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We discuss an extension of higher order topological phases to include bosonic systems. We present
two spin models for a second-order topological phase protected by a global Z2 × Z2 symmetry.
One model is built from layers of an exactly solvable cluster model for a one-dimensional Z2 × Z2

topological phase, while the other is built from more conventional spin-couplings (XY or Heisenberg).
These models host gapped, symmetry-protected topological phases on their edges, and corner modes
that fall into a projective representation of the symmetry. Using Jordan-Wigner transformations we
show that our models are both related to a bilayer of free Majorana fermions that form a fermionic
second-order topological phase. We also discuss how our models can be extended to three-dimensions
to form a third-order topological phase.

I. Introduction

As is well established by now, the nontrivial topology
of the bulk band structure of topological insulators (TIs)
and superconductors (TSCs), manifests itself through the
presence of stable, gapless modes at the boundary of the
system1. Recently, this paradigm was extended to in-
clude a new class of higher-order symmetry protected
topological (HOSPT) phases2–8. An n-th order HOSPT
phase defined on a d-dimensional lattice is a system with
a gapped bulk which harbors gapped phases on its co-
dimension 1, 2, . . . , n− 1 surfaces, and gapless protected
modes realized on its (d − n)-dimensional boundaries.
The first example of a 2nd order TI was the 2d topological
quadrupole insulator (QTI) that has gapped edges in a
non-trivial symmetry-protected topological phase (SPT),
and mid-gap corner modes2. Recently many models have
appeared which host protected hinge or corner modes9–13

and at least some of them are in a higher-order symmetry
protected topological phase.

In this article we propose bosonic counterparts of the
QTI protected by a global Z2 × Z2 symmetry. We
construct two models built from spin-1/2 objects that
yield spin versions of a QTI. The first model we con-
sider is built from layering and coupling pairs of Z2×Z2

bosonic SPT chains with a cluster-model Hamiltonian.
The resulting 2d model is exactly solvable and exhibits
gapped edges which are in a 1d Z2 ×Z2 SPT phase, and
symmetry-fractionalized, gapless corner modes. The sec-
ond model we consider has a more traditional spin-spin
interaction and consists of dimerized XY (or Heisenberg)
spin interactions on a square lattice with four spin-1/2
degrees of freedom per cell. We show that this model ex-
hibits a similar higher order topological phase with dan-
gling spin-1/2’s on the corners that are shared by the
dimerized spin-1/2 SPT chains on the edges. We then
proceed to discuss how the latter model can be extended
to 3d to form a 3rd order HOSPT phase.

The paper is organized as follows: in Section II we dis-
cuss how we plan to identify the bosonic HOSPT phases
by analogy with the known fermionic cases. In Section
III we review the cluster-model Hamiltonian of a spin-1/2

Z2 × Z2 SPT phase, and then construct an exactly solv-
able 2d bosonic HOSPT model from stacking and cou-
pling the chains. We go on to exhibit the phenomenol-
ogy of this model, and compare with the fermionic QTI.
In Section IV we introduce a model with more conven-
tional spin-spin couplings and exhibit its phenomenology.
We then show how this model can be extended to three-
dimensions to form a 3rd order HOSPT. In Section V
we discuss possible generalizations of these models and
summarize our results. We include a series of appendices
that discuss some details and extra justification for the
arguments in the main article sections.

II. Criterion for Identifying a Higher Order
Quadrupole Topological Phase
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FIG. 1. (a) Illustration of the bulk quadrupole moment, edge
polarizations and corner charge (b) Illustration of bulk, edge,
and corner topological indicators used to define a 2d HOSPT.

At present there is no clear definition for a higher-order
symmetry protected topological phase in a many-body
system. The known classification tools used to identify
fermionic HOSPT phases are built upon single-particle
electronic structure, and have not been generalized to a
many-body context yet. Unfortunately, one of the fea-
tures that is most often associated to HOSPT phases,
low-energy modes on higher co-dimension surfaces are
neither necessary, nor sufficient indicators of higher-order
topology. For example, 2d HOSPT models often have
topological modes on the corners of a sample, but there
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are other 2d topological phases with corner modes that
do not exhibit higher order structure9,11, and there are
HOSPTs where the existence of corner modes depends
on the details of the crystal termination2.

Nevertheless, we can make progress by making an anal-
ogy to a known bulk characterization of quadrupolar
fermionic HOSPT models. Consider the 2d fermionic
QTI with the quadrupole moment qxy 6= 0. The phys-
ical consequence of a bulk quadrupole moment is not an
edge polarization or a corner charge, instead it is the re-
lationship between the edge polarizations and the corner
charge. If we take a square shaped sample and consider
the charge on one of the corners, then the edge polariza-
tions of the edges that intersect at that corner and the
corner charge itself (all of which are quantized to take
values of either 0 or 1/2) satisfy (see Fig. 1(a))

Qcorner − P edge1 − P edge2 = −qxy. (1)

This relationship is crucial as it eliminates the contri-
butions of any surface effects (e.g., edge reconstruction,
changes in edge/corner termination) and allows one to
define the quadrupole moment in terms of the corner
and edge properties. This relation captures the physi-
cal distinction between a system with edge polarization
due to a bulk quadrupole moment and a system with
edge polarization due solely to boundary effects. In the
former case, i.e., the one of interest, the corner charge
is shared by the two edges, and in the latter case both
edges contribute independently to the corner charge.

We will use this definition in our study of bosonic
HOSPTs. The analogous quantity to the corner charge
in our systems will be the presence or absence of cor-
ner modes that form a projective representation of the
symmetry group, just as one identifies 1d SPTs by the
projective representations of their end modes. We will
only be considering Z2 × Z2 symmetries so let us indi-
cate the corner topology by the Z2 quantity χcorner. The
analogous quantity to the edge polarization will be the
presence or absence of boundary SPT chains which we
can indicate by the Z2 quantity χedge. Thus, we can de-
fine a higher-order topological indicator χbulk via (see
Fig. 1(b))

χbulk = χcorner − χedge1 − χedge2 mod 2 (2)

where χedge1,2 are the two topological indicators for the
edges that intersect at the corner with indicator χcorner.
This definition implies that one has a non-trivial 2D
HOSPT phase in three different scenarios (i) both edges
and the corner are topological, (ii) both edges are trivial
and the corner is topological, or (iii) one edge is topolog-
ical, and the other edge and the corner are trivial.

With this proposed definition of quadrupolar higher-
order topology it only remains to determine how one
should explicitly calculate χcorner and χedge given a
model. In this article we can unambiguously calculate
these quantities because our models are solvable in zero-
correlation length limits so one can clearly identify the

edge and corner degrees of freedom and make the proper
assignment of the topological indicators. Indeed, we will
find that our models fit scenario (i) above for ideal edge
terminations. For free fermion systems these quanti-
ties can be calculated even when away from such sim-
ple limits2,3, but calculating them in generic many-body
systems remains an open problem. We will not solve
this problem in this article, however we do provide nu-
merical evidence in Appendix B that our definition of a
HOSPT can be applied away from the zero-correlation
length limit by analyzing the entanglement spectrum of
the system to determine χedge similar to Ref. 14.

III. Z2 × Z2 Cluster Model Construction

Review of 1d cluster model. In Ref. 2, the authors
argued that, to generate a QTI, it was natural to start
from a pair of dipoles in each unit cell such that the
coupling of dipoles between unit cells would spread the
dipoles to form a quadrupole. The dipole building block
in the fermionic QTI was the Su-Schrieffer-Heeger insu-
lating chain which is known to have a quantized dipole
moment in the presence of certain symmetries. We take
a similar approach here, where the fundamental building
block for our 2d bosonic HOSPT model is a 1d cluster
model with two Z2 degrees of freedom per unit cell de-
scribed by the following bosonic Hamiltonian:

HZ2×Z2
= −

N−1∑
i=1

(
Zai X

b
iZ

a
i+1 + ZbiX

a
i+1Z

b
i+1

)
(3)

where the X
a(b)
i denotes a Pauli operator at a site a(b)

of the i-th unit cell. This model has a long history15–17,
and recent work18 has shown this model to be in the non-
trivial SPT phase protected by a global Z2 ×Z2 symme-
try.

To see this, let us review some of the properties of
this model. Consider a 1-dimensional chain with open
boundary conditions. The Hamiltonian 3 is a sum of
N−2 commuting stabilizers Zai X

b
iZ

a
i+1 and ZbiX

a
i+1Z

b
i+1

each of which squares to 1. The ground state of such a
system is a simultaneous eigenstate of all stabilizers with
the eigenvalue +1. By counting the number of degrees of
freedom and the number of stabilizers, we find that the
ground state of this system (with open boundaries) must
be 4-fold degenerate.

To pin down the origin of this degeneracy, consider the
following pair of symmetry operators:

P1 = Xa
1X

a
2 . . . X

a
N , P2 = Xb

1X
b
2 . . . X

b
N . (4)

The Hamiltonian commutes with, i.e., is symmetric un-
der, the Z2 × Z2 group generated by P1 and P2. We can
use the fact that, in the ground state, the commuting
stabilizers all take the value +1 to decompose both of
these operators as a product of stabilizers which can be
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simplified to:

P1 = Xa
1Z

b
1 × ZbN ≡ PL1 × PR1

P2 = Za1 × ZaNXb
N ≡ PL2 × PR2 .

(5)

Thus, despite the symmetry operators being global, they
exhibit symmetry fractionalization to a pair of opera-
tors acting at each end of the chain in the ground state.
Since the operators PL1 and PL2 that act on the same
end anti-commute, we must have at least two degener-
ate modes at the left end, and similarly two degenerate
modes at the right end, which means that four-fold de-
generacy of the ground state comes from modes localized
on the ends of the chain. The anti-commutation rela-
tions P

L(R)
1 P

L(R)
2 = −PL(R)

2 P
L(R)
1 are robust against any

perturbation that respects the global Z2×Z2 symmetry,

though the forms of P
L(R)
i may be modified. This implies

that the end modes are protected by this symmetry, and
the system is in nontrivial SPT phase.

Majorana representation. Since it will be useful for us
later, let us review the representation of this model in
terms of Majorana fermions using the following Jordan-
Wigner transformation19,20 from one spin-1/2 degree of
freedom to a pair of Majorana fermion operators:

Xa
i = −iαai βai , Xb

i = −iαbiβbi
Zai = −i

∏
j<i

(−αajβaj αbjβbj )αai

Zai = −i
∏
j<i

(−αajβaj αbjβbj )(−iαai βai )αbi .

(6)

This transformation transforms each stabilizer in our
Hamiltonian into a Majorana hopping term, and the total
Hamiltonian 3 takes the following form after the trans-
formation:

HZ2×Z2
= −i

N−1∑
i=1

(βai α
a
i+1 + βbiα

b
i+1). (7)

As we show in Fig. 2, this Hamiltonian represents a
pair of decoupled Kitaev chains21. Furthermore, the
four Majorana operators αa1 , αb1, βaN , and βbN are com-
pletely free, and reflect the end-mode degeneracy of the
original model. In the language of Majorana fermions,

αb
i βb

i

αa
i βa

i

αb
i+1 βb

i+1

αa
i+1 βa

i+1

FIG. 2. Z2 × Z2 spin chain Jordan-Wigner transformed to
a pair of Kitaev chains in a topological phase. Each site of
the original spin chain is represented by a pair of Majorana
operators αi and βi enclosed by an oval.

the edge modes are protected by time-reversal T and

total fermion parity F =
∏N
i=1 α

a
i β

a
i α

b
iβ
b
i symmetries

where: Tα
a(b)
i T = α

a(b)
i and Tβ

a(b)
i T = −βa(b)i which

is chosen such that it fixes the complex fermions c
a(b)
i =

α
a(b)
i + iβ

a(b)
i at each site to be invariant under T = K.

We could introduce couplings iαa1α
b
1 and iβaNβ

b
n to gap

out the ends, but these terms break T ; in the bosonic
variables these terms translate to Y a1 Z

b
1 = iPL1 P

L
2 and

ZaNY
b
N = iPR1 P

R
2 which break the global Z2 × Z2 sym-

metry.
2d HOSPT Cluster Model. To construct our model we

are going to couple a stack of pairs of Z2 × Z2 cluster-
model SPT chains. Explicitly, let us take a stack of M
pairs of Z2 × Z2 SPT chains of length N oriented hori-
zontally. We will only couple the pairs of chains between
unit cells in analogy with the zero correlation-length limit
of the QTI model2. Naturally, with this type of con-
struction we will generate dangling Z2×Z2 cluster-model
chains on the top and bottom edges. Since the classifica-
tion of SPTs with this symmetry group is Z2, we expect
that after coupling pairs of these chains there will not be
any gapless edge states, but the dangling chains on the
edges could give rise to localized corner states.

Our goal now is to choose the coupling in the vertical
direction (between pairs of chains in neighboring unit
cells) in such a way that the edge modes will be gapped,
there will be non-trivial SPT chains on both the vertical
and horizontal edges, and protected degeneracies on the
corners for an ideal surface termination. We argue that
the required coupling terms have the following form (see
Fig. 3)

HV = −
N∑
i=1

(Zai,AZ
a
i,B + Zbi,AZ

b
i,B

+ Zai,AX
b
i,AZ

a
i,BX

b
i,B +Xa

i,AZ
b
i,AX

a
i,BZ

b
i,B)

(8)

where the first index i = 1 . . . N denotes the i-th unit cell
of either chain A or chain B as specified by the second
index.

Since the terms only couple two chains, say A and B,
let us focus on just that single pair of chains for a mo-
ment. Introducing these terms breaks down the global
symmetry group (Z2 × Z2)

2 → Z2 × Z2 with the new
symmetry group generators taking the following form:

PAB1 =

N∏
i=1

Xa
i,AX

a
i,B , PAB2 =

N∏
i=1

Xb
i,AX

b
i,B . (9)

The Hamiltonian for the pair of coupled chains is no
longer a sum of the operators that all commute with
each other, and the set of the conserved quantities are
now represented by the products of two decoupled chains’
stabilizers that became coupled to each other:

OABi = Zai,AX
b
i,AZ

a
i+1,AZ

a
i,BX

b
i,BZ

a
i+1,B , (10)

and a set of conserved quantities at the boundaries:

OL,AB1 = Za1,AZ
a
1,B , OL,AB2 = Xa

1,AZ
b
1,AX

a
1,BZ

b
1,B

OR,AB1 = ZbN,AZ
b
N,B , OR,AB2 = ZaN,AX

b
N,AZ

a
N,BX

b
N,B .

(11)
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FIG. 3. 2-dimensional lattice built of M pairs of Z2×Z2 SPT
chains each of length N . Vertical couplings are illustrated
schematically below the lattice. This arrangement clearly
leaves two decoupled SPT chains at the top and the bottom.

As was the case for a single chain, we can use the bulk
conserved quantities to reduce the global symmetry to
the product of boundary operators:

PAB1 = Xa
1,AZ

b
1,AX

a
1,BZ

b
1,B × ZbN,AZbN,B

= PL,AB1 × PR,AB1

(12)

PAB2 = Za1,AZ
a
1,B × ZaN,AXb

N,AZ
a
N,BX

b
N,B

= PL,AB2 × PR,AB2 .
(13)

However, here there is a key difference as the different op-
erators acting on the same end of the doubled chain com-
mute with each other, signifying that the coupled pair of
chains is in a trivial SPT phase with no required extra de-
generacy from gapless modes present at the edges. Thus,
we expect the edges of our 2d model to be gapped.

Now let us return to the full 2d model. Each unit cell
on the lattice now consists of four Z2 degrees of freedom
a, b, c, and d as shown in Fig. 3. After we collect the
terms together, the full Hamiltonian reads:

H2d =−
M∑
j=1

N−1∑
i=1

(
Zai,jX

b
i,jZ

a
i+1,j + Zbi,jX

a
i+1,jZ

b
i+1,j

+Zci,jX
d
i,jZ

c
i+1,j + Zdi,jX

c
i+1,jZ

d
i+1,j

)
−
M−1∑
j=1

N∑
i=1

(
Zai,jZ

c
i,j+1 + Zbi,jZ

d
i,j+1

+Zai,jX
b
i,jZ

c
i,j+1X

d
i,j+1 +Xa

i,jZ
b
i,jX

c
i,j+1Z

d
i,j+1

)
,

(14)

and has a global Z2 ×Z2 symmetry group generated by

P1 =

M∏
j=1

N∏
i=1

Xa
i,jX

c
i,j , P2 =

M∏
j=1

N∏
i=1

Xb
i,jX

d
i,j . (15)

We want to show that (i) both horizontal and vertical
edges are Z2 × Z2 SPT chains, and (ii) that there are
corner modes that are shared by the two SPTs on the in-
tersecting edges. After we introduce vertical coupling
terms, we automatically obtain that the horizontal 1-
dimensional boundaries at the top and bottom are in
a non-trivial SPT phase by the virtue of them being de-
coupled Z2×Z2 SPT chains (see Fig. 3). The symmetry
generators for these two dangling chains (up and down)
are inherited from the bulk global symmetry generators:

Pup1 =

N∏
i=1

Xa
i,M , Pup2 =

N∏
i=1

Xb
i,M

P down1 =

N∏
i=1

Xc
i,1, P down2 =

N∏
i=1

Xd
i,1,

(16)

where the index (i, j) runs over lattice sites as indicated
in Fig. 3. As was discussed in the previous section, these
symmetry operators fractionalize in the following way:

Pup1 = Xa
1,MZ

b
1,M × ZbN,M

Pup2 = Za1,M × ZaN,MXb
N,M

P down1 = Xc
1,1Z

d
1,1 × ZdN,1

P down2 = Zc1,1 × ZcN,1Xd
N,1.

(17)

This gives four independent sets of anti-commuting,
corner-localized algebras and thus at least a 16-fold
ground state degeneracy. While this shows that there are
corner modes, their presence is not equivalent to higher-
order quadrupolar topology. Based on our topological
indicator, we still need to show that both vertical and
horizontal pairs of edges are simultaneously in the same
SPT phase.

Having seen that the horizontal edges are in the non-
trivial SPT phase, we are now going to show that the
vertical boundaries are also in a non-trivial SPT phase,
and that the gapless end modes are shared with the hor-
izontal boundary spin chains at the corners. Let us focus
on the right boundary chain to be explicit. The Hamil-
tonian of this chain reads:

HZ2×Z2,R = −
M−1∑
i=1

(
ZbiZ

d
i+1 + Zai X

b
iZ

c
i+1X

d
i+1

)
(18)

where we drop the x̂-coordinate index as it is fixed to be
N at the right boundary. One can check that each indi-
vidual term in this expression commutes not only with
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each other, but with the Hamiltonian of the total system
(14) as well. This allows us to immediately conclude that
the chain on the right vertical edge is effectively decou-
pled from the rest of the system. This Hamiltonian looks
quite different from Eq. 3, indeed the vertical and hor-
izontal couplings of our model appear quite anisotropic
at first sight. However, we can perform a unitary trans-
formation that will map Eq. 3 to Eq. 18. This trans-
formation is an effective C4 rotation of the 2d HOSPT
model which performs the following transformation of the
on-site operators:

Za → X̃cZ̃d

Zb → Z̃a

Zc → Z̃d

Zd → Z̃aX̃b

Xa → Z̃aZ̃c

Xb → X̃aZ̃bX̃cZ̃d

Xc → Z̃aX̃bZ̃cX̃d

Xd → Z̃bZ̃d.

(19)

This transformation maps the vertical edge Hamiltonian
(18) to the familiar Z2 × Z2 cluster model Hamiltonian
after we change the ordering direction:

H̃Z2×Z2,R = −
M−1∑
i=1

(
Z̃ai X̃

b
i Z̃

a
i+1 + Z̃bi X̃

a
i+1Z̃

b
i+1

)
. (20)

Hence, we can conclude that vertical boundary chains
are in the same SPT phase as the horizontal boundary
chains.

In the original bosonic language, the symmetry opera-
tors for the left boundary chain of the lattice are:

PL1 =

M∏
i=1

Za1,iZ
c
1,i

PL2 =

M∏
i=1

Xa
1,iZ

b
1,iX

c
1,iZ

d
1,i

(21)

and for the right boundary chain:

PR1 =

M∏
i=1

ZbN,iZ
d
N,i

PR2 =

M∏
i=1

ZaN,iX
b
N,iZ

c
N,iX

d
N,i.

(22)

The set of edge conserved quantities for the paired chains
(11) allows us to fractionalize these symmetry operators
as follows:

PL1 = Zc1,1 × Za1,M
PL2 = Xc

1,1Z
d
1,1 ×Xa

1,MZ
b
1,M

PR1 = ZdN,1 × ZbN,M
PR2 = ZcN,1X

d
N,1 × ZaN,MXb

N,M .

(23)

These operators are exactly the same as the symmetry
fractionalized operators for the top and bottom chains

(17), and we can conclude that the corner modes of the
vertical chains are shared with the the horizontal chains.

Let us comment on the role of C4 symmetry here. In
the preceding paragraphs, we used C4 rotational symme-
try to help illustrate that the corner modes are shared
between two edge SPTs. However, we could have relaxed
C4 and the main conclusions would have been unmodi-
fied. Indeed, C4 is not the symmetry that protects the
bulk topological quadrupolar phase. As an example, one
can imagine coupling one additional Z2×Z2 chain to the
top layer thus, explicitly breaking the C4 symmetry, and
trivializing the 1D SPT phase at the top edge of the lat-
tice. By doing so, one also removes two of the corner
modes. Importantly, under such a procedure, which only
affects the edge, it is evident that the bulk Z2 topological
indicator defined via (2) would stay intact. Furthermore,
if one wants to have protected corner modes (which is
a stronger constraint than our Z2 indicator being non-
trivial), then an extra symmetry such as C4 can serve to
protect them.

Having internal symmetries protect higher order
topology is not unique to our discussion. The
fermionic quadrupole models can be protected by charge-
conjugation or chiral symmetries. On the other hand, re-
cent works8,22 discussed HOT superconductors in which
the topology can be protected by the BdG charge-
conjugation symmetry. In all of these systems, some of
the key manifestations of the topology, e.g., low-energy
modes, require particular surface terminations, and so
the higher order topological phases are not completely
independent of reference to crystal properties, even when
they are protected by the internal symmetries.

Majorana representation of the 2d lattice Each hori-
zontal Z2 ×Z2 chain can be Jordan-Wigner transformed
as described in the beginning of this section where we
reviewed the 1d cluster model. Since we are doing this
on a 2d system there is a subtlety in the ordering when
passing between the chains. We are going to choose the
ordering to go in the opposite directions for two chains
from the same pair: the upper chain ordering goes to the
left and the lower chain ordering goes to the right, so
that for a pair of chains that are coupled together, the
ordering goes as depicted in the top of Fig. 4.

With this ordering, the Jordan-Wigner transformation
converts the vertical coupling terms in the bosonic Hamil-
tonian into local Majorana hopping terms. Each of the
eight terms in (14) corresponds to a single hopping term
after the transformation. As a result, the bulk of our
model becomes a collection of clusters of four Majorana
fermions with hopping between them as shown in Fig.
4.To understand how the coupling works, take a look at
Fig. 4. Consider the operator X3Z4X18Z17 which can be
written in terms of all of the encircled Majoranas in the
figure:

X3Z4X18Z17 = α3β3α4

∏
4<j<17

(−iαjβj)α17α18β18. (24)

The product of four Majoranas that are connected by the
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α β
1

2

3

. . .

9

10

β α

11

12

13

. . .

A

B

⇓
α β α

β

1

2

X3 9

10

β α

11

12

13

. . .

Z4

Z17

X18

X3Z4X18Z17 ≡ Xa
2,2Z

b
2,2X

a
2,1Z

b
2,1 = −iβa

2,1α
a
2,2

FIG. 4. (upper) Two neighboring Z2 × Z2 spin chains (after
Jordan-Wigner transformation to Majorana representation)
that we intend to couple. (lower) Vertical coupling between
two spin chains. In this particular example we focus on the
coupling introduced by the X3Z4X18Z17 term, highlighted in
purple. Dots enclosed by small circles represent the Majo-
ranas engaged by this coupling term. Most of the Majoranas
that enter the product can be removed using conserved quan-
tities to leave simple quadratic hopping terms. Two dots con-
nected by a purple bond represent the Majoranas that are left
and cannot be combined into a conserved quantity.

black lines into a single plaquette in Fig. 4 is a conserved
quantity (10). For example we have:

Z5X6Z7Z14X15Z16 = −β5α7β14α16 (25)

meaning that the product of Majoranas at the corners of
one plaquette is a c-number, and we can conclude that
X3Z4X18Z17 ∝ iα3β18. The coefficient of proportionality
depends on the value of the conserved quantities in a
particular state.

After carrying this out for each coupling term, we find
that total model is a bilayer of Majorana fermions cou-
pled on plaquettes with hopping terms. To corroborate
that our model represents a HOSPT we want to confirm
that each plaquette contains an effective π-flux2. The
π-flux will be represented by the relative signs of the
various hopping terms, and these are determined by the
conserved quantities in the ground state. We checked the
values of the conserved quantities in the ground state and
find that the four hopping terms for a single plaquette af-
ter the Jordan-Wigner transformation are:

Hp =− iβci,j+1α
c
i+1,j+1 + iαai,jβ

a
i+1,j

− iαai,jβci,j+1 − iβai+1,jα
c
i+1,j+1.

(26)

This leads us to conclude that the effective flux through
each plaquette is π. Thus, the bosonic system can be rep-
resented in terms of two copies of the higher order topo-
logical superconductor discussed in Ref. 8. The edges of
the model are a pair of gapped Kitaev chains, and there
is a (symmetry-protected) pair of free Majorana modes

1 2

34

t λ

FIG. 5. Square lattice with four spin-1/2 degrees of freedom
per unit cell coupled via dimerized antiferromagnetic XY cou-
plings.

on each corner of the system that gives rise to the two-
state Hilbert space of the dangling spin in the bosonic
degrees of freedom.

IV. XY model

We now want to provide a second model, with more
conventional spin-spin couplings, that will exhibit the
same bosonic HOSPT. The Z2 × Z2 cluster model can
be deformed to a more conventional model of a dimerized
spin-1/2 Heisenberg or XY chain23. Thus, we expect that
instead of taking the cluster-model couplings we can in-
stead create a very simple model of a dimerized XY spin
system. Note that the discussion below can be general-
ized to Heisenberg couplings with minor modifications to
the equations below.

Explicitly, let us consider a square lattice with four
spin-1/2 degrees of freedom per unit cell. The lattice
structure is the same as in the QTI2, and is depicted in
Fig. 5. We couple neighboring spins via antiferromag-
netic XY interactions with alternating coupling constants
t and λ (both greater than zero) for the intra- and inter-
cell interactions respectively. To begin with, consider the
XY model on a finite N ×N lattice and set the value of
intra-cell coupling t to zero. In this limit, the bulk of
the lattice is a collection of decoupled clusters of four
spins connected via XY interactions, and the edges are
reduced to a collection of dimers. The horizontal and
vertical edges are gapped, and are dimerized, antiferro-
magnetic spin-1/2 chains in a non-trivial Z2 × Z2 SPT
state (the details of the symmetry will be discussed be-
low). Furthermore, we also find four spins at the corners
of the lattice that are completely free in this limit. Hence,
we see all of the phenomenology expected for a HOSPT
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phase.
From the structure of the couplings we see that the

ground state in the t = 0 limit is quite simple to compute
as it is just a product state of the 4-spin cluster ground
states on each bulk site, the dimer singlet ground state
for each edge site, and the degenerate corner spins. For
the 4-spin clusters, the Hamiltonian for each cluster p is:

Hp =
∑
a=x,y

(
σap,1σ

a
p,2 + σap,2σ

a
p,3 + σap,3σ

a
p,4 + σap,4σ

a
p,1

)
(27)

and the total Hamiltonian in this limit can be expressed
as:

H = λ
∑
p

Hp. (28)

The ground of a single plaquette p is:

|GS〉p =
1

2
√

2
(| ↑↑↓↓〉+ | ↓↑↑↓〉+ | ↓↓↑↑〉+

| ↑↓↓↑〉)− 1

2
(| ↓↑↓↑〉+ | ↑↓↑↓〉) ,

(29)

and the ground state of the entire system is a ten-
sor product of these plaquette states over all plaque-
ttes. The energy gap to the first excited cluster state
is ∆p = 4(

√
2 − 1)λ. Each of the boundary dimers d

is described by a simple Hamiltonian with a well-known
ground state:

Hd = λ
∑
a=x,y

σa1σ
a
2 (30)

|GS〉d =
1√
2

(| ↑↓〉 − | ↓↑〉) . (31)

The energy gap to the excited dimer state is ∆d = 2λ.
Thus, in the absence of any corners, e.g., with fully

periodic boundary conditions, the system is gapped and
has a unique ground state. In the presence of four corners
we deduce that the ground state degeneracy of the whole
system is 24 = 16. If we tune away from the t = 0
limit the degeneracy is still preserved, and any splitting
is exponentially small in the system size. To see this
explicitly we performed degenerate perturbation theory
on the ground state subspace and found that the effective
coupling between corner spins scales as (t/λ)N/2 and thus
is exponentially small as N increases (see Appendix A).

The global Z2 × Z2 symmetry group can be generated
by π spin rotations around the x and y axes. To be
explicit consider the global Z2 × Z2 symmetry group of
the XY model generated by:

P1 =
∏
i

σxi , P2 =
∏
i

σyi (32)

where the index i runs over each spin of the lattice. To see
the symmetry fractionalization, consider the XY model
in a zero correlation length limit (t = 0). In this limit

the model admits a set of conserved quantities associated
with every bulk plaquette p and edge dimer d:

O1
p =

∏
i∈p

σxi , O2
p =

∏
i∈p

σyi

O1
d =

∏
i∈d

σxi , O2
d =

∏
i∈d

σyi

(33)

Much like in the case of 2d HOSPT Cluster Model, the set
of conserved quantities allows us to reduce the symme-
try group generators (32) to the product of four corner-
localized operators on the N ×N lattice:

P1 = σx1,1 × σx1,N × σxN,1 × σxN,N
P2 = σy1,1 × σy1,N × σyN,1 × σyN,N

(34)

Once again, we have obtained a set of four anti-
commuting, corner-localized algebras that signify the
presence of the degeneracy from the gapless corner
modes.

Jordan-Wigner transformation of the XY model. To
further elucidate the connection of the XY model to the
fermion quadrupole model we are going to use a Jordan-
Wigner transformation presented in Ref. 24. In this
subsection we are working on a square lattice with one
spin per site. We start, as usual, by identifying spin
ladder operators with fermionic creation and annihilation
operators with position-dependent phase factors:

S−i = eiφidi, S+
i = e−iφid†i (35)

where the phase factors and ladder operators are defined
as:

φi =
∑
j 6=i

Bijd
†
jdj , S± = Sx ± iSy (36)

The condition for di and d†i to obey the correct fermionic
statistics can be expressed via Bnm. It reads:

eiBnm = −eiBmn . (37)

As long as this condition is satisfied, the Jordan-Wigner
transformation functions correctly, however, there is one
particularly useful choice of Bmn:

Bmn = arg(~rm − ~rn) = Im ln(zm − zn) (38)

where we have defined a complex coordinate at each site
j = (xj , yj): zj = xj + iyj . This choice of Bmn leads to
the following phases φi:

φi =
∑
j 6=i

Im ln(zj − zi)d†jdj . (39)

Now, consider the spin-1/2 XY-model Hamiltonian with
alternating coupling constants:

HXY =
∑
〈ij〉

Ji,j
∑
a=x,y

σai σ
a
j (40)
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where Jij along x̂ equals λ for even values of the coor-
dinate x, and t for odd, and similarly along ŷ. After
applying the transformation (35) we obtain the following
Hamiltonian:

H =
∑
〈ij〉

1

2
Ji,j

(
d†i e
−i(φi−φj)dj + di e

i(φi−φj)d†j

)
. (41)

This is a free-fermion Hamiltonian in an external gauge
field, where

φi − φj =

∫ i

j

A · dr. (42)

We can substitute (39) and solve for A to find:

A(r) = −
∑
r′ 6=r

nr′
ẑ × (r′ − r)

(r′ − r)2
(43)

where nr = d†rdr = S+
r S
−
r = 1

2 + Sz. In the absence
of the external magnetic field we can make the following
mean-field approximation:

nr → 〈n〉 =
1

2
+ 〈Sz〉 =

1

2
. (44)

We can justify this step in the zero correlation length
limit, when t = 0 and the bulk of the system is simply a
collection of disjoint clusters of four spins. In this limit
we can directly compute that 〈Sz〉 = 0 in the ground
state. By taking a continuum limit, we express the sum
in 43 as:

A(r) = −〈n〉
S

∫
d2r′

ẑ × (r′ − r)

(r′ − r)2
= π
〈n〉
S

ẑ × r (45)

where S is the area of an elementary plaquette. This
allows us to compute the magnetic field:

H(r) = curlA(r) = 2π
〈n〉
S
ẑ (46)

which leads to the flux per plaquette:

Φ = H(r) · ẑ · S = 2π〈n〉 = π. (47)

This is exactly the condition that was imposed in the
original fermionic QTI model2 for it to be in a topolog-
ically non-trivial phase. And the complete Hamiltonian
which is Jordan-Wigner dual to spin Quadrupole model
is:

HXY = HQP (48)

where HQP is the fermionic QTI model Hamiltonian in
the zero correlation length limit.

Applying this Jordan-Wigner transformation to the
fractionalized Z2 × Z2 group generators (55) and rewrit-

ing di and d†i via Majorana operators we find:

P1 =
∏
i

(cos(φi)αi − sin(φi)βi)

P2 =
∏
i

(− sin(φi)αi − cos(φi)βi)
(49)

where the index i runs over four corner sites (1, 1), (N, 1),
(N,N), and (1, N) which we denote below as 1, 2, 3,
and 4 respectively. Majorana fermions commute with
the phase factors in the following way:

cos(φi)γi = γi cos(φi)

cos(φi)γj = γj cos(φi − 2Bijnj)
(50)

and similarly for sin(φi). With the help of these commu-
tation relations we can move all the phase factors to the
right side of every term in the product (49). Now we can
fix the gauge, requiring for the phases

φ1 − 2B12n2 − 2B13n3 − 2B14n4,

φ2 − 2B23n3 − 2B24n4,

φ3 − 2B34n4, and φ4

(51)

to be the multiples of 2π thus drastically simplifying the
form of the symmetry operators:

P1 = α1α2α3α4, P2 = β1β2β3β4. (52)

Once again, we brought our symmetry operators to the
form that makes the presence of gapless corner modes ev-
ident. This form of Z2×Z2 group generators also makes
it clear that an inclusion of a magnetic field h

∑
i σ

z
i ∝

h
∑
i(αiβi + ...), which breaks the time-reversal symme-

try, would break the global Z2×Z2 symmetry generated
by a pair of operators above.

3d XY model We can construct a simple extension of
the XY model to 3d. Consider a cubic lattice with eight
spin-1/2 degrees of freedom per unit cell. The lattice
has alternating coupling strengths in all three directions
repeating the structure of the 3d topological octupole
insulator2. We couple neighboring spins via antiferro-
magnetic XY interactions with coupling strength t for
spins at the same unit cell and coupling strength λ for a
pair of spins from different unit cells. As we did for the
2d XY model, let us consider the 3d model on a finite
N ×N ×N lattice with the value of intra-cell couplings t
set to zero. In this limit, the bulk of the lattice decouples
into a collection of clusters of eight spins connected via
XY interactions while on each face of the lattice we find
the already familiar 2d XY model. The boundary of the
3d XY model is gapped as each face of the lattice is in
the 2d HOSPT model, and each of the twelve edges is in
the non-trivial Z2×Z2 SPT phase. Finally, we find eight
spins at the corners of the lattice to be completely free
in the t = 0 limit.

We can directly compute the ground state of a single
bulk cluster to find it to be unique with the energy gap
equal to ∆c ≈ 1.056 λ. Thus, we can conclude that this
model has a unique ground state on a lattice with peri-
odic boundary conditions in all spatial directions. Con-
sidering the 3d XY model on a finite lattice, we find the
ground state degeneracy to be 28 = 256-fold. As in the
2d XY model, this degeneracy remains robust even as we
tune away from the t = 0 limit. Applying degenerate
perturbation theory we find that the effective coupling
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between the corner spins decreases exponentially with
the system size teff ∼ (t/λ)N as detailed in Appendix
A.

The global Z2 × Z2 symmetry group can be generated
by a pair of π rotations of every spin on the lattice around
the x and y axes:

P1 =
∏
i

σxi , P2 =
∏
i

σyi (53)

with the index i running over each spin of the lattice.
These symmetry operators can be fractionalized. In the
t = 0 limit, in addition to the set of boundary conserved
quantities of the 2d XY model, we have a set of conserved
quantities associated with each bulk cluster c of eight
spins:

O1
c =

∏
i∈c

σxi , O2
c =

∏
i∈c

σyi (54)

As in the 2d XY model, the set of conserved quantities
allows us to reduce our pair of symmetry operators (53)
to the products of eight corner spin rotations:

P1 = σx1,1,1σ
x
1,1,Nσ

x
1,N,1σ

x
1,N,Nσ

x
N,1,1σ

x
N,1,Nσ

x
N,N,1σ

x
N,N,N

P2 = σy1,1,1σ
y
1,1,Nσ

y
1,N,1σ

y
1,N,Nσ

y
N,1,1σ

y
N,1,Nσ

y
N,N,1σ

y
N,N,N

(55)

Thus we obtain eight corner-localized, anti-commuting
algebras that indicate the existence of gapless corner
modes spawning the 28-fold degeneracy.

V. Conclusion

We have presented two separate models that realize a
Z2×Z2 higher order topological phase. Despite their dif-
ferent microscopic Hamiltonians they yield similar phe-
nomenology with gapped edges realizing 1d SPT phases
and modes localized on the corners. The concepts pre-
sented here can be generalized to other symmetry groups
(including spatial symmetries) and spatial dimensions.

We provided an extension of the XY model to 3d con-
structing a third-order HOSPT by forming XY coupled
cubes of spins in the 3d bulk in analogy with the coupled
plaquettes in the bulk of the 2d XY model. One missing
construction in this article is a model for a second-order
phase in 3d (though Refs. 12 and 25 for example, show
interacting models with hinge states) and it would be in-
teresting to see if one can create such a model by stacking
and coupling our 2d second order phases.

Perhaps the largest open question is how to generically
calculate the edge and corner topological indicators that
serve to define the topological phase in a many-body sys-
tem. It is possible that the entanglement spectrum may
provide a route to do this similar to the use of Wan-
nier bands for free fermion systems. The resolution of
this issue will provide a major advance in understanding
many-body higher order topological phases.
Note: During the preparation of this manuscript we

became aware of a partially overlapping and complemen-
tary article by Yizhi You, Trithep Devakul, Fiona J. Bur-
nell, Titus Neupert25.
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A. Degenerate perturbation theory

Effective Hamiltonian Consider a Hamiltonian of the
form:

H = H0 + gH1. (A1)

Suppose that H0 has a degenerate ground state with the
energy E0. We want to write down an effective Hamil-
tonian that will describe energy splitting of the ground
state due to the perturbationH1. To do so, we will briefly
recount the derivation. Introducing the set of projec-
tors Pn into the degenerate-energy En subspaces of the
Hilbert space H, we can write the unperturbed Hamilto-
nian spectral decomposition:

H0 =
∑
n

EnPn. (A2)

We aim to find an effective Hamiltonian for the degen-
erate ground state, therefore, we should slightly modify
the usual Schrödinger equation:

H|ψ〉 = E|ψ〉 → Heff |ψ̃〉 = E|ψ̃〉
where |ψ̃〉 = P0|ψ〉

(A3)

Introducing the operator P⊥ = 1 − P0 we can write
down an effective Hamiltonian Heff in the following
form:

Heff = P0H
(
1 + (E − P⊥H)−1P⊥H

)
P0 (A4)

substituting here (A1) and (A2) we obtain the following
form of the effective Hamiltonian for Hilbert subspace
generated by |ψ̃〉:

Heff = E0 + PH1

∞∑
n=0

gn+1

(∑
m>0

PmH1

E − Em

)n
(A5)

where E = E0 +
∑∞
n=1 g

nE(n). Simply put, to obtain
the n-th order of Heff we apply perturbation operator

H1 to the ground state and project the resulting vector
back to the ground state subspace.

Perturbative stability of the corner modes. Now, let us
show that the corner mode degeneracy is protected in the
thermodynamic limit when we are away from the zero
correlation-length limit, i.e., it only has exponentially
small splitting in finite sized systems. Strictly speaking
we should add an extra symmetry, e.g., C4 to guaran-
tee that the corner modes are protected from symmetry-
preserving surface deformations. To do so, we will study
the 3d dimerized XY model. The reasoning in this sec-
tion can be easily applied to the 2d XY model. We start
by turning the intra-cell XY interaction terms t to be
non-zero. Assuming that λ � t we can employ the de-
generate perturbation theory described above to obtain
an effective Hamiltonian for the ground state, as well as
the ground state energy splitting.

The n-th order contribution to the effective Hamilto-
nian is given by:

H(n) = P0V

(∑
m>0

PmH1

E − Em

)n
(A6)

where P0 is the projector to the ground state subspace,
Pm is the projector to the m-th energy subspace and
H1 is the perturbation, which, in our case, is given by
the sum of all t

∑
a=x,y σ

a
i σ

a
j terms where spins i and

j belong to the same unit cell. To obtain an effective
Hamiltonian for the corner modes we need to find a com-
bination of perturbation terms that: (a) act non-trivially
on the corner spins and (b) the resulting state has a non-
zero projection back to the ground state subspace. While
the first criteria is easy to satisfy simply by starting with
the perturbation term from one of the corner unit cells,
the second criteria requires that every perturbed (bulk)
plaquette or (edge) dimer wavefunction has a non-zero
projection to the ground state. Each intra-cell XY per-
turbation term acts on two separate spin clusters (either
bulk cubes, face plaquettes, edge dimers or corner spins),
and while the corner spins always have a non-zero pro-
jection back to the ground state, cubes, plaquettes, and
dimers must be acted upon by at least two different per-
turbation terms with the same σa operators to have a
non-zero projection to the ground state.

The latter requirement leads us to the conclusion that
the effective Hamiltonian is represented by products of σai
that form either closed loops, where each perturbed spin
cluster is being acted upon by two distinct σai σ

a
j opera-

tors, or strings of σai that stretch from one corner of the
lattice to another. Any allowed loop operator acts triv-
ially on the corner state so the effective Hamiltonian for
the corner spins is given by teffσ

a
i σ

a
j where the first and

the last σa act on different corner spins. The number
of perturbation operators involved is at least N/2 and
the resulting effective Hamiltonian has a coupling con-
stant of roughly teff ∼ (t/λ)N/2 rendering ground state
degeneracy to be exponentially protected by the system
size N .
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B. Numerical Calculations

Following Ref. 14 we are going to numerically exam-
ine the entanglement structure of the XY model. The
degeneracy of the low-lying entanglement spectrum was
proposed as a fingerprint to identify topological order by
Li & Haldane in Ref. 26. Two-dimensional models are
difficult to study via exact diagonalization, so we resort
to the iTEBD technique27 to confirm the four-fold de-
generacy of the ground state in the limit when t is signif-
icantly smaller than λ. Qualitatively, our results hold for
the Heisenberg model as well and we will use this model
to illustrate certain points as some aspects of the numer-
ical simulation are more pronounced in the Heisenberg
case rather than in the XY model.

Quasi-1d Calculations The iTEBD algorithm is very
useful when it comes to calculation of the entanglement
spectrum in 1d models. We are working with 2d model,
however we are interested in computing the entanglement
spectrum for a simple cut that splits our lattice in half,
eliminating a set of horizontal λ bonds as shown in Fig.
6. The goal is to confirm that the boundary SPT chains
remain even away from the zero-correlation length limit.
If we now consider a spin quadrupole model defined on
an infinite strip of width Ly = 2 we can apply the 1d
version of iTEBD algorithm by treating four spins with
the same x̂ coordinate as being located on the same site.
This setup allows us to simulate an infinite lattice along
x̂ direction meaning that the ground state degeneracy is
only lifted via t couplings along ŷ direction. The entan-
glement spectrum for t = 0.1 is presented in Fig. 7.

Numerical data is presented in table below. The
iTEBD was implemented with the bond dimension equal
to 28. Inter-cell coupling was fixed to be λ = 1 and t
varied between 0.01 and 0.3. As can be seen from the
table below, initially the entanglement spectrum is four-
fold degenerate as was computed exactly for the ana-
lytic ground state wavefunction for the case with t = 0.
This degeneracy is coming from the two non-trivial SPT
chains that we have cut on the top and the bottom; each
of which yields two degenerate entanglement modes. In
our numerics, the splitting of the degeneracy becomes
more pronounced starting near t = 0.3, but the lowest
modes are still well-separated from the first set of excited
states. The entanglement spectrum for different values
of t is presented in Table I.

There are several consistency checks for this model
that we carried out. First of all, introducing periodic
boundary conditions in the vertical direction immedi-
ately breaks the even degeneracy of the spectrum even
for t = 0. Additionally, we quantified the four-fold de-
generacy for different values of intra-cell couplings tx and
ty in different directions. The results of this calculation
can be seen on the Figure 8. In this case the iTEBD
was implemented with bond dimension χ = 48. Values
of tx and ty run from 0.01 to 0.75 and 0.01 to 0.65 re-
spectively. As a measure of degeneracy breakdown of the
ground state we took the difference of the first and fourth

FIG. 6. Quadrupole Ly = 2 strip with the entanglement cut
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FIG. 7. Entanglement spectrum calculated for tx = ty = 0.1

eigenvalue (bandwidth of ground state splitting) relative
to the difference of the fifth and fourth eigenvalue (gap
to excited states). As evident from the diagram, for the
small values of tx and ty the degeneracy is almost unbro-
ken but if we start increasing values of tx and ty simul-
taneously, we can clearly see the degeneracy breakdown
around tx = ty = 0.3. However, this picture is not sym-
metric and increasing the value of ty lifts the degeneracy
much quicker than the increase of tx. The explanation
is that the model is effectively infinite along OX and, as
our perturbation theory calculation suggests, in this case,
only the terms proportional to ty can lift the degeneracy
coming from the corner spin degrees of freedom as the
perturbation theory contributions proportional to tx are
exponentially suppressed by the size of the system.

This leads to the question why the degeneracy is lifted
in the lower right corner of the diagram, where the value
of ty is minimal and whether the degeneracy is restored
if we turn off ty completely. The answer is: there are
two factors in play there. First: a slightly non-zero value
of ty and significant values of tx allow for many different
perturbation theory contributions along different paths
on the lattice between the corner spins which lift the de-
generacy. Second: a fixed bond dimension χ = 48 limits
the accuracy of our computation. When tx is increased
and the entanglement of the ground state grows, we need
to increase the dimension of the MPS to accurately sim-
ulate the ground state. An especially clear example of
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FIG. 8. Degeneracy of the Ly = 4 quadrupole strip for dif-
ferent values of tx and ty. White area corresponds to the pa-
rameters’ values for which we can’t reliably apply the iTEBD
algorithm without drastically increasing the bond dimension.
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FIG. 9. Entanglement spectrum for the model with tx = 0.76,
ty = 0 computed using two different bond dimensions. Blue
dots correspond to χ = 28 computation, green dots - to χ =
48.

this phenomena can be seen in the Heisenberg model: if
we compute the entanglement spectrum for ty = 0 and
tx = 0.76 using bond dimensions χ = 28 and χ = 48.
This spectrum is shown on Figure 9.

By eye one can see that the latter computation yields a
spectrum which is much closer to being four-fold degener-
ate. We also show data for exact diagonalization on small
systems. The following two plots in Fig. 10 represent ex-
act diagonalization for the system of two Heisenberg spin
chains of length 4, 6, 8, and 10. We can see that as we
increase the number of spins, the difference between the
entanglement eigenvalues in one quartet falls down expo-
nentially with the factor proportional to ty.
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FIG. 10. TOP: Entanglement spectrum computed for a cou-
pled pair of spin chains of different lengths. BOTTOM: De-
pendence of the ratio between the 1st and the 4th Entangle-
ment Hamiltonian eigenvalues on the coupling strength ty.

Entanglement spectrum
t=0.01 t=0.1 t=0.2 t=0.3
0.4253 0.4352 0.4680 0.5279
0.4252 0.4274 0.4348 0.4563
0.4252 0.4274 0.4344 0.4562
0.4251 0.4196 0.3983 0.3460
0.1783 0.1770 0.1732 0.1689
0.1783 0.1770 0.1732 0.1680
0.1783 0.1769 0.1720 0.1596
0.1783 0.1768 0.1711 0.1575
0.1783 0.1768 0.1708 0.1596
0.1782 0.1747 0.1633 0.1521
0.1782 0.1747 0.1632 0.1414
0.1782 0.1722 0.1530 0.1411
0.0747 0.0742 0.0725 0.1175
0.0747 0.0735 0.0696 0.0696
0.0747 0.0735 0.0696 0.0627
0.0747 0.0729 0.0668 0.0609

TABLE I. Entanglement spectrum of an Ly = 4 quadrupole
strip for different values of intra-cell coupling t.
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