbital ordering. (a) bare band dispersion and (b1-b3)
orbital-resolved spectra Aγ=x,y,z(k, ω). The spectrally decomposed orbital moment M (k, ω) is plotted in (c). (d,e,f) are plots

similar to (a,b,c), but for the SOSM state. The parameter Ũ is chosen as Ũ = 0.1 eV and the broadening factor as η = 8meV.
The path in momentum space connects the points Γ(0, 0, 0) → X(0, 1, 0) → U( 1

4
, 1, 1

4
) → Γ(1, 1, 1); Γ(0, 0, 0) → L( 1

2
, 1

2
, 1

2
) →

K( 3
4
, 3

4
, 0) → W (1, 1

2
, 0) → X(1, 0, 0) where the coordinates for the symmetric points in k-space are shown with the unit π/a.

will compare these noninteracting results to those in the
SOSM state.

Figure 2(d) shows the electronic dispersion relations in
the SOSM state. The number of bands increases due to
the splitting (for two orbitals) into upper and lower Hub-
bard bands. Since it is not easy to understand the nature
of this state from the total spectral function, we also plot
orbital-resolved spectra Aγ=x,y,z(k, ω) in Figs. 2(e1–e3).
The orbitals x and y exhibit a Mott gap, while the or-
bital z is metallic. Its Fermi surface is basically consistent
with that of a system with only z orbitals, whose nonin-
teracting dispersion is plotted in Fig. 2(e4). The orbital
moment spectrum is shown in Fig. 2(f). One sees that
the insulating and metallic orbitals give contributions of
opposite sign. The finite values at Γ and along the cut
from Γ to L, which is enclosed with a green dotted line in
Figs. 2(c) and (f), clearly illustrate the orbital symmetry

breaking.

Let us now discuss the spatially local but frequency de-
pendent quantities. The DOS for each orbital is plotted
in Fig. 3, where we again compare the normal metal and
SOSM states. It follows from the comparison of panels
(a) and (b) that the spectral weight is strongly reduced at
low energy for the Mott insulating orbitals (x, y), while
it increases for the z orbital. In Fig. 3(c), we push the

Hubbard bands away by taking Ũ → ∞. This leaves only
the metallic z orbital, whose local spectral function qual-
itatively reproduces the low-energy result in Fig. 3(b).
A noteworthy feature is that the particle-hole asymme-
try seen in the normal metal is strongly modified in the
SOSM state, which features an almost particle-hole sym-
metric DOS for the z orbital near the Fermi level. Fur-
thermore, a van-Hove singularity-like structure, as ob-
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FIG. 3: Wave vector integrated orbital-dependent spectra for
(a) the normal metal and (b) the SOSM state. The spectrum
with only the z orbital considered is shown in panel (c).
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FIG. 4: Spatially-local and frequency-dependent orbital or-
dered moment on the real axis.

tained e.g. in a square lattice, emerges near the Fermi
level. We will return to this point in Sec. IVC.

Even though the value of the DOS at the Fermi level
given by

∑

γ Aγ(ω = 0) in the SOSM state remains com-
parable to that of the normal state, the system is effec-
tively reduced to a single-orbital model. In this situation
the multiorbital nature is lost, which is unfavorable for
negative-Hund’s coupling superconductivity, where the
multiorbital nature is essential for intra-orbital pairing.
This is consistent with the reduction of the supercon-
ducting transition temperature in the JTM region23.

We next discuss the spatially local but frequency de-
pendent orbital moment defined in Eq. (18). The result
on the real frequency axis is obtained by the analytic
continuation M(Ω = ω + iη). Figure 4(a) shows the real
and imaginary parts of M(ω + iη). The integration of
ImM(ω+iη) multiplied with the Fermi distribution func-
tion is proportional to the local order parameter. The

data shown in the figure are consistent with a vanishing
local order parameter. We note that, for the real part,
the integral does not become zero, but this cannot be
represented by a time-local quantity.
It is notable that the real part of M(ω+iη) is a nearly

odd function with respect to ω. In contrast, for conven-
tional orders, ReM(ω + iη) has an even-function shape,
since the symmetry-breaking anomalous self-energy has
a dominant constant contribution in the frequency do-
main. The result in Fig. 4 thus provides support for the
interpretation of the SOSM state as an “odd-frequency
orbital order.” Whereas we focus on the real frequency
axis in the main text, the odd-frequency nature can also
be seen in the imaginary frequency domain, which is dis-
cussed in Appendix B.

C. Anisotropic transport properties

1. Boltzmann transport

We now consider the transport properties of the SOSM
state. We employ the Boltzmann theory58, and calculate
the electronic current j and heat current jQ, which can
be expressed as

j = σE, (22)

jQ = κ(−∇T )/T. (23)

The transport coefficient tensors σ (electrical conductiv-
ity) and κ (thermal conductivity) are given by

σ = −e2τ
∑

ασ

〈

vkαvkα
∂f(εkα)

∂εkα

〉

k

, (24)

κ = −
τ

T

∑

ασ

〈

vkαvkα(εkα − µ)2
∂f(εkα)

∂εkα

〉

k

, (25)

where f(ε) = 1/(eε/kBT + 1) is the Fermi distribution
function. The velocity is defined as vkα = ∂εkα/∂k, and
the eigenenergies εkα with α = 1, 2, 3 are obtained by
diagonalizing εγγ′(k). A single relaxation time τ is as-
sumed. For the SOSM state, the Fermi surface is approx-
imately given by that of the z-orbital only model. Hence
we choose εkα → εzz(k) with α-summation dropped.
We have calculated the above transport coefficients in

the normal metal and SOSM state. In the normal state
they evaluate to

σ

σ0
=







11.8

11.8

11.8






,

κ

κ0
=







0.383

0.383

0.383






,

(26)

while in the SOSM state one obtains

σ

σ0
=







0.7

8.2

7.9






,

κ

κ0
=







0.023

0.261

0.257






.

(27)
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The units are given by σ0 = e2τ
~2a×1meV and κ0 = τ

T~2a×

(1meV)3 where we have explicitly written ~. It is notable
that in the SOSM case, the y and z components are much
larger than the x component. This implies the emergence
of two-dimensional transport through the spontaneous
orbital symmetry breaking in fullerides.
The above observation, emergent two-dimensionality,

is consistent with the DOS plotted in Fig 3. Namely, the
DOS has a similar shape as that of a square lattice with
a van-Hove singularity near the Fermi level. This can be
qualitatively understood by the large tight-binding pa-
rameter F3 for the z orbital, which forms a nearly square
lattice within the yz plane. The slight shift of the van
Hove singularity from zero seen in Fig. 3(b,c) is due to
the effect of small next-nearest-neighbor hoppings.
We note that the t1u molecular orbitals are sometimes

interpreted as analogs of atomic p orbitals, which in the
case of the orbital-selective metal might incorrectly sug-
gest a one-dimensional character, since the atomic p or-
bitals are directed along a certain direction. The two-
dimensionality of the SOSM state in the fullerene-based
materials, demonstrated above, is a characteristic behav-
ior originating from the complex shape of the molecular
orbitals.

2. Optical conductivity

The characteristic features of the frequency-dependent
orbital-symmetry breaking field can be seen in the optical
conductivity. We introduce the current density operator

j =
e

V

∑

kγγ′σ

vγγ′(k)c†kγσckγ′σ, (28)

where the velocity is defined by vγγ′(k) = ∂εγγ′(k)/∂k
and V is the volume. The dynamical current correlation
function with imaginary time/frequency is given by

Kµν(iνm) = V

∫ β

0

dτ〈jµ(τ)jν 〉e
iνmτ (29)

where νm = 2πm/β is a bosonic Matsubara frequency.
We assume that vertex corrections can be neglected,
which is justified for the local vertex functions as in
DMFT59. The analytic continuation iνm → ω + iη is
analytically performed, and the final expression reads

Kµν(ω) =
2e2

V

∑

k

∫

dω′

2πi

(

f(ω′)Tr [v̂µ(k)ĜA(k, ω′ − ω)v̂ν(k)ĜA(k, ω′)]− f(ω′)Tr [v̂µ(k)ĜR(k, ω′)v̂ν(k)ĜR(k, ω′ + ω)]

− [f(ω′ + ω)− f(ω′)]Tr [v̂µ(k)ĜA(k, ω′)v̂ν(k)ĜR(k, ω′ + ω)]
)

, (30)

where ĜA(k, ω) = Ĝ(k, ω− iη) and ĜR(k, ω) = Ĝ(k, ω+
iη) are the advanced and retarded Green functions on
the real frequency axis, respectively. In practical calcu-
lations, it is convenient to use the diagonalized form given
in Eq. (12). The complex conductivity is then calculated
as

σµν (ω) =
Kµν(ω)

iω
. (31)

Thus the frequency-dependent transport properties can
be studied through σµν(ω).
The numerical results for the real part of the op-

tical conductivity Reσ(ω) are shown in Fig. 5. We
have introduced the single-particle impurity scattering
rate Γ, which is included by the replacement Ω →
Ω + iΓsgn (ImΩ) in Eq. (8), and have taken the zero-
temperature limit. The anisotropic conductivity dis-
cussed above can be seen in Fig. 5(a): in the low-
frequency regime, the anisotropy is substantial, while it
is not pronounced at high frequencies. This behavior is
more clearly visualized by looking at the ratio of conduc-
tivities shown in Fig. 5(b). We note that the two dimen-
sionality appears only in the low-frequency regime. This

behavior results from the frequency-dependent orbital-
symmetry breaking field.
For comparison, we also show results obtained with a

frequency-independent self-energy. Here, we simply re-
place Σγ(Ω) = U2

γ/Ω → Uγ , corresponding to a static
orbital-dependent mean-field (we have chosen Ux,y =

Ũ 6= 0 and Uz = 0). The corresponding optical conduc-
tivity is shown in Fig. 5(c), and the ratio characterizing
the anisotropy in (d). In strong contrast with the SOSM
state the anisotropy is not enhanced at low frequen-
cies. Hence the frequency dependence of the symmetry-
breaking fields is clearly reflected in the optical conduc-
tivity.

V. DISCUSSION

A. Relevance to real materials

We first discuss possible implications for the interpre-
tation of experimental results on fulleride compounds.
The emergent two-dimensionality should be a character-
istic property of the JTM state, which is interpreted here
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FIG. 5: Frequency dependence of the optical conductivities σxx, σyy and σzz for (a,b) the SOSM state [Σx,y(Ω) = Ũ2/Ω,

Σz(Ω) = 0] and (c,d) the system with static mean-fields [Σx,y(Ω) = Ũ , Σz(Ω) = 0]. The damping parameter and effective

Coulomb interaction are chosen as Γ = 15.6 meV and Ũ = 0.1 eV. In (b,d), the dotted lines show the value corresponding to
the isotropic limit realized in the original cubic phase.

as the SOSM state. Indeed, recent experiments show an
enhancement of Hc2 in the superconducting state below
the JTM regime24. If the external magnetic field is ap-
plied along the emergent two-dimensional plane, the or-
bital motion by the Lorentz force is not effective, which
results in higher Hc2 values. The use of polycrystals
in the experiments implies that the above situation in-
evitably occurs, so that our finding accounts for the en-
hancement of Hc2 in the JTM region.

Even single crystals should exhibit a multidomain na-
ture due to entropic effects, so that an enhancement of
Hc2 can still be expected. To align the domains in the
SOSM state, it is necessary to apply an uniaxial stress in
the single crystal or to produce a small enough sample
with length scale below the domain size. In this case, a
characteristic magnetic field angle dependence should be
observed reflecting the emergent two-dimensionality.

We also note that in real materials, the appearance
of the JTM is observed as a crossover, while the theory
predicts a transition with spontaneous symmetry break-
ing. One possibility is that the order parameter of the
SOSM state is an unconventional one and the entropy re-
lease might be small, resulting in a small anomaly at the
transition point. Another possibility is that with multi-
domains in polycrystals, an uni-axial pressure is effec-
tively applied and turns the transition into a crossover.
We should also consider the possibility of a short-range
ordered state, in which the SOSM characteristics can
only be observed over a certain finite time or length
scale. In principle, this can be theoretically investigated
by including spatial correlations. Since numerical sim-
ulations based on DMFT and its extensions are limited
to small-size clusters, spatial correlations are difficult to
incorporate. Therefore, a Ginzburg-Landau (GL) type

analysis would be a better choice. A dynamically ex-
tended GL analysis would also be interesting for an ef-
fective description of the nonequilibrium dynamics in-
cluding time-dependent changes in collective excitations
and the switching of the order parameters28. A study
of the physics in the presence of disorder and inhomo-
geneity would provide important information for a more
direct connection with experiments.

B. Analogy to multi-channel Kondo lattices

In this paper we have discussed the effect of the
frequency-dependent orbital symmetry breaking field on
the electronic structure of fullerides, where the originally
equivalent orbitals split into metallic and insulating ones
spontaneously. Here we point out that these behaviors
are analogous to the ordered state of the multi-channel
Kondo lattice38,61,62. In the two-channel Kondo lattice,
the local interaction part of the Hamiltonian is given by63

Hint =
J

2

∑

α=1,2

∑

σ,σ′=↑,↓

S · c†ασσσσ′cασ′ , (32)

where α = 1, 2 is the channel (orbital) and σ =↑, ↓ is
the spin. The localized spin-1/2 operator is written as
S. The Hamiltonian has a SU(2) symmetry in the chan-
nel space, which is spontaneously broken to result in a
channel-inequivalent state at low temperatures, where
the α = 1 subsystem forms Kondo singlets with the lo-
calized spins, while the α = 2 subsystem is effectively
decoupled from the localized spins38. Hence, the α = 1
subsystem plus localized spins becomes a Kondo insula-
tor, while the α = 2 subsystem behaves as nearly free
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FIG. 6: One-dimensional schematic illustrations for (Left) or-
bital ordering (SOSM) in the half-filled three-orbital Hubbard
model with antiferromagnetic Hund’s coupling and (Right)
channel ordering in the half-filled two-channel Kondo lattice.
The bottom panel shows the single-particle excitation energy
having both metallic and insulating bands.

electrons. The above picture is summarized in Fig. 6.
It is known that the Kondo insulator can be intuitively
interpreted as a hybridization of the electron with a com-
posite fermion involving the localized spin62,64. Namely,
the Kondo interaction for α = 1 can be written as

Hint ≃
J

4

∑

σ

(c†1σFσ + F †
σc1σ), (33)

where Fσ =
∑

σ′ S · σσσ′c1σ′ . Indeed, the Heisenberg
equation of motion in the strong-coupling limit becomes
i∂tc1σ = [c1σ,Hint] =

J
2Fσ, which is consistent with the

one-body hybridization picture. We note that the inter-
action parameter J should be replaced by an effectively
renormalized one once the hybridization picture is ap-
plied.
In the present paper, on the other hand, we have con-

sidered electrons in a three-orbital Hubbard model, which
spontaneously split into one metallic orbital plus two
Mott-insulating orbitals. This insulating behavior can
also be interpreted in terms of the hybridization picture
[see also Eq. (11)], which is best visualized in the ordi-
nary single-orbital Hubbard model. Here, the interaction
part can be rewritten as

Un↑n↓ =
U

4

∑

σ

(c†σησ + η†σcσ), (34)

where nσ = c†σcσ and ησ = nσ̄cσ. This effectively ex-
plains the presence of the upper and lower Mott-Hubbard
band within the Hubbard-I approximation60 (cσ−2ησ in-
stead of ησ is more rigorous in developing the hybridiza-
tion picture53–55). Although a more detailed analysis in-
volving the multi-orbital interaction should be considered

for our Mott insulator, the basic idea of the hybridization
of the original fermion with the composite ones should be
same.

In this way, the ordered states of the multi-channel
Kondo lattice and the multi-orbital Hubbard model share
the same features: the metallic and insulating parts co-
exist (see Fig. 6). Note that the ordered states in both
models have no entropy at zero temperature and can
be a ground state (i.e., the insulating parts form spin-
singlets). The above analogy suggests a unified concept
which may be applied to strongly correlated systems with
multiple degrees of freedom. In order to establish the
connection, as the first step, it would be interesting to
compare the effective impurity Kondo problems for the
two models in the context of DMFT, which is left as a
future study.

VI. SUMMARY

We have discussed unconventional order parameters
which are nonlocal in space or time and are relevant for
the description of the Jahn-Teller metal in fulleride su-
perconductors. The Jahn-Teller metal can be interpreted
as a spontaneous orbital-selective Mott state, which is in-
evitably characterized by a nonlocal order parameter. In
particular, we have emphasized the role of Mottness in
constraining the nature of this ordered state.

We have further explored the single-particle spectra
and transport properties, which show the emergence of
two-dimensionality in the orbital symmetry broken state.
This is consistent with the observation of a high up-
per critical field in the Jahn-Teller metal regime. The
characteristic dynamics is also found in the optical con-
ductivity, where we have revealed the frequency-selective
anisotropic transport originating from the frequency-
dependent orbital-symmetry breaking fields. We have
also pointed out the similarity between the multi-channel
Kondo lattice and the multi-orbital Hubbard model with
antiferromagnetic Hund’s coupling.

These insights should be useful for the further ex-
ploration of strongly correlated electron phenomena in
fulleride-based superconductors, and for the construction
of more general concepts for ordering phenomena in con-
densed matter physics.
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Appendix A: Effective impurity action for cubic

fullerides

Here we explain the symmetry of the fulleride super-
conductors in terms of DMFT, where the self-energy is
dynamical but spatially local. This local self-energy is de-
termined by solving the effective impurity problem with
the action

Seff =

∫ β

0

dτdτ ′
∑

γ=x,y,z

∑

σ=↑,↓

c†γσ(τ)∆(τ − τ ′)cγσ(τ
′)

+

∫ β

0

dτ

[

∑

γσ

c†γσ(τ)∂τ cγσ(τ) + Hloc(τ)

]

. (A1)

The first term represents the hybridizaiton with the self-
consistently determined effective bath, and the second
term is the impurity part which includes the local elec-
tronic degrees of freedom only. Because of the cubic
symmetry, the non-interacting part has a high symme-
try: all the six components [(γσ) = (x↑), (x↓), (y ↑), (y ↓
), (z ↑), (z ↓)] are equivalent, i.e., SU(6) symmetric. On
the other hand, the interaction term in Hloc is of the
standard Slater-Kanamori type with antiferromagnetic
Hund’s coupling. Its symmetry is SU(2)×SO(3) in spin-
orbital space25, which is identical to the symmetry of the
whole impurity system. We note that the above contin-
uous symmetry is characteristic for the DMFT approach
with effective local action, and should be regarded as an
approximation when it is applied to real materials.
In the orbital-ordered state as in the SOSM state,

the continuous SO(3) symmetry is spontaneously broken.
The type of the orbital order can be classified by using
the eight 3×3 Gell-Mann matrices (λ1-8). For a time-
reversal symmetric state, we have five choices described
by the matrices λ1,3,4,6,8 whose explicit forms are given
in the supplementary material of Ref. 25 (λ2,5,7 represent
orbital magnetism and break the time-reversal symme-
try). Due to the original SO(3) symmetry, we only have
to consider the two-dimensional plane of λ8 and λ3, which
are diagonal matrices in orbital space. The other order
parameters (λ1,4,6) can be shown to be equivalent to the
ones located in the λ8-λ3 plane. This can be checked in
the same way as showing that sx and sy are equivalent
to sz due to the SU(2) symmetry in spin space.
We denote the order parameter corresponding to the

Gell-Mann matrix λη by Tη, which can be any single-
particle quantity, e.g. a local Green function or self-
energy. Within the T8-T3 plane, there are the follow-
ing three independent components: (T8, T3) = r(0, 1),
r(1, 0), and r(−1, 0), where r > 0 is a scaling constant.
We note that (0, 1) and (0,−1) are equivalent, but (1, 0)
and (−1, 0) are not (i.e., cannot be connected by sym-

metry). Using the cubic symmetry, we can write down
the Landau free energy in the T8-T3 plane as25

F = F0 + a(T 2
8 + T 2

3 ) + bT8(T
2
8 − 3T 2

3 ) + c(T 2
8 + T 2

3 )
2,

(A2)

where the sign change of the coefficient a signals the
phase transition, and c > 0 to make the order param-
eters finite. The third-order term with b is charac-
teristic for the present case, which makes the solution
(T8, T3) = r(0, 1) unstable. Hence we have only the fol-
lowing two candidates for the most stable state, depend-
ing on the sign of b: (T8, T3) = r(1, 0) for b < 0 and
(T8, T3) = r(−1, 0) for b > 0. Indeed, our self-energy in
Eqs. (9,10) can be written by using λ8 and the identity
matrix, both of which are diagonal. Note that the above
discussion is based only on the symmetry and is valid
for cubic systems with three degenerate (molecular) or-
bitals as far as only the orbital degrees of freedom are
concerned. We also note that the symmetry is discrete
once we focus on the T8-T3 plane although the original
Hamiltonian has a continuous symmetry in orbital space.

In the main text we denote the (1, 0) state as the SOSM
state and the (−1, 0) state as the SOSID state. As dis-
cussed in Sec. III and Ref. 56, the SOSM state is more
stable at low temperatures because of the smaller entropy
and the energy gain from the pair hopping.

Appendix B: Imaginary frequency representation of

the orbital moment

The odd-frequency nature of the order parameter in
the SOSM state can be even more clearly seen in the
imaginary (Matsubara) frequency domain. Figure 7
shows the real and imaginary parts ofM(Ω = iωn), which
is the imaginary-frequency version of Fig. 4. The imagi-
nary part, which is an odd function of ωn, dominates the
real part.
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FIG. 7: Spatially-local and frequency-dependent orbital or-
dered moment on the imaginary axis.

1 A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Mur-
phy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R.

Kortan, Nature (London) 350, 600 (1991).



12

2 M.J. Rosseinsky, A.P. Ramirez, S.H. Glarum, D.W. Mur-
phy, R.C. Haddon, A.F. Hebard, T.T.M. Palstra, A.R. Ko-
rtan, S.M. Zahurak, and A.V. Makhija, Phys. Rev. Lett.
66, 2830 (1991).

3 K. Holczer, O. Klein, S. Huang, R.B. Kaner, K. Fu, R.L.
Whetten, and F. Diederich, Science 252, 1154 (1991).

4 K. Tanigaki, T.W. Ebbesen, S. Saito, J. Mizuki, J.S. Tsai,
Y. Kubo, and S. Kuroshima, Nature (London) 352, 222
(1991).

5 R.M. Fleming, A.P. Ramires, M.J. Rosseinsky, D.W. Mur-
phy, R.C. Haddon, S.M. Zahurak, and A.V. Makhija, Na-
ture (London) 352, 787 (1991).

6 A.Y. Ganin, Y. Takabayashi, Y.Z. Khimyak, S. Mar-
gadonna, A. Tamai, M.J. Rosseinsky, and K. Prassides,
Nature Materials 7, 367 (2008).

7 Y. Takabayashi, A.Y. Ganin, P. Jeglič, D. Arčon, T.
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Prassides, and D. Arčon, Chem. Sci. 5, 3008 (2014).

23 R.H. Zadik, Y. Takabayashi, G. Klupp, R.H. Colman, A.Y.
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