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We study symmetry-protected topological (SPT) phases of matter in 2D protected by symmetries
acting on fractal subsystems of a certain type. Despite the total symmetry group of such systems
being subextensively large, we show that only a small number of phases are actually realizable by
local Hamiltonians. Which phases are possible depends crucially on the spatial structure of the
symmetries, and we show that in many cases no non-trivial SPT phases are possible at all. In cases
where non-trivial SPT phases do exist, we give an exhaustive enumeration of them in terms of their
locality.

I. INTRODUCTION

Understanding and classifying the possible phases of
matter has been a long running goal of condensed mat-
ter physics. In systems without any symmetries, one can
have topological ordered phases which are long range en-
tangled. With symmetries present, there are many more
possibilities: the symmetry may be spontaneously bro-
ken, it may enrich an existing topological order, or it may
lead to non-trivial short range entangled phases called
symmetry-protected topological (SPT) phases1–7.

Recently, a new type of symmetry, called “subsystem
symmetries”, has been gaining interest for a number of
reasons. These are symmetries which act on only a rigid
(subextensive) subsystem of the full system, for example,
along only a row or a column of a square lattice. Sys-
tems with such symmetries show up in a variety of con-
texts8–15. Note that there is a distinction between sub-
system symmetries and higher-form symmetries16, which
act on deformable manifolds. One reason for the recent
interest is due to their connection to fracton topologi-
cal order14,17–28. Namely, systems in D = 3 dimensions
with subsystem symmetries of along d = 2 planes exhibit
a gauge duality to (type-I) fracton topological ordered
phases14,29–31. More generally, this can be extended to
systems with dimensions D ≥ 3 and symmetries along
regular 1 < d < D subsystems, whose gauge dual exhibits
a generalized fracton topological order. The case d = D
is simply the duality of a model with some global sym-
metry and a (non-fracton) topologically ordered state,
e.g. the gauge dual of the Z2 symmetric Ising model in
D ≥ 2 is a Z2 topological order. The case where d = 1 is
another extreme case, whose gauge dual does not corre-
spond to a topological order. These should be thought of
in analogy to the D = d = 1 Ising chain, which is dual to
another Ising model under the gauge duality. In the pres-
ence of a symmetry group G, it is now well known that
bosonic D = d = 1 chains may be classified according to
the second cohomology group H2[G,U(1)], and may be
understood in terms of how the symmetry acts as a pro-
jective representation on the edges or under symmetry
twists2,32–38.

Going to one higher dimension, D = 2, d = 1, we have

two dimensional systems with symmetries acting along
rigid lines. It was recently appreciated that such sym-
metries could protect non-trivial SPT phases, called sub-
system SPT phases39. An example of such a phase is the
2D cluster state on the square lattice40, where it is shown
that any state within this subsystem SPT phase is use-
ful as a resource for universal measurement based quan-
tum computing (MBQC)41,42, providing a generalization
of the connection between MBQC and SPT phases from
one dimension41,43–46. A classification of such subsystem
SPT phases was realized recently in Ref 47 by the present
author and colleagues, and relied on the definition of a
modified (weaker) equivalence relation between phases.
The reason this was needed in this case is due to the
existence of “subsystem phases”: cases where two states
which differ along only a subsystem may belong to dis-
tinct phases of matter. For instance, consider a D = 2
trivial symmetric state, but along some of the (d = 1)
subsystems, we place a 1D SPT (in such a way that all
symmetries are still respected). This, now, as a whole
represents a non-trivial 2D phase of matter protected by
the subsystem symmetries, despite looking trivial in most
of the bulk. Furthermore, the existence of such phases
means that in the thermodynamic limit where system
size is taken to infinity, there are an infinite number of
subsystems, and so an infinite number of possible phases.
The problem with this is that it now takes a subextensive
(growing as O(L) in local systems of size L×L) amount
of information to convey exactly what phase a system is
in, without assuming any form of translation invariance.
In Ref 47, it was shown that there existed some intrinsic
global “data”, which we call β, which is insensitive to
the presence of subsystem phases. All the infinite phases
of such a system could therefore be grouped into equiva-
lence classes and classified according to β. This classifi-
cation has the nice interpretation of being a classification
of phases modulo lower-dimensional SPT phases, and is
related to the problem of classifying 3D (type-I) fracton
topological orders modulo 2D topological orders30,48–51.
There is also a connection between this classification and
the appearance of a spurious topological entanglement
entropy47,52–55. The key idea is that a new tool, in this
case the modified phase equivalence relation, was neces-
sary in the classification of these subsystem SPT phases.
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The topic of interest in this paper is another type sub-
system symmetry: fractal subsystem symmetries. In 2D,
these may be thought of as “in-between” d = 1 and d = 2,
as symmetries act on subsystems with fractal dimensions
1 < df < 2. An early example of such a system is the
Newman-Moore model56, and such models have been use-
ful as a translation invariant toy model of glassiness57 or
for their information storage capacity58. Fractal symme-
tries have also recently been shown to be able to protect
non-trivial SPT phases59,60. An example of this is the
cluster state on the honeycomb lattice, which (like the
square lattice example) has been shown to be useful for
MBQC anywhere in the SPT phase61,62. Here, we wish
to ask the more general question of what SPT phases
are even possible in such systems with fractal symme-
tries. Note that in higher dimensions (D ≥ 3), similar
to models with regular d-dimensional subsystem symme-
tries, the gauge dual of a fractal symmetric model may
also result in (type-II) fracton topological order20,29,59,
for which very little is currently known about their clas-
sification.

Our main finding is that systems with fractal subsys-
tem symmetries are free from subsystem phases and the
associated problems that existed for line-like d = 1 sub-
system SPTs. The key factor at play here is locality. Al-
though the total number of phases is still infinite (a result
of the total symmetry group being infinitely large), the
vast majority of these phases are highly non-local and
therefore unphysical. If we fix a degree of locality (what
we mean by this will be explained) then the number of al-
lowed phases remains finite in the thermodynamic limit.
This allows for the classification of phases directly, with-
out needing to define equivalence classes of phases like
before (essentially due to the lack of any “weak” subsys-
tem SPT phases39,47).

We first begin by reviewing some necessary prelimi-
nary topics in Sec II. We then define fractal symmetries
in Sec III, and discuss the possible local SPT phases in
Sec IV. In Sec V we give a explicit constructions for lo-
cal models realizing an arbitrary local SPT phase. Sec VI
deals with irreversible fractal symmetries and introduces
the concept of pseudo-symmetries and pseudo-SPTs. A
summary and discussion of the results is presented in
Sec VIII. Finally, a technical proof of the main result is
given in Sec IX.

II. PRELIMINARIES

A. Linear Cellular Automata

We first describe a class of fractal structures which
determine the spatial structure of all our symmetries in
this work (see Ref 20 for a nice introduction to such frac-
tals and their polynomial representation). These fractal
structures, which are embedded on to a 2D lattice, are
generated by the space-time evolution of a 1D cellular au-
tomaton (CA). In particular, the update rule for this 1D

cellular automaton will be linear, translation invariant,
local, and reversible. These terms will all be explained
shortly.

Let a
(j)
i ∈ Fp denote the state of the cell at spatial

index i at time index j. Each a
(j)
i can take on values

0, . . . , p − 1 for some prime p (p = 2 in the cases with
Ising degrees of freedom). We take periodic boundary

conditions in i such that 0 ≤ i < Lx, and define a
(j)
i+Lx

≡
a

(j)
i . The state of the full cellular automaton at a time j

is given by the vector a(j) ∈ FLxp with elements (a(j))i =

a
(j)
i , We will use the notation vi to denote the ith element

of a vector v. Bold lowercase letters will denote vectors,
while bold uppercase letters will denote matrices.

The key ingredient of the cellular automaton is its up-
date rule: given the state a(j) at time j, how is the state
a(j+1) at the next time step calculated? We will consider
only the family of update rules of the form

a
(j+1)
i =

kb∑
k=ka

cka
(j)
i−k (1)

where ck ∈ Fp is a set of coefficients only non-zero for
ka ≤ k ≤ kb. Note that all addition and multiplication
is modulo p, following the algebraic structure of Fp. Lin-

earity refers to the fact that each a
(j+1)
i is determined by

a linear sum of a
(j)
i . Thus, we may represent Eq 1 as

a(j+1) = Fa(j) (2)

where F ∈ FLx×Lxp is an Lx × Lx matrix with elements

given by Fi′i = ci′−i. For a given initial state a(0), the
state at any time j ≥ 0 is simply given by a(j) = Fja(0).

Translation invariance refer to the fact that the up-
date rules do not depend on the location i, only on the
relative location: Fi′i = Fi′+n,i+n. Locality means that
Fi′i is only non-zero for small |i′ − i| of order 1. In our
case, this means that |ka| and |kb| should be small O(1)
values. Finally, reversibility means that only one a(j) can
give rise to a a(j+1). In other words, the kernel of the
linear map induced by F is empty, and one can define an
inverse F−1 (which will generically be highly non-local)
such that F−1F = FF−1 = 1. This is a rather special
property which will depend on the particular update rule
as well as choice of Lx.

While we assume reversibility for much of this paper,
we note that fractal SPTs exist even when the underly-
ing CA is irreversible. We call such phases pseudo-SPT
phases, and are discussed in Sec VI.

B. Polynomials over finite fields

Cellular automata with these update rules may also
be represented elegantly in terms of polynomials with
coefficients in Fp. By this we mean polynomials q(x)
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over a dummy variable x of the form

q(x) =

δq∑
i=0

qix
i (3)

where each qi ∈ Fp, and the degree δq ≡ deg q(x) is finite.
The space of all such polynomials is denoted by the poly-
nomial ring Fp[x]. A state a(j) of the cellular automaton

may be described by such a polynomial, a(j)(x),

a(j)(x) =

Lx−1∑
i=0

a
(j)
i xi. (4)

In the case of periodic boundary conditions one should
also work with the identity xLx = 1.

Application of the update rule is expressed most simply
in the language of polynomials. Let us define f(x) to

be a Laurent polynomial, i.e. f(x) = f̃(x)xka where

f̃(x) ∈ Fp[x] is a polynomial (and ka may be negative),
given by

f(x) =

kb∑
k=ka

ckx
k (5)

after which the update rule may be expressed simply as
multiplication

a(j+1)(x) = f(x)a(j)(x) (6)

Given an initial state a(0)(x) then, the state at any future
time is simply given by a(j)(x) = f(x)ja(0)(x). We will
assume cka and ckb are non-zero, and kb 6= ka (so that
f(x) is not a monomial).

The key property of such polynomials that guarantees
fractal structures is that for q(x) ∈ Fp[x], one has that

q(x)p
n

= q(xp
n

) (7)

also known as the “freshman’s dream”. Suppose we start
off with the initial state a(0)(x) = 1. After some possibly
large time pn, the state has evolved to

a(pn)(x) = f(x)p
n

= f(xp
n

) =

kb∑
k=ka

ckx
kpn (8)

which is simply the initial state at positions separated by
distances pn. At time pn+1, this repeats but at an even

larger scale. Thus, the space-time trajectory, a
(j)
i , of this

cellular automaton always gives rise to self-similar fractal
structures.

There are various other useful properties that will be
used in the proof of Sec IX, one of which is that any poly-
nomial q(x) ∈ Fp[x] (without periodic boundary condi-
tions) may be uniquely factorized up to constant factors
as

q(x) = q1(x)q2(x) . . . qn(x) (9)

where each qi(x) is an irreducible polynomial of positive
degree. A polynomial is irreducible if it cannot be writ-
ten as a product of two polynomials of positive degree.
This may be thought of as a “prime factorization” for
polynomials.

C. Projective Representations

The final topic which should be introduced are pro-
jective representation of finite abelian groups. Bosonic
SPTs in 1D are classified by the projective representa-
tions of their symmetry group on the edge2,32. Similarly,
subsystem SPTs for which the subsystems terminate lo-
cally on the edges (i.e. line-like subsystems) may also
be described by projective representations of a subexten-
sively large group on the edge39,47. The same is true for
fractal subsystem symmetries59.

Let G by a finite abelian group. A non-projective (also
called linear) representation of G is a set of matrices V (g)
for g ∈ G that realize the group structure: V (g1)V (g2) =
V (g1g2) for all g1, g2 ∈ G. A projective representation is
one such that this is only satisfied up to a phase factor,

V (g1)V (g2) = ω(g1, g2)V (g1g2) (10)

where ω(g1, g2) ∈ U(1) is called the factor system of the
projective representation, and must satisfies the proper-
ties

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3)

ω(1, g1) = ω(g1, 1) = 1
(11)

for all g1, g2, g3 ∈ G. A different choice of U(1) prefac-
tors, V ′(g) = α(g)V (g) leads to the factor system

ω′(g1, g2) =
α(g1g2)

α(g1)α(g2)
ω(g1, g2). (12)

for V ′(g). Two factor systems related in such a way are
said to be equivalent, and belong to the same equivalence
class ω.

Suppose we have a factor system ω1(g1, g2) of equiv-
alence class ω1, and a factor system ω2(g1, g2) of class
ω2. A new factor system can be obtained as ω(g1, g2) =
ω1(g1, g2)ω2(g1, g2), which is of class ω ≡ ω1ω2. This
gives them a group structure: equivalence classes are in
one-to-one correspondence with elements of the second
cohomology group H2[G,U(1)], and exhibit the group
structure under multiplication.

In the case of finite abelian groups, a much simpler
picture may be obtained in terms of the quantities

Ω(g1, g2) ≡ ω(g1, g2)

ω(g2, g1)
(13)

which is explicitly invariant under the transformations
of Eq 12. They have a nice interpretation of being the
commutative phases of the projective representation

V (g1)V (g2) = Ω(g1, g2)V (g2)V (g1). (14)
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Ω(g1, g2) has the properties of bilinearity and skew-
symmetry in the sense that

Ω(g1g2, g3) = Ω(g1, g3)Ω(g2, g3) (15)

Ω(g1, g2g3) = Ω(g1, g2)Ω(g1, g3) (16)

Ω(g1, g2) = Ω(g2, g1)−1 (17)

These properties mean that Ω(g1, g2) is completely de-
termined by its value on all pairs of generators of G.
Suppose a1, a2 ∈ G are two independent generators
with orders n1, n2, respectively. Then, one can show
that Ω(a1, a2)n1 = Ω(a1, a2)n2 = 1, and so Ω(a1, a2) =
e2πiw/ gcd(a1,a2) for integer w. The value of w for every
pair of generators provides a complete description of the
projective representation, and each of them may be cho-
sen independently.

By the fundamental theorem of finite abelian groups,
G may be written as a direct product

G = Zn1 ⊗ Zn2 ⊗ · · · ⊗ ZnN (18)

where each ni are prime powers. Let ai be the gener-
ator of the ith direct product of G with order ni, and
define mij through Ω(ai, aj) = e2πimij/ gcd(ni,nj). Each
choice of 0 ≤ mij < gcd(ni, nj) for i < j corresponds
to a distinct projective representation. Indeed, apply-
ing the Kunneth formula, one can compute the second
cohomology group

H2[G,U(1)] =
∏
i<j

Zgcd(ni,nj) (19)

There is therefore a one-to-one correspondence between
choices of {mij} and elements of H2[G,U(1)].

Hence, we may simply refer to the commutative phases
Ω(g1, g2) of the generators, {mij}, as a proxy for the
whole projective representation.

D. 1D SPTs and twist phases

Let us now connect our discussion of projective repre-
sentations to the classification of 1D SPT phases. There
are various ways this connection can be made, for in-
stance, by looking at edges or matrix product state
representations3,32. Here, we will be using symmetry
twists2,32–38, which turn out to be a natural probe in
the case of 2D fractal symmetries59.

Suppose we have a 1D SPT described by the unique
ground state of the local Hamiltonian H and global on-
site symmetry group G. Let us take the chain to be of
length Lx (taken to be large) with periodic boundary
conditions. The symmetry acts on the system as

S(g) =

Lx−1∏
i=0

ui(g) (20)

for g ∈ G, where ui(g) is the on-site unitary linear rep-
resentation of the symmetry element g on site i, and

[H,S(g)] = 0. A local Hamiltonian may always be writ-
ten as

H =

Lx−1∑
i=0

Hi (21)

where the sum is over local terms Hi with support only
within some O(1) distance of i.

The twisting procedure begins by constructing a new
Hamiltonian, Htwist(g), for a given g ∈ G. We pick a
cut across which to apply the twist, xcut, which can be
arbitrary. Then, define the truncated symmetry operator

S≥(g) =

xcut+R∏
i=xcut

ui(g) (22)

for some 1� R� Lx. The twisted Hamiltonian is given
by

Htwist(g) =

Lx−1∑
i=0

{
S≥(g)HiS≥(g)† if Hi crosses xcut

Hi else

(23)
thus, the Hamiltonian is modified for Hi near xcut, but
remains the same elsewhere.

We can now define the twist phase

T (g1, g2) =
〈S(g1)〉Htwist(g2)

〈S(g1)〉H
(24)

which is a pure phase representing the charge of the sym-
metry g1 in the ground state of the g2 twisted Hamilto-
nian, relative to in the untwisted Hamiltonian. Here,
〈O〉H means that expectation value of the operator O in
the ground state of the Hamiltonian H. It is straightfor-
ward to show that T (g1, g2) does not depend on where
we place the cut, xcut (this fact will be used to our ad-
vantage when twisting fractal symmetries). The set of
twist phases T (g1, g2) is a complete characterization of
the state. Indeed, the correspondence of the twist phases
to the projective representation characterizing a phase
can be made by simply

Ω(g1, g2) = T (g1, g2). (25)

as such, we refer to Ω(g1, g2) itself as the twist phases.
An alternate, but equivalent, view is to examine the

action of S≥(g2) on the ground state |ψ〉. The action of
S≥(g2) on |ψ〉 must act as identity on the majority of the
system, except near xcut and xcut +R, where it may act
as some unitary operation,

S≥(g2) |ψ〉 = Ug2Ũg2 |ψ〉 . (26)

where Ug2 acts near xcut, and Ũg2 acts near xcut + M .
Then, the twisted Hamiltonian acting on the ground state
can be thought of as

Htwist(g2) |ψ〉 = Ug2HU
†
g2 |ψ〉 (27)
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such that the ground state of Htwist(g2) is given by
Ug2 |ψ〉. The twist phase is then given by

Ω(g1, g2) =
〈ψ|U†g2S(g1)Ug2 |ψ〉
〈ψ|S(g1) |ψ〉

= 〈ψ|S(g1)†U†g2S(g1)Ug2 |ψ〉
(28)

which measures the charge of the excitation created by
Ug2 under the symmetry S(g1). Thus, all information
regarding the phase is contained within this local unitary
matrix Ug2 that appears due to a truncated symmetry
operator.

III. FRACTAL SYMMETRIES

We can now discuss fractal symmetries. The fractal
symmetries we consider may be thought of as a combi-
nation of an on-site symmetry group imbued with some
spatial structure.

Let us first consider a system with one fractal symme-
try, described by the cellular automaton polynomial f(x)
over Fp, which we will denote by

G = Z(f,y)
p (29)

which means that the on-site symmetry group is Zp, while
the superscript, (f, y), denotes the associated spatial
structure: f denotes a cellular automaton described by
the polynomial f(x), and y denotes the positive “time”
direction of this cellular automaton (in this case, the pos-
itive y direction).

Our systems have degrees of freedom placed on the
sites of an Lx×Ly square lattice with periodic boundary
conditions. Each site is labeled by its index along the x
and y direction, (i, j), and transforms as an on-site linear
representation uij(g) under g ∈ G. For simplicity, we will
only consider the cases where Lx = pN is a power of p,
and Ly chosen such that f(x)Ly = 1. The latter is not
difficult to accomplish, as f(x)Lx = f(xLx) = f(1), so we
may simply choose Ly = kLx > 0 such that f(1)k = 1.
Note that reversibility of f(x) implies f(1) 6= 0.

The symmetries of the system are in one-to-one cor-
respondence with valid space-time histories of the cellu-
lar automaton. The choices of Lx and Ly made earlier

means that any state a(0) (on a ring of circumference Lx)
is cyclic in time with period dividing Ly: a(Ly) = a(0).

Given a valid trajectory a(j), the operator
∏
ij uij(g

a
(j)
i )

for g ∈ G represents a valid symmetry operator. The en-
tire space-time trajectory a(j) is determined solely by its
state at a particular time j0, a(j0), which can be in any
of pLx states. The total symmetry group will therefore
be given by Gtot = (Zp)Lx .

Let us identify a particular element g as a generator
for Zp. Then, let a set of Lx generators for Gtot = ZLxp ,

defined with respect to j0, be {g(j0)
i }0≤i<Lx . We may then

define a vectorial representation of group elements via

j0

j0

i

S(g(a, j0)
i )

S(g(b, j0)
i )

FIG. 1. Example of a symmetry generator (top) S(g
(a,j0)
i )

or (bottom) S(g
(b,j0)
i ) for the fractal generated by f(x) =

x̄ + 1 + x with p = 2. Sites with blue or red squares are
acted on by uij(g

(a)) or uij(g
(b)), respectively, and form a

valid space-time trajectory of a cellular automaton.

the one-to-one mapping from vectors v ∈ FLxp to group
elements,

g(j0)[v] =

Lx−1∏
i=0

(g
(j0)
i )vi ∈ Gtot (30)

The action of each of these symmetry elements on the
system is defined as

S(g(j0)[v]) =

Lx−1∏
j=0

uj [g ;F j−j0v] (31)

where we have introduced the vectorial representation for
uij(g) on a row j,

uj [g ; v] ≡
Lx−1∏
i=0

uij(gvi) (32)

Thus, S(g(j0)[v]) is the unique symmetry operator that
acts as uj(g)[v] on the row j0. It can be viewed as the
symmetry operation corresponding to the space-time tra-
jectory of a CA which is in the state v at time j0. Because
f(x)Ly = 1 due to our choice of Lx and Ly, any initial
state is guaranteed to come back to itself after time Ly,
representing a valid cyclic space-time trajectory.

We may choose as a generating set the operators de-
fined with respect to row j0,

S(g(j0)[ei]) = S(g
(j0)
i ) (33)

where ei is the unit vector (ei)i′ = δii′ . These act on only
a single site on the row j0, and an example of which is
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shown in Figure 1 (top). However, notice that this choice
of basis is only “most natural” when viewed on the row
j0. Suppose we wanted to change the row which we have
defined our generators with respect to from j0 to j1. How
are the new operators related to our old ones? Well, one
can readily show that

S(g(j1)[v]) =
∏
j

uj [g ;F j−j1v] (34)

=
∏
j

uj [g ;F j−j0F j0−j1v] (35)

= S(g(j0)[F j0−j1v]) (36)

is simply related via multiplication of v by powers of F .
Thus,

g(j1)[v] = g(j0)[F j0−j1v] (37)

In general, we can have systems with multiple sets of
fractal symmetries. The other main situation we consider
is the case of two fractal symmetries of the form

G = Z(f,y)
p × Z(f̄ ,ȳ)

p (38)

where x̄ ≡ x−1 and f̄(x) ≡ f(x̄). This is the form
of fractal symmetry known to protect non-trivial frac-
tal SPTs59,60. The first fractal represents a CA evolving
in the positive y direction with the rule f(x), and the sec-
ond represents a CA evolving in the opposite y direction
with the rule f̄(x) (they are spatial inversions of one an-
other). In this case, we have one generator from each Zp,
g(a) and g(b), and we can define two sets of fractal sym-
metry generators as above with respect to a row j0. Let

us call the two sets of generators {g(a,j0)
i }i and {g(b,j0)

i }i,
and define their corresponding vectorial representation.
A general a or b type symmetry acts as

S(g(a,j0)[v]) =

Lx−1∏
j=0

uj [g
(a);F j−j0v]

S(g(b,j0)[v]) =

Lx−1∏
j=0

uj [g
(b); (F T )j0−jv]

(39)

where we have used the fact that the matrix form of
f̄(x) is given by F T . A generator for an a and a b type
symmetry are shown in Figure 1. The generalization of
Eq 37 for moving to a new choice of basis j1 for an a or
b type symmetry is

g(a,j1)[v] = g(a,j0)[F j0−j1v]

g(b,j1)[v] = g(b,j0)[(F T )j1−j0v]
(40)

IV. LOCAL PHASES

Consider performing the symmetry twisting experi-
ment on a system with fractal symmetries. We can view

the system as a cylinder with circumference Lx and con-
sider twisting the symmetry as discussed in Sec II D. We
separately discuss the cases of one or two fractal sym-
metries of a specific form first, and then go on to more
general combinations. Our main findings in this section
are summarized as:

1. For the case of one fractal symmetry, G = Z(f,y)
p ,

no non-trivial SPT phases may exist

2. For the case of two fractal symmetries, G = Z(f,y)
p ×

Z(f̄ ,ȳ)
p , if we only allow for locality up to some

lengthscale `, then there are a only a finite num-
ber of possible SPT phases (scaling exponentially
in `2)

3. For the case of more fractal symmetries, it is suf-
ficient to identify pairs of symmetries of the form

Z(f,y)
p × Z(f̄ ,ȳ)

p , and apply the same results from
above.

A. One fractal symmetry

Let us take G = Z(f,y)
p and consider twisting by a

particular element g
(j0)
i ∈ Gtot. Since the twist phase

doesn’t depend on the position of the cut, we can choose
to make the cut on the row jcut = j0. The twisted

HamiltonianHtwist(g
(j0)
i ) is then obtained by conjugating

terms in the Hamiltonian which cross jcut by the trun-

cated symmetry operator S≥(g
(j0)
i ).

Let the Hamiltonian be written as a sum

H =
∑
i,j

Hij (41)

where each Hij is a local term with support near site

(i, j). Now, consider twisting the Hamiltonian by g
(j0)
i

across the cut which also goes along the row j0. As can

be seen in Figure 2 (left), S≥(g
(j0)
i ) acts on a single site

on row j0, and extends into the fractal structure on the

rows above. The important point is that S≥(g
(j0)
i ) only

acts differently from an actual symmetry operator at the
point (i, j0) (and on some row j0 + R far away). Thus,
the twisted Hamiltonian may be written as

Htwist(g
(j0)
i ) |ψ〉 = U

g
(j0)
i

HU†
g
(j0)
i

|ψ〉 (42)

when acting on the ground state |ψ〉, for some unitary
U
g
(j0)
i

with support near the site (i, j0). Note that there

is always some freedom in choosing this unitary.
Then, consider measuring the charge of a symmetry

g
(j0−ly)
i′ in response to this twist, as in Eq 28. Clearly,

only those symmetry operators whose support overlaps
with the support of U

g
(j0)
i

may have picked up a charge.

Suppose the support of every U
g
(j0)
i

is bounded within

some (2lx+1)× (2ly +1) box centered about (i, j0), such
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that only sites (i′, j′) with |i′ − i| ≤ lx and |j′ − j0| ≤ ly
lie in the support. As can be seen in Figure 2 (left),

S(g
(j0−ly)
i′ ) only overlaps with this box for i′ in the range

−lx − 2lykb ≤ i′ − i ≤ lx − 2lyka (43)

and therefore, Ω(g
(j0−ly)
i′ , g

(j0)
i ) may only be non-trivial if

i′− i is within some small range. This places a constraint
on the allowed twist phases. In addition, this must be
true for all choices of j0. It turns out this is a very strong
constraint, and eliminates all but the trivial phase in the

case of G = Z(f,y)
p , and only allows a finite number of

specific solutions for the case G = Z(f,y)
p × Z(f̄ ,ȳ)

p , as we
will show.

We also do not strictly require that the support of
U
g
(j0)
i

be bounded in a box. This will generally not be the

case, as the operator may have an exponentially decay-
ing tail. Consider a unitary U which has some nontrivial
charge eiφ 6= 1 under S, meaning

SUS† = eiφU (44)

when acting on the ground state. Clearly, if the sup-
port of U and S are disjoint, this cannot be true. Next,
consider any decomposition of U into a sum of matrices
Uk, U =

∑
k Uk, and suppose that some of the Uk had

disjoint support with S. Then, we may write

U =
∑
k∈D

Uk +
∑
k∈D

Uk (45)

where k ∈ D are all the k for which Uk and S have disjoint
support, and k ∈ D are all the k for which they do not.
But then

SUS† =
∑
k∈D

SUkS
† +

∑
k∈D

Uk (46)

6= eiφU (47)

as the disjoint component has not picked up a phase eiφ,
and SUkS

† for k ∈ D cannot have disjoint support with S
(since only identity maps to identity under unitary trans-
formations) and so can’t affect the disjoint component of
U . Thus, let us define a subset of sites, A(U), defined as

A(U) =
⋂

decomps
U=

∑
k Uk

⋂
k

Supp(Uk) (48)

where the first intersection is over all possible decomposi-
tions U =

∑
k Uk, and Supp(Uk) is the support of Uk (the

subset of sites for which it acts as non-identity). U can
only have nontrivial charge under S ifA(U) overlaps with
the support of S. In our case, lx and ly should actually
be chosen such that A(U

g
(j0)
i

) may always be contained

within the (2lx+1, 2ly+1) box. An exponentially decay-
ing tail of U is therefore completely irrelevant, as A(U)

only cares about the smallest part, before the decay be-
gins. The exact value of lx or ly is not too important —
what is important is that it is finite and small.

We also note that the twist phases obtained when
twisting along a cut in the y direction will be different,
but are not independent of our twist phases for a cut
along the x direction. To see why this is, consider a
truncated symmetry operator which has been truncated
by a cut in the y direction. This may alternatively be
viewed as an untruncated symmetry operator, multiplied

by S≥(g
(j)
i at various (i, j)s located near the cut. The

action of twisting this symmetry for a cut along the y
direction is then also fully determined by the same set
of U

g
(j)
i

from before, and is therefore not independent of

the twist phases for a cut along the x direction. Thus,
it is sufficient to examine only the set of twist phases for
a cut parallel to x, as we have been discussing. As we
chose y to be the “time” direction of our CA, twisting
along the x direction is far more natural.

Let us make some definitions which will simplify this
discussion. Notice that Ω(g(j0)[v], g(k0)[w]) may be de-
scribed by the bilinear form FLxp ×FLxp → Fp represented

by the skew-symmetric matrix W (j0,k0) ∈ FLx×Lxp de-
fined according to

Ω(g(j0)[v], g(k0)[w]) = e
2πi
p vTW (j0,k0)w (49)

and that W (j0,k0) for any (j0, k0) contains full informa-
tion of the twist phases. Furthermore, since g(j1)[v] =
g(j0)[F j0−j1v], we can deduce that W transforms under
this change of basis as

W (j1,k1) = (F j0−j1)TW (j0,k0)F k0−k1 (50)

We say that a matrix W (j0−ly,j0), for a particu-
lar choice of j0, is local if its only non-zero elements

W
(j0−ly,j0)
i′i 6= 0 are within a small diagonal band given

by Eq 43. A stronger statement, which we will call con-
sistent locality, is that this is true for all j0. The matrix
W (j0−ly,j0) for a physical state must be consistently lo-
cal.

Let us adopt a polynomial notation which will be useful
to perform computations. We may represent the matrix
W (j0,k0) by a polynomial W (j0,k0)(u, v) over Fp as

W (j0,k0)(u, v) =
∑
ii′

W
(j0,k0)
i′i ui

′
vi

′−i (51)

with periodic boundary conditions uLx = vLx = 1. Lo-
cality is simply the statement that the powers of v in
this polynomial must be bounded by Eq 43 (modulo Lx).
Now, consider what happens to this polynomial as we
transform our basis choice from j0 → j0 − n,

W (j0−n−ly,j0−n)(u, v) = f(v)nf(ūv̄)nW (j0−ly,j0)(u, v)
(52)

which must be local for all n if W (j0−ly,j0)(u, v) is to be
consistently local.
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Let us start with j0 = 0, and suppose that we have
some W (−ly,0)(u, v) that is non-zero and local. By lo-
cality, W (−ly,0)(u, v) may always be brought to a form
where the powers of v are all within the range given by
Eq 43. Let va and vb be the smallest and largest pow-
ers of v in W (ly,0)(u, v) once brought to this form, which
must satisfy

−lx − 2lykb ≤ a ≤ b ≤ lx − 2lyka (53)

Now, consider W (−ly−n,−n)(u, v) for small n,

W (−ly−n,−n)(u, v) = f(v)nf(ūv̄)nW (ly,0)(u, v) (54)

which (by adding degrees) will have va−nδf and vb+nδf

as the smallest and largest powers of v, where δf =
deg(x−kaf(x)) > 0. The smallest and largest powers will
therefore keep getting smaller and larger, respectively, as
we increase n. Thus, there will always be some finite n
beyond which locality is violated, and so W (−ly,0)(u, v)
can never be consistently local. The only consistently
local solution is therefore given by W (−ly,0)(u, v) = 0,
which corresponds to the trivial phase. We have there-
fore shown that no non-trivial local SPT phase can exist

protected by only G = Z(f,y)
p symmetry.

B. Two fractal symmetries

Let us now consider the more interesting case, G =

Z(f,y)
p ×Z(f̄ ,ȳ)

p , for which we know non-trivial SPT phases
can exist. In this case, we have the symmetry generators

g
(α,j0)
i for α ∈ {a, b}, and 0 ≤ i < Lx. As we showed

in the previous section, the twist phase between two a
or two b symmetries must be trivial. The new ingredient
comes in the form of non-trivial twist phases between a
and b symmetries.

As can be seen in Fig 2, by the same arguments as
before, the twist phase

Ω(g
(b,j0+ly)
i′ , g

(a,j0)
i ) (55)

may only be non-trivial if i′ − i lies within some finite
range,

−lx + 2lyka ≤ i′ − i ≤ lx + 2lykb. (56)

Let us again define the matrix W (k0,j0), but this time
only between the a and b symmetries via

T (g(b,k0)[w], g(a,j0)[v]) = e
2πi
p wTW (k0,j0)v (57)

note that W (k0,j0) need not be skew-symmetric like be-
fore. From Eq 40, the changing of basis is given by

W (k1,j1) = F k1−k0W (j0,j1)F j0−j1 (58)

We are looking for matrices W
(j0+ly,j0)
i′i which are local

(only non-zero within the diagonal band Eq 56), and also

consistently local, meaning that this is true for all j0.
Starting with j0 = 0, then, we are searching for a local
matrix W (ly,0), for which

W (ly+n,n) = F nW (ly,0)F−n (59)

is also itself local for all n.
Let us again go to a polynomial representation

W (ly,0)(u, v) =
∑
i′i

W
(ly,0)
i′i ui

′
vi

′−i (60)

which leads to the relation

W (ly+n,n)(u, v) = f(v)−nf(uv)nW (ly,0)(u, v) (61)

which must have only small (in magnitude) powers of v
for all n. However, f(v)−1 ≡ f(v)Ly−1 contains arbitrar-
ily high powers of v, and therefore simply adding degrees
as before does not work and we may expect that a generic
W (ly,0)(u, v) will become highly non-local immediately.
Instead, what must be happening is that, at each step,
f(uv)W (j0+ly,j0)(u, v) must contain some factor of f(v)
(when viewed as a polynomial without periodic bound-
ary conditions) such that the f(v)−1 can divide out this
factor cleanly, producing a local W (j0+1+ly,j0+1)(u, v).

How does this work in the case of the known frac-
tal SPT59? In that case, W (0,0) is already local and is
given by the identity matrix. Then, clearly W (n,n) =
W (0,0) as it is invariant under Eq 59, and remains lo-
cal for all n. In the polynomial language, the iden-
tity matrix corresponds to the polynomial W (0,0)(u, v) =∑
i u

i, which has the property of translation invari-

ance: W (0,0)(u, v) = uW (0,0)(u, v). In this case,
f(uv)W (0,0)(u, v) = f(v)W (0,0)(u, v), and so can be
safely multiplied by f(v)−1. In fact, any translation in-
variant solution, W (0,0)(u, v) = g(v)

∑
i u

i for any g(v),
is invariant under multiplying by f(v)−1f(uv).

We now state the main result of this paper: a special
choice of basis functions vkKm(u, v) with the property
that W (u, v) is consistently local if and only if in the
unique decomposition

W (u, v) =

Lx−1∑
k=0

Lx−1∑
m=0

Ck,mv
kKm(u, v) (62)

where Ck,m ∈ Fp are constants, each Ck,mv
kKm(u, v) is

itself individually local. Km(u, v) is given by

Km(u, v) = (u− 1)Lx−1−mVm(v) (63)

Vm(v) =

Nf−1∏
i=0

fi(v)mi (64)

where fi(x) are the Nf unique irreducible factors of

the polynomial f̃(x) ≡ x−kaf(x) appearing ri times,

f̃(x) =
∏
i fi(x)ri , and mi = bm/pαicpαi where αi is

the power of p in the prime decomposition of ri. The
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j0
j0 − ly

i i′�

j0

j0 + ly

i i′�

S≥ (g(a, j0)
i )

S (g (a, j0−ly)
i′� )

S≥ (g(a, j0)
i )

S (g (b, j0+ ly)
i′� )

FIG. 2. Measurement of the twist phases for (left) Ω(g
(a,j0−ly)

i′ , g
(a,j0)
i ) and (right) Ω(g

(b,j0+ly)

i′ , g
(a,j0)
i ). Due to locality, the

twist phase may only be non-trivial if the support of (left) S(g
(a,j0−ly)

i′ or (right) S(g
(b,j0+ly)

i′ ) has some overlap with the yellow
box of size (2lx + 1)× (2ly + 1) about (i, j0). This implies that the twist phase must be trivial for i′ outside of a small region
around i, a property which we call locality. However, this must be true for all choices of j0, which greatly constrains the allowed
twist phases. In the case of twist phases between the same type of symmetry (left), only the trivial set of twist phases, all

Ω(g
(a,j0−ly)

i′ , g
(a,j0)
i ) = 1 is allowed. Between an a and a b type symmetry (right), we show that only a finite number of solutions

exist.

proof of this is rather technical and is delegated to Sec-
tion IX. Thus, any phase can simply be constructed by
finding all vkKm(u, v) that are local, and choosing their
coefficients Ck,m freely.

Let us go back to the matrix representation, and de-
fine the corresponding matrices K(k,m) ↔ vkKm(u, v),
following the same mapping as Eq 60. The elements of

the matrix K
(k,m)
i′i are non-zero if and only if k ≤ i′− i ≤

k+Dm, where Dm is the degree of Vm(v). Dm increases
monotonically with m, and is bounded by Dm ≤ mδf .
This bound is saturated when v−kaf(x) is a product of
irreducible polynomials, each of which appear only once.
Our main result (Theorem IX.1) states that any consis-
tently local W (ly,0) can be written as a linear sum of local
K(k,m). Thus, it is straightforward to enumerate all pos-
sible W (ly,0), which is simply all matrices in the subspace
of FLx×Lxp spanned by the set of local K(k,m) (note that

the full set of {K(k,m)}km for all 0 ≤ k,m < Lx forms a
complete basis for this space). Figure 3 shows K(0,m) for
m = 0, 1, 2, 3 for a specific example, and how they evolve
from one row to the next while maintaining locality.

A property of the matrices K(k,m) is that they are peri-

odic with period pNm , meaningK
(k,m)

i+pNm ,i′+pNm
= K

(k,m)
ii′ ,

where Nm ≡ dlogp(m+ 1)e. They also have cycles of pe-

riod pNm , meaning K(k,m) = F pNmK(k,m)F−p
Nm

. Since
Dm increases monotonically with m, only m up to some
maximum value, M , are local and may be included in

W (ly,0). We therefore see that W (ly,0) must be periodic
with period pNM . Thus, locality enforces that the projec-
tive representation characterizing the phase, W (ly,0), be
pNM -translation invariant! This is a novel phenomenon
that does not appear in, say, subsystem SPTs with line-
like symmetries where the projective representation does
not have to be periodic (and as a result there are an in-
finite number of distinct phases in the thermodynamic
limit, even with a local model).

How many possible phases may exist for a given
(lx, ly)? This is given by the number of K(k,m) that can
fit within a diagonal band of width ` ≡ 1+2lx+4lyδf . For

each m, K(k,m) is local if 0 ≤ k < ` −Dm. Thus, there
are Cm ≡ max{` − mDm, 0} possible k values for each
m. The total number of local K(k,m) is then

∑
m Cm.

Consider the case where f(x) = xkaf1(x)f2(x) . . .
where each unique irreducible factor fi(x) only appears
once. Then, Dm = mδf . The total number of local

K(k,m) is then

Nloc =

∞∑
m=0

max {`−mδf , 0} (65)

=
δf
2
dCe (2C − dCe+ 1) (66)

where we have just summed m to infinity since ` �
Lx/δf , and C ≡ `/δf . Notice that Nloc only depends
only on the combination `, and not specifically what lx
and ly are. The W (ly,0) describing each phase is therefore
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K(0,0) K(0,1)

K(0,2)

K(0,3)

FIG. 3. Visualization of the matrices K(k,m) for the example of f(x) = 1 + x + x2 and p = 2, for k = 0 and m = 0, 1, 2, 3
(other k can be obtain by shifting every element k steps to the left). Each blue cell (i′, i), counting from the top left, represents

a non-zero matrix element K
(0,m)

i′i = 1. The arrows indicate evolution by K → FKF−1, under which they exhibit cycles of

period 2dlog2(m+1)e, as can be seen. Each of them are only non-zero about a small diagonal band (non-gray squares) of width

given by Dm = 1 + 2m. A K(k,m) is local if this white band fits inside some diagonal band (Eq 56). If a K(k,m) is local, then
it can be seen that under evolution it retains locality (the white band never gets larger), a property which we call consistent

locality. The main result of this paper is that any consistently local matrix can be written as a linear sum of local K(k,m).
Since there are only a finite number of local K(k,m), there are only a finite number of consistently local matrices that can be
written, and therefore a finite number of distinct phases in the thermodynamic limit. The number will depend on the choice
of (lx, ly), i.e. how local the model is. Notice that consistent locality is non-generic: if we just pick a local matrix by filling in
elements along the diagonal band at random, it will generically quickly become highly non-local after a few steps of evolution.

a linear sum of these Nloc matrices K(k,m), and so the to-
tal number of possible phases is pNloc . These phases are
in one-to-one correspondence with elements of the group
ZNlocp , and exhibit the group structure under stacking.
Note that this number is an upper bound on the number
of possible phases with a given (lx, ly).

Consider the example in Figure 3, which has f(x) =
1 + x + x2 and p = 2. Suppose we were interested in
phases that have locality (lx, ly) = (1, 0), then the matrix

W
(ly,0)
i′i may only be non-zero if −1 ≤ i′−i ≤ 1. The only

local K(k,m) matrices are then K(−1,0), K(0,0), K(1,0),
and K(−1,1). Then, our result (Theorem IX.1) states
that all consistently local W (ly,0) are a linear sum (with

binary coefficients) of these four K(k,m) matrices. There
are therefore only 24 possible phases, and they all have
twist phases that are periodic with a period of 2 sites (or
1 if the coefficient of K(−1,1) is zero).

C. More fractal symmetries

Beyond these two cases, we may imagine more general
combinations of fractal symmetries of the form

G =

N−1∏
i=0

Z(fi,y
ηi )

p (67)
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where we have N different fractals fi(x), which each have
positive time direction yηi given by ηi = ±1. We again
assume none of fi(x) are monomials. In this language,
the previous case of two fractal symmetries is given by
N = 2 with f0(x) = f1(x̄) = f(x), and η0 = −η1 = 1.
Note that we could have allowed p to vary among the
fractals — the reason we do not consider this case is
that the twist phases between generators of Zp and Zq
are gcd(p, q)th roots of unity, but since p and q are both
prime, this phase must be trivial.

By an argument similar to that given in Sec IV A, we
may show that any twist phase between the two genera-

tors of Z(fi,y
ηi )

p and Z(fj ,y
ηj )

p for which ηi = ηj must be
trivial. What about when ηi 6= ηj? In that case, we can
show that there may only exist non-trivial twist phases
between them if fi(x) = fj(x̄).

Suppose we have some matrix W (ly,0) describing

twist phases between symmetry generators of Z(fi,y
ηi )

p

and Z(fj ,y
ηj )

p . Going to a polynomial representation
W (ly,0)(u, v) (as in Eq 60), the change of basis to a dif-
ferent row is

W (ly+n,n)(u, v) = fi(uv)nfj(v̄)−nW (ly,0)(u, v) (68)

which must be local for all n. Suppose that W (ly,0)(u, v)

is pk-periodic, such that up
k

W (ly,0)(u, v) = W (ly,0)(u, v).
Then,

W (ly+npk,npk)(u, v) = (fi(v)p
k

fj(v̄)−p
k

)nW (ly,0)(u, v)
(69)

should also be local for all n (recall that locality in the
polynomial language is a statement about the powers

of v present). This implies that fi(v)p
k

fj(v̄)−p
k

= 1,

or fi(v
pk) = fj(v̄

pk). If pk � Lx, then this means
that we must have fi(x) = fj(x̄). In the case where
pk 6� Lx, we may simply consider larger system sizes
Lx, Ly → pmLx, p

mLy, but with the same periodicity pk,
and come to the same conclusion. Hence, there can only
exist non-trivial twist phases between symmetries with
fi(x) = fj(x̄) and ηi = −ηj .

For the more general group G in Eq 67, to find all
the possible phases with a fixed locality (lx, ly), we
should simply find all pairs (i, j) where ηi = −ηj and

fi(x) = fj(x̄), and construct a local W (ly,0) matrix for
each such (i, j) pair. Thus, the case with two fractal

symmetries G = Z(f,y)
p × Z(f̄ ,ȳ)

p already contains all the
essential physics.

V. CONSTRUCTING COMMUTING MODELS
FOR ARBITRARY PHASES

In this section, we show that it is indeed possible to re-
alize all the phases derived in the previous section for sys-

tems with two fractal symmetries, G = Z(f,y)
p ×Z(f̄ ,ȳ)

p , in
local Hamiltonians. We show how to construct a Hamil-
tonian, composed of mutually commuting local terms, for

an arbitrary phase characterized by the matrix W (ly,0).
These Hamiltonians are certainly not the most local mod-
els that realize each phase, but they are quite concep-
tually simple and the construction works for any given
W (ly,0).

Let us define Zp generalizations of the Pauli matrices
X and Z satisfying the following algebra,

XN = ZN = 1 (70)

XZ = e
2πi
p ZX (71)

and may be represented by a p × p diagonal matrix Z
whose diagonals are p-th roots of unity, and X as a cyclic
raising operator in this basis.

The local Hilbert space on each site (i, j) of the square
lattice is taken to be two such p-state degrees of freedom,
labeled a and b, which are operated on by the operators

Z
(α)
ij and X

(α)
ij , for α ∈ {a, b}. Each Z

(α)
ij only has non-

trivial commutations with X
(α)
ij on the same site and α.

Let us also define a vectorial representation of such
operators: functions of vectors v ∈ FLxp to operators on
the row j as

Z
(α)
j [v] =

Lx−1∏
i=0

(Z
(α)
ij )vi (72)

X
(α)
j [v] =

Lx−1∏
i=0

(X
(α)
ij )vi (73)

One can verify that the commutation relations in this
representation are

X
(α)
j [v]Z

(α)
j [w] = e

2πi
p vTwZ

(α)
j [w]X

(α)
j [v] (74)

for two operators on the same row j with the same α ∈
{a, b}, and trivial otherwise.

The onsite symmetry group is G = Z(f,y)
p ×Z(f̄ ,ȳ)

p . Let
us label the first Zp factor as a, and the second as b, and

let g(a) and g(b) be generators for the two. Then, we take
the onsite representation

uij(g
(α)) = X

(α)
ij (75)

As always, we take Lx to be a power of p, and Ly such
that f(x)Ly = 1. The total symmetry group is Gtot =
ZLxp ×ZLxp . An arbitrary element of the first ZLxp factor,
with basis defined with respect to row j0, is given by

S(g(a,j0)[v]) =

Ly−1∏
j=0

X
(a)
j [F j−j0v] (76)

and of the second by

S(g(b,j0)[v]) =

Ly−1∏
j=0

X
(b)
j [(F T )j0−jv] (77)
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Suppose we are given a consistently local matrix
W (ly,0) representing the twist phase. For convenience,
let us denote Wj ≡W (ly+j,j). Recall that consistent lo-
cality implies (Wj)i′i is only non-zero if i′ − i is within
some small range, for all j. Then, let us define the oper-
ators

Aij = X
(a)
j [ei]Z

(b)
j+ly

[−Wjei]Z
(b)
j+ly+1[FWjei]

Bij = X
(b)
j+ly

[ei]Z
(a)
j [−W T

j ei]Z
(a)
j−1[F TW T

j ei]
(78)

Notice that these are local operators, as Wj is consis-
tently local. Consider the Hamiltonian

H = −
∑
ij

Aij −
∑
ij

Bij . (79)

which we will now show is symmetric, composed of mu-
tually commuting terms, and has a unique ground state
which realizes the desired twist phase Wj .

First, let us show that Aij and Bij commute with all

S(g(a,j0)[v]) and S(g(b,j0)[v]). Note that Aij commutes
with all a type symmetries, and Bij commutes with all
b type symmetries trivially. To see that Aij commutes

with S(g(b,j0)[v]), note that the phase factor obtained by

commuting the symmetry through the Z
(b)
j+ly

term exactly

cancelled out by the phase from the Z
(b)
j+ly+1 term. In

the same way, it can be shown the Bij commutes with

all S(g(a,j0)[v]). Thus, H is symmetric.
Next, we verify that all terms are mutually com-

muting. One can verify that Aij and Bi′j with the
same j commutes, as the phases from commuting each
component individually cancels. For Aij and Bi′,j+1,
one finds that AijBi′,j+1 = αBi′,j+1Aij , where α =

e
2πi
p (eTi F

TWT
j+1ei′−e

T
i W

T
j FT ei′ ) = 1 using the fact that

W T
j+1 = (F−1)TW T

j F T . All other terms commute triv-
ially. Therefore, this Hamiltonian is composed of mu-
tually commuting terms. The set {Aij} ∪ {Bij} may
therefore be thought of as generators of a stabilizer
group, and the ground state is given by the unique state
|ψ〉 that is a simultaneous eigenstate of all operators,
Aij |ψ〉 = Bij |ψ〉 = |ψ〉. Uniqueness of the ground state
follows from the fact that all Aij and Bij are all inde-
pendent operators, which can be seen simply from the

fact that Aij is the only operator which contains X
(a)
ij ,

and Bi,j−ly is the only operator which contains X
(b)
ij (all

other operators act as Z
(α)
ij or identity on the site ij).

Let show that the ground state is uncharged under
all symmetries: S(g(α,j0)[v]) |ψ〉 = |ψ〉. We do this by
showing that every symmetry operation can be written
as a product of terms Aij and Bij in the Hamiltonian.
Let us define a vectorial representation for Aij and Bij ,

Aj [v] =
∏
i

Aviij = X
(a)
j [v]Z

(b)
j+ly

[−Wjv]Z
(b)
j+ly+1[FWjv]

Bj [v] =
∏
i

Bviij = X
(b)
j+ly

[v]Z
(a)
j [−W T

j v]Z
(a)
j−1[F TW T

j v]

(80)

and note that∏
j

Aj [F
j−j0v]

=S(g(a,j0)[v])
∏
j

Z
(b)
j+ly

[−WjF
j−j0v]Z

(b)
j+ly+1[FWjF

j−j0v]

=S(g(a,j0)[v])

×

∏
j

Z
(b)
j+ly

[−WjF
j−j0v]

∏
j

Z
(b)
j+ly

[WjF
j−j0v]


=S(g(a,j0)[v])

(81)

where we have again used the evolution equation Wj =
FWj−1F

−1. Similarly, we may show that∏
j

Bj [(F
T )j−ly−j0v] = S(g(b,j0)[v]) (82)

Thus, all symmetries may be written as a product of Aij
and Bij , so therefore the ground state |ψ〉 has eigenvalue
+1 under all symmetries.

Next, let us measure the twist phases to verify that
this model indeed describes the desired phase. Consider
twisting by the symmetry g(a,0)[ei]. Let us conjugate ev-
ery term in the Hamiltonian crossing the j = 0 cut by the
truncated symmetry operator S≥(g(a,0)[ei]). The only
terms which are affected by this conjugation are Bi′,0 for

which eTi W
T
0 ei′ = W

(ly,0)
i′i 6= 0, which are transformed

as

Bi′,0 → B′i′,0 = e−
2πi
p W

(ly,0)

i′i Bi′,0 (83)

on the zeroeth row, and B′i′,j = Bi′,j on all other j 6= 0,
in the twisted Hamiltonian. Now, we are curious about
the charge of a symmetry g(b,ly)[ei′ ] in the ground state
of this twisted Hamiltonian, which acts as

S(g(b,ly)[ei′ ]) =
∏
j

Bj [(F
T )jei′ ] (84)

= e
2πi
p W

(ly,0)

i′i
∏
j

B′j [(F
T )jei′ ] (85)

(86)

since the symmetry only includes a single Bi′,0 on the ze-
roeth row. Thus, the ground state of the twisted Hamil-
tonian (which has eigenvalue 1 under B′ij), has picked up

a nontrivial charge under the symmetry S(g(b,ly)[ei′ ]),
relative to in the untwisted Hamiltonian. Indeed, this
phase is

Ω(g
(b,ly)
i′ , g

(a,0)
i ) = e

2πi
p W

(ly,0)

i′i (87)

which is exactly as desired. Thus, this model indeed re-
alizes the correct projective representation and describes
the desired phase of matter.
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Note that these models bear resemblance to the cluster
state, and can be understood as a Zp version of the cluster
state on a particular bipartite graph. Suppose we have a
graph defined by the symmetric Zp-valued adjacency ma-
trix Adj(r, r′) ∈ Zp, where r, r′ label two particular sites.
Then, the Hamiltonian of a generalized cluster state on
this graph is given by

Hclus =
∑
r

UXrU
† (88)

where U =
∏
rr′(CZrr′)

Adj(r,r′), and CZrr′ is a general-
ized controlled-Z (CZ) operator on the bond connecting
sites r and r′. We define the Zp generalization of the CZ

operator by CZrr′ |zrzr′〉 = e
2πi
p zrzr′ |zrzr′〉, where |zrzr′〉

is the eigenstate of Zr and Zr′ with eigenvalues e
2πizr
p and

e
2πiz

r′
p respectively, such that CZrr′XrCZ†rr′ = XrZr′ .

Let us label a site by r = (i, j, α), its xy-coordinate and
its sublattice index α ∈ {a, b}. Then, the graph relevant
to this model is given by the adjacency matrix

Adj((i, j, a), (i′, j′, b)) =


(−Wj)i′i if j′ = j + ly
(FWj)i′i if j′ = j + ly + 1

0 else

= Adj((i′, j′, b), (i, j, a))

(89)

Hence, one can think of each site (i, j, a) as being con-
nected to sites (i′, j+ly, b) by the adjacency matrix given
by −Wj , and also sites (i′, j+ ly+1, b) via FWj . Gener-
ically, this graph will be complicated and non-planar.

VI. IRREVERSIBILITY AND
PSEUDOSYMMETRIES

In this section, we discuss fractal symmetries described
by a non-reversible linear cellular automaton (for which
fractal SPTs do still exist59,60), or even originally re-
versible cellular automata that become irreversible when
put on different system sizes (e.g. Lx or Ly that are not
powers of p).

Fractal symmetries are drastically affected by the total
system size. For example, consider the Sierpinski fractal
SPT59, which is generated by a non-reversible f(x) =
1 + x with p = 2, on a lattice of size Lx = Ly = 2N . In
this scenario, there are no non-trivial symmetries at all!
The total symmetry group Gtot = Z1 is simply the trivial
group. Yet, we can still define large operators that in the
bulk look like symmetries (i.e. they obey the local cel-
lular automaton rules), but violate the rules only within
some boundary region. The total symmetry group being
trivial may be thought of as simply an incommensurabil-
ity effect, whereby the space-time trajectory of the CA
cannot form any closed cycles. Thus, there is still a sense
in which this model obeys a symmetry locally. This ef-
fect is exemplified when one notices that, upon opening

boundary conditions, there are no obstacles in defining
fractal symmetries and non-trivial SPTs. In this way, it
should still be possible to extract what the SPT phase
“would have been” if the CA rules had been reversible
or if the total system sizes had been chosen more appro-
priately such the total symmetry group had been non-
trivial. To generalize away from the fixed point and to
an actual phase, we must formulate what it means for a
perturbation to be “symmetric” in a system with a po-
tentially trivial total symmetry group. We will say that
such a model is symmetric under a pseudosymmetry, as
a symmetry of the full system may not even exist. Thus,
a system may respect a pseudosymmetry, and be in a
non-trivial pseudosymmetry protected topological phase
(pseudo-SPT), despite not having any actual symmetries!

Let us define what we mean when we say that a
system is symmetric under a fractal pseudo-symmetry.
Let us work in the case of two fractal symmetries, so

G = Z(f,y)
p × Z(f̄ ,ȳ)

p . As always, we may decompose the
Hamiltonian into a sum of local terms

H =
∑
ij

Hij (90)

where each Hij has support within some bounded box.
Suppose Hij has support only on sites with (x, y) coordi-
nates i0 ≤ x ≤ i1 and j0 ≤ y ≤ j1, where `x ≡ i1− i0 and
`y ≡ j1−j0 are of order 1. Then, we say that Hij is sym-
metric under the fractal pseudo-symmetry if it commutes
with every

S̃
(a,j0,j1)
i =

j1∏
j=j0

uj [g
(a);F j−j0ei] ; i0 − kb`y ≤ i ≤ i1 − ka`y

S̃
(b,j1,j0)
i =

j1∏
j=j0

uj [g
(b); (F T )j1−jei] ; i0 + ka`y ≤ i ≤ i1 + kb`y

(91)

which is enough to replicate how any fractal symmetry
would act on this lx× ly square, if they existed for the to-
tal system. Notice that these only involve positive powers
of F , as we do not assume an inverse exists. Thus, even in
the extreme case where Gtot is trivial, a Hamiltonian may
still be symmetric under the fractal pseudo-symmetry G
in this way. In the opposite extreme case where f(x) is
reversible and Gtot = GLx (as was the topic of the rest of
this paper), Hij commuting with all pseudo-symmetries
is equivalent to it commuting with all the fractal symme-
tries in Gtot. Thus, it is natural to expect that pseudo-
symmetries may also protect non-trivial SPT phases.

Indeed, notice that one can perform a twist of a
pseudo-symmetry. Given a cut, j0, we may use the oper-

ator S̃
(a,j0,j0+M)
i , for some 1�M � Lx, in place of the

truncated symmetry operator S≥(g
(a,j0)
i ) from Sec IV.

This can be used to obtain a twisted Hamiltonian as be-
fore by conjugating each term

Hij → S̃
(a,j0,j0+R)
i Hij(S̃

(a,j0,j0+R)
i )† (92)



14

for some 1 � R � Lx if Hij crosses j0. Each Hij

commuting with all their respective pseudo-symmetries
(Eq 91) means that the only terms which may no com-

mute with S̃
(a,j0,j0+R)
i are those near (i, j0) and those at

the far-away row j0 + R which are not affected by the
twisting process.

Measuring the charge of a pseudo-symmetry is a trick-
ier process, since there is no “symmetry operator” which
we can measure the charge of in the ground state. Hence,
the charge of a pseudo-symmetry is not so well de-
fined. However, we may still measure the charge rel-
ative to what it would be in the ground state on the
untwisted Hamiltonian, |ψ〉, which turns out to be well
defined. One approach is to again express the twisted
process as the action of some local unitary near (i, j0),
Htwist |ψ〉 = UHU† |ψ〉, where as before A(U) is con-
tained within some (2lx + 1) × (2ly + 1) box (A(U) is
defined in Eq 48). If the support of U were entirely in
this box, then we could measure the change in the charge
of a b type symmetry by

Ω
(j0+ly,j0)
i′i = 〈ψ|S†U†SU |ψ〉 (93)

where S = S̃
(b,j0+ly,j0)
i′ , and |ψ〉 is the ground state of

H (for convenience we have suppressed the dependence
of U and S on i, i′, etc). However, if the support of U
is not confined to this box, this expectation value may
not yield a pure phase. One solution is to use a family
of larger pseudo-symmetry operators which act the same
way within A(U), and take the limit of the sizes going
to infinity. For example, using S(n) instead of S in the
above, defined as

S(n) ≡ S̃(b,j0+ly+pn,j0−pn)
i′+kapn

(94)

which is shown in Figure 4. For large n and i′ within

−lx + kaly ≤ i′ − i ≤ lx + kbly, (95)

this operator acts in the same way as S within A(U),
but is also a valid pseudo-symmetry operator elsewhere
as well, except on rows j0 + ly +pn and j0−pn which are
far away, as shown in Figure 4. Then, we may define

Ω
(j0+ly,j0)
i′i ≡ lim

n→∞
〈ψ|S(n)†U†S(n)U |ψ〉 (96)

which, in the large n limit (while keeping pn � Lx), is
a pure phase. In the case where Gtot = GLx , this will
coincide with the twist phases

Ω
(j0+ly,j0)
i′i = Ω(g

(b,j0+ly)
i′ , g

(a,j0)
i ) (97)

discussed earlier.
However, the key ingredient to showing that this

pseudo-SPT phase is truly stable to local pseudo-

symmetric perturbations is to show that Ω
(j1+ly,j1)
i′i for

all j1 is completely determined by its value at j0. Define
(like before) the matrix W (j1,j0) ∈ FLx×Lxp by

Ω
(j1,j0)
i′i = e

2πi
p W

(j1,j0)

i′i (98)

j0

j0 + ly + pn

S̃(a,j0,j0+ R)
i

i′�
j0 − pn

i i′� + kapn

S̃(b,j0+ ly+ pn ,j0− pn )
i′�+ kapn

U j0 + ly

FIG. 4. A visualization of the process to defining a twist

phase for pseudosymmetries S̃. Twisting with respect to

S̃
(a,j0,j0+R)
i can be thought of as acting via a unitary U ,

which has some region A(U) shown as the yellow square. To
measure the change in charge of another symmetry, we take
the expectation value of the commutator (Eq 96) of U with

S̃
(b,j0+ly+pn,j0−pn)

i′+kapn
, as shown, for large n. This may be non-

trivial for small |i′ − i| when they overlap, and is the sign of
a non-trivial pseudo-SPT.

Starting with j0 = 0, the matrix W (ly,0) would normally
be evolved to W (ly+1,1) using Eq 59. However, in this
case there is no inverse F−1 which we can use. Instead,
we have the relation

W (ly+1,0) = W (ly+1,1)F (99)

which does not uniquely determine W (ly+1,1), as we may
add vT to any row of W (ly+1,1), for v ∈ ker(F T ). How-
ever, it is easy to show that any v ∈ ker(F T )\{0} is
highly non-local, by which we mean that there are no in-
tegers a and b for which vi is only non-zero for a ≤ i ≤ b,
and 0 ≤ b − a � Lx (essentially, any non-zero vector
v for which F Tv = 0 needs to be exploiting the peri-
odic boundary conditions). Thus, adding any non-zero
vector v ∈ ker(FT ) to a row of a local W (ly+1,1) will
necessarily make it non-local. Thus, if there exist a lo-
cal matrix W (ly+1,1) satisfying Eq 99, then it is the only
local one. The matrices K(k,m) can be defined even for
irreversible f(x). Therefore, for a matrix W (ly,0) com-
posed of a sum of local K(k,m), a local W (ly+1,1) does
exist and is unique. This can be reiterated to uniquely
determine the set of local W (j0+ly,j0) for all j0, assuming
it is commensurate with the system size.

Thus, we have shown that Ω
(j0+ly,j0)
i′i is indeed a

global invariant (knowing it for one j0 determines it
for all j0). It therefore cannot be changed via a lo-
cal pseudo-symmetry respecting perturbation (or equiv-
alently a pseudo-symmetry respecting local unitary cir-
cuit), and such a phase can indeed be thought of as a
non-trivial pseudo-SPT.
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To define K(k,m) for cases where f(x) may not be re-
versible, we may simply note that each solution is pNm-
periodic in both directions. Thus, it is straightforward to
generalize K(k,m) for m where pNm divides Lx and Ly.
In the coming proof, we are careful to show that f(x) is
only ever divided out of polynomials of finite degree in x
which contained f(x) as a factor anyway, so polynomial
division by f(x) is remainder-less and results in another
polynomial. Thus, the results apply equally well for non-
reversible f(x), as long as Lx and Ly are commensurate
with the periodicity. This commensurability requirement
may greatly reduce the number of possible pseudo-SPT
phases, for example, if Lx or Ly are coprime to p, then
only m = 0 is allowed. Note that on such system sizes
is also possible to have periodicity that is not a power
of p in non-generic cases, for example, the special case
where f(x) = g(xν) is a function of only xν and ν is not
a power of p.

VII. IDENTIFYING THE PHASE

Suppose we are given an unknown system with G =

Z(f,y)
p × Z(f̄ ,ȳ)

p , how do we determine what phase it be-
longs to and how do we convey compactly what phase it
is in? Recall that for the case with line-like subsystem
symmetries (the topic of Ref 59), to describe a specific
phase required information growing with system size, and
so a modified phase equivalence relation was introduced
to deal with this. Such a modified phase equivalence was
not needed in this case, and we will show that indeed a
specific local phase may be described with a finite amount
of information. Suppose we are given an unknown Hamil-
tonian H. It is possible to compute the full set of twist
phases and construct the Lx × Lx matrix W (0,0). If
the only non-zero matrix elements of W (0,0) are within
some diagonal band, then we are set. Otherwise, find the
smallest integer ly ≥ 0 for which W (ly,0) = F lyW (0,0) is
only non-zero within a diagonal band of width ` ∼ O(1).
This is guaranteed to be the case for some ly (also of
O(1)) due to locality. Note that ` and ly are indepen-
dent of which row we call the zeroeth row. From the fact
that W (j0+ly,j0) must also be non-zero only within this
diagonal band for all j0, our main result (Theorem IX.1)
states that W (ly,0) must be a sum

W (ly,0) =
∑

(k,m)∈loc

CkmK(k,m) (100)

where Ckm ∈ Fp, and loc is the finite set of all pairs (k,m)

where K(k,m) is also only non-zero within the same band
of width `. Thus, this phase is specified fully by our
choice of origin, ly, and the finite set of non-zero Ckm.
Furthermore, this description does not depend on Lx and
Ly, and so it makes sense to say whether two systems of
different sizes belong to the same phase. However, note
that unlike with ordinary phases, the choice of origin is
important here. This procedure may also be done in cases

where the symmetry is irreversible, the matrix W (ly,0)

will instead be defined from the pseudo-symmetry twist

phases Ω
(ly,0)
i′,i .

VIII. DISCUSSION

We have therefore asked and answered the question
of what SPT phases can exist protected by fractal sym-

metries for the type G = Z(f,y)
p , G = Z(f,y)

p × Z(f̄ ,ȳ)
p ,

or combinations thereof. If we completely ignore local-
ity along the x direction, effectively compactifying our
system into a quasi-1D cylinder with global symmetry
group Gtot = GLx , we would have found that the possible
phases are classified by H2[GLx , U(1)] which is infinitely
large as Lx → ∞. What we have shown, however, is
that the vast majority of these phases require highly non-
local correlations that cannot arise from a local Hamil-
tonian. In the case of G = Z(f,y)

p , locality disqualifies all

but the trivial phase. In the G = Z(f,y)
p × Z(f̄ ,ȳ)

p case,
there exists multiple non-trivial phases that are allowed.
If we restrict the twist phases to be local up to some
degree, (lx, ly), then there are only a finite number of
possible phases, independent of total system size Lx and
Ly. The number of phases depends only on the combi-
nation ` ≡ 1 + 2lx + 4lyδf , which is linear in both lx
and ly (thus demonstrating a kind of holographic princi-
ple). For more general combinations of such fractal sym-
metries, we have shown that the classification of phases
simply amounts to finding pairs of fractal symmetries of

the form (Z(f,y)
p ,Z(f̄ ,ȳ)

p ) and repeating the analysis above.

Where do other previously discovered 2D systems with
fractal symmetries fall into our picture? The quantum
Newman-Moore paramagnet56 is described by the Hamil-
tonian

HNM = −
∑
ij

ZijZi,j+1Zi−1,j−1 − h
∑
ij

Xij (101)

Xij , Zij , are Pauli matrices acting on the qubit degree
of freedom on site (i, j). The symmetry in our nota-

tion is given by G = Z(f,y)
2 with f(x) = 1 + x (which is

irreversible). HNM has a phase transition from a spon-
taneously symmetry-broken phase at |h| < 1 to a trivial
symmetric paramagnet at |h| > 1. Our results would im-
ply that there can be no non-trivial SPT phase in this sys-
tem. Thus, all the possibilities in this model are different
patterns of broken symmetry. Next, we have the explicit
example of the 2D Sierpinski fractal SPT59,61 (which ap-
peared at a gapped boundary in Ref 60). This model is
isomorphic to the cluster model on the honeycomb lat-

tice, and is described by symmetries G = Z(f,y)
2 × Z(f̄ ,ȳ)

2

with f(x) = 1 + x. With proper choice of unit cell, the
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Hamiltonian is given by

Hclus = −
∑
ij

X
(b)
ij Z

(a)
ij Z

(a)
i,j−1Z

(a)
i−1,j−1

−
∑
ij

X
(a)
ij Z

(b)
ij Z

(b)
i,j+1Z

(b)
i+1,j+1

(102)

Notice that f(x) = 1 + x with p = 2 is irreversible for
all system sizes, thus these phases should be viewed as
pseudo-SPT phases (and indeed every term commutes
with all the pseudo-symmetries). Computing the pseudo-

SPT twist phases for Hclus gives Ω
(j,j)
i′i = (−1)δi′i . Thus,

we have simply W (0,0) = 1 = K(0,0). A translation in-
variant model must simply be a sum of K(k,0) and this
is indeed the case here. The family of 2D fractal SPT
models described in Ref 59 all realize W (0,0) = 1. Our
results here imply the existence of a number of new local
phases for which the Hamiltonian and twist phases are
not strictly translation invariant with period 1. Sec V
gave a construction of such models, which works even
when f(x) is not reversible. The twist phases for these
models may be translation invariant with a minimal pe-
riod of 2n sites along either x or y, but in exchange will
also require interactions of range O(2n).

We show explicitly in Fig 5 a few of these additional
phases that were previously undiscovered, which are rep-
resented as cluster models on various graphs. Recall that
the usual Z2 cluster model for on an arbitrary graph is
simply given by the Hamiltonian

Hclus = −
∑
v

Xv

∏
v′∈adj(v)

Zv′ , (103)

where the sum is over vertices v, and adj(v) is the set of
vertices connected to v by an edge.

A signature of subsystem SPT phases is an extensive
protected ground state degeneracy along the edge. That
is, for an edge of length Ledge, there is a ground state
degeneracy scaling as log GSD ∼ Ledge which cannot be
lifted without breaking the subsystem symmetries. The
dimension of the protected subspace may be thought of
as the minimum dimension needed to realize the pro-
jective representation characterizing the phase on the
boundary. For the case of the honeycomb lattice clus-
ter model (Fig 5a), we have exactly GSD = 2Ledge . For
the more complicated models, some of this degeneracy
may be lifted, leaving only a fraction GSD = 2αLedge re-
maining. Moreover, the degeneracy along the left or right
edges will also generally be different.

IX. PROOF OF RESULT

In this section, we will focus on proving the claim in
Sec IV B that any consistently local matrix W must be
a linear sum of K(k,m), each of which are local. We
will say that the set of matrices satisfying this property,
{K(k,m)}, serve as an optimal basis (this term will be

precisely defined soon). Recall that we are dealing with
the case where Lx = pN is a power of p and Ly is chosen
such that f(x)Ly = 1. We will simply use L to refer to
Lx in this section for convenience.

A. Definition and statement

We will be using the polynomial representation exclu-
sively. Let W (u, v) be a Laurent polynomial over Fp in
u and v representing the twist phases, defined accord-
ing to Eq 60. Formally, periodic boundary conditions
uL = vL = 1 means that we only care about the equiva-
lence class of W (u, v) in Fp[u, v]/〈uL − 1, vL − 1〉, where
〈uL− 1, vL− 1〉 is the ideal generated by these two poly-
nomials. Rather than dealing with equivalence classes,
we will instead deal with canonical form polynomials: a
polynomial q(u, v) is in canonical form if degu q(u, v) < L
and degv q(u, v) < L. Obviously, canonical form polyno-
mials are in one-to-one correspondence with equivalence
classes from Fp[u, v]/〈uL − 1, vL − 1〉. Any polynomial
with u or v-degree larger than L can be brought into
canonical form via simply taking ua = ua mod L and
va = va mod L. From now on, we will implicitly as-
sume all polynomials have been brought to their canoni-
cal form.

Let us now define what it means for a polynomial to
be local.

Definition IX.1. A Laurent polynomial g(u, v) is (a, b)-
local, for integers a ≤ b, if

degv v
−ag(u, v) ≤ b− a (104)

A Laurent polynomial g(u, v) being (a, b)-local roughly
means that the only non-zero powers of v are va, va+1,
. . . , vb (powers mod L). As a shorthand, we will more
often say that a polynomial is `-local to mean (0, `)-local,
which can be thought of as simply an upper bound on
its v degree. Whenever something is said to be `-local,
we are usually talking about ` � L being some finite
value of order 1. Some nice properties are that if g(u, v)
is (a, b)-local, then

1. vkg(u, v) is (a+ k, b+ k)-local;

2. g(u, v)g′(u, v) is (a + a′, b + b′)-local, if g′(u, v) is
(a′, b′)-local.

3. g(u, v)N is (Na,Nb)-local;

Next, let us define the “evolution operator” th with
respect to an (invertible) Laurent polynomial h(x) which
operates on a polynomial W (u, v) as

th : W (u, v)→ th(u, v)W (u, v); (105)

th(u, v) = h(v)−1h(uv) (106)

By invertible, we mean that there exists an inverse
h(v)−1 with periodic boundary conditions, such that
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(a) K(0,0) (b) K(−1,1)

(c) K(−1,2) (d) K(−2,3)

FIG. 5. Explicit examples of some possible phases for the case of G = Z(f,y)
2 ×Z(f̄ ,ȳ)

2 with f(x) = 1 + x: the Sierpinski triangle
symmetry. The models are constructed following the procedure of Sec V, and are simply cluster models defined on some
underlying graph. The models all have ly = 0 and W0 = W (0,0) given by (a) K(0,0), (b) K(−1,1), (c) K(−1,2), and (d) K(−2,3).
Each site (gray circle in (a)) consists of an a and a b qubit, which are represented by blue and red vertices. Example of fractal
subsystems on which the symmetries act are also shown in (a): green highlighted vertices for the a type subsystems, and orange
for the b. The reader may verify that

∏
X on these subsystems is indeed a symmetry of the cluster model defined on all these

graphs. The case (a) is simply the previously studied honeycomb lattice cluster model, which is translation invariant. The
other three are previously undiscovered phases, and are only translation invariant with a period of (b) 2 or (c, d) 4 along the x

and y directions. The graphs for phases with K(k,m) for k other than the ones chosen here may be obtained simply by shifting
each blue a vertex left/right by a number of sites, while maintaining connectivity of the graph. For each case, we also show
one cycle of the matrices Wj = F jW0F

−j , the matrix characterizing the twist phases for symmetries defined w.r.t. to row j,
presented in the same manner as in Fig 3. The lower-leftmost a and b vertices of each graph are defined to be at coordinate
(x, y) = (0, 0). Although we have only shown examples on an 8 × 8 torus, these may be tiled onto any commensurate system
size.

h(v)h(v)−1 = 1. In the case of h(x) = f(x), tf evolves

the polynomial W (ly,0)(u, v) → W (ly+1,1)(u, v). No-
tice that an overall shift, h(x) → xah(x), results in
th(u, v) → uath(u, v), which does not affect the local-
ity properties (which only depends on powers of v). For
the purposes of this proof we will therefore simply work
with (non-Laurent) polynomials h(x). We can now define
consistent locality.

Definition IX.2. A Laurent polynomial g(u, v) is con-
sistently (a, b)-local under th if tnhg(u, v) is (a, b)-local for
all n.

Physically, the twist phases W (ly,0)(u, v) must be con-
sistently (−lx+2lyka, lx+2lykb)-local (from Eq 56) under
tf in order to correspond to a physical phase obtained
from a local Hamiltonian.

Let us define

Um(u) = (u− 1)L−1−m (107)

for m = 0 . . . L − 1, which serves as a complete basis
for all polynomials g(u) ∈ Fp[u] with degree degu g(u) ≤
L. Any polynomial W (u, v) may therefore be uniquely
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expanded as

W (u, v) =

L−1∑
m=0

Um(u)Wm(v) (108)

which we take to be our definition ofWm(v). Since Um(u)
are all independent, if W (u, v) is `-local, each Wm(v)
must also be `-local.

Definition IX.3. A set of polynomials {Vm(v)} indexed
by m = 0, . . . , L− 1 is said to generate an optimal basis
for th if for every `-local W (u, v), W (u, v) is consistently
`-local if and only if Vm(v) |Wm(v) for all m. The basis
set {vkUm(u)Vm(v)} is then called an optimal basis.

When we say Vm(v) | Wm(v), we mean that Vm(v)
divides Wm(v) as polynomials in Fp[v] without periodic
boundary conditions, i.e. there exists a polynomial q(v)
such that Wm(v) = q(v)Vm(v) and

degv q(v) = degvWm(v)− degv Vm(v) ≤ `− degv Vm(v)
(109)

which follows by addition of degrees, and since Wm(v) is
`-local.

Suppose {Vm(v)} generates an optimal basis for th.
Assuming Vm(v) is invertible, {vkUm(u)Vm(v)}k,m for
0 ≤ k,m < L generates a complete basis for canonical
form polynomials. This basis is optimal with respect to
th in the sense that all consistently `-local polynomials
under th may be written as a linear sum of `-local basis
elements. If there are only a finite number Nloc of `-local
basis elements (as will be the case), then there are also
only a finite number pNloc of consistently `-local W (u, v).

We can now restate our main theorem, the proof of
which will be the remainder of this section.

Theorem IX.1. The polynomials Vm(u, v), defined in
Eq 64, generate an optimal basis for tf .

B. Proof

Let us first list some relevant properties of Um(u).

1. (u − 1)nUm(u) = Um−n(u) for n ≤ m, or 0 for
n > m

2. Um(u) is pNm -periodic, meaning

up
Nm
Um(u) = Um(u) (110)

where Nm ≡ dlogp(m + 1)e. This follows from the
fact that

(up
Nm − 1)Um(u) = (u− 1)p

Nm
Um(u) = 0 (111)

since pNm > m, due to property 1.

3. Um(u) is also cyclic under evolution by th with pe-

riod dividing pNm , tp
Nm

h U0(u) = U0(u). This fol-

lows from the fact that up
Nm
U0(u) = U0(u), and

so

tp
Nm

h U0(u) = h(v)−p
Nm
h(uv)p

Nm
U0(u)

= h(v)−p
Nm
h(v)p

Nm
U0(u) = U0(u)

(112)

4. thUm(u) = Um(u) +
∑
m′<m qm′(v)Um′(u). Under

evolution by th, thUm(u) is given by simply Um(u),
plus a linear combination of Um′(u) for m′ < m.

Using property 1, It is therefore easy to extract each
component Wm(v) in the expansion of Eq 108 directly
from W (u, v) in a straightforward way. Suppose the
largest m for which Wm(v) 6= 0 is m = M . Then,
(u − 1)MW (u, v) = WM (v)U0(u) gives only the m =
Mth component multiplying U0(u). Then, we may take
W ′(u, v) ≡ W (u, v) − UM (u)VM (v), which has largest
m given by M ′ < M . This process can be repeated
on W ′(u, v) to fully obtain Wm(v) for all m. From prop-
erty 2, we also find that W (u, v) is actually pNm-periodic.

Property 4 is the most important property (and what
makes Um(u) a special basis for this problem). It follows
from Property 3 for m = 0, thU0(u) = U0(u), and the
fact that the mth component of thUm(u) is obtained by

(u− 1)mth(u, v)Um(u) = th(u, v)U0(u) = U0(u) (113)

which remains unchanged under evolution by th. Thus,
supposing the expansion of W (u, v) has some largest m
value m = M , then defining ∆hW (u, v) according to

thW (u, v) = W (u, v) + ∆hW (u, v) (114)

we must have that ∆hW (u, v) has a largest m value m <
M . Alternatively, (u − 1)M∆hW (u, v) = 0. This fact
will be used numerous times as it allows for a proof by
recursion in M in many cases.

Let us first prove two minor Lemmas.

Lemma IX.2. Suppose {Vm(v)} generates an optimal
basis for some th. Then, Vm(v) | Vm′(v) for all m′ ≥ m
and V0(v) = 1.

Proof. First, any `-local W (u, v) that contains only an
m = 0 component, W (u, v) = U0(u)W0(v), is trivially
also consistently `-local under any th, since thU0(u) =
U0(u). Thus, it must be that V0(v) = 1. Next, if W (u, v)
is consistently `-local, then

(u− 1)nW (u, v) =

L−1∑
m=n

Um−n(u)Wm(v) (115)

must also be consistently `-local for any n ≥ 0. However,
this implies that Vm(v) | Wm+n(v). But all we know is
that Vm+n | Wm+n(v). For this to always be satisfied,
we must therefore have that Vm(v) | Vm′(v) for all m′ ≥
m.
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Lemma IX.3. Let W (u, v) be `-local. Then, W (u, v) is
consistently `-local under th if and only if ∆hW (u, v) is
also consistently `-local.

Proof. Consider evolving W (u, v),

thW (u, v) = W + ∆hW (116)

t2hW (u, v) = W + ∆hW + th∆W (117)

t3hW (u, v) = W + ∆hW + th∆hW + t2h∆hW (118)

and so on. By definition, if W (u, v) is consistently `-local,
then tnhW (u, v) must all be `-local. But then, this means

that each term added in increasing n, tn−1
h ∆hW (u, v),

must also be `-local, meaning that ∆hW (u, v) is therefore
consistently `-local. If W (u, v) is not consistently `-local,
then that means that there must be some n such that
tnh∆W (u, v) is not `-local, which therefore implies that
∆hW (u, v) is also not consistently `-local.

The next Lemma gives a family of a consistently `-local
polynomials.

Lemma IX.4. Let Kh
m(u, v) = Um(u)h(v)m for some

0 ≤ m < L. Then, degv t
n
hW (u, v) = mδh for all n. It is

therefore consistently mδh-local under th.

Proof. Let us prove by recursion in m. The base case,
m = 0, is true since U0(u) is indeed consistently 0-local.
Now, assume m > 0 and we have proved this Lemma for
all m′ < m.

Let us compute ∆hK
h
m(u, v),

∆hK
h
m(u, v) = Um(u)h(v)m−1(h(uv)− h(v)) (119)

= Um(u)h(v)m−1
δh∑
k=0

hkv
k(uk − 1) (120)

where h(x) =
∑δh
x=0 hkx

k, and we have used Property 2

of Um(u) to replace uk → uk, where k ≡ (k mod pNm)
is positive. Then, we may use the identity

uk − 1 =

k∑
n=0

(
k

n

)
(u− 1)n (121)

to expand

∆hK
h
m(u, v) = Um(u)h(v)m−1

δh∑
k=0

k∑
n=0

(
k

n

)
hkv

k(u− 1)n

(122)

=

δh∑
k=0

k∑
n=0

hkv
kh(v)n−1Kh

m−n(v) (123)

and note that by our recursion assumption,
vkh(v)n−1Kh

m−n is consistently (k, (m− 1)δh + k)-local.
Since 0 ≤ k ≤ δh, each term is therefore consistently
mδh-local. Thus, ∆hK

h
m(u, v) is consistently mδh-local.

By Lemma IX.3, Kh
m(u, v) is therefore also mδh-local.

Finally, the v-degree of Kh
m(u, v) saturates mδh since

the mth component of tnhK
h
m(u, v) has v-degree mδh for

all n. The proof follows for all m by recursion.

Thus, a family of consistently `-local W (u, v) may be
created by a linear sum over of `-local vkKh

m(u, v), over k
and m. However, this may not be exhaustive: there may
be some consistently `-local W (u, v) that are not in this
family. To show exhaustiveness, we need to show that
{Vm(v) = h(v)m} generates an optimal basis for th. This
is not true generally, but is true in the case that h(x)
is irreducible, which our next lemma addresses. Notice
that Vm(v) = h(v)m are consistent with the properties of
being generators of an optimal basis from Lemma IX.2,
V0(v) = 1 and Vm(v) | Vm′(v) for all m′ ≥ m.

Lemma IX.5. Suppose h(x) is an irreducible polyno-
mial. Then, {Vm(v) = h(v)m} generates an optimal basis
for th.

Proof. To prove that {h(v)m} generates an optimal basis
for th, we need to show that for any `-local W (u, v), it
is consistently `-local if and only if h(v)m | Wm(v) must
hold for all m.

First, the reverse implication follows from
Lemma IX.4: if W (u, v) is `-local and each
h(v)m | Wm(v), then W (u, v) is also consistently
`-local. We must now prove the forward implication.

Let W (u, v) by consistently `-local under th, with the
expansion

W (u, v) =

M∑
m=0

Um(u)Wm(v) (124)

where M is the largest m value in the expansion, and
WM (v) 6= 0. We need to prove that this implies that
h(v)m |Wm(v) for all m. We now prove by recursion, and
assume that this has been proven for all M ′ < M . Note
that for the base case M = 0, {h(v)m} indeed generates
an optimal basis for all M = 0 polynomials W (u, v). If
h(v) = cvk is a monomial, then this proof is also trivial,
so we will assume this is not the case in the following.

Consider ∆hW (u, v), which by Lemma IX.3, also has
maximum m < M and is consistently `-local. Take the
m = M−1th component of ∆hW (u, v), obtained by (u−
1)M−1∆hW (u, v), which by a straightforward calculation
is given by

(u− 1)M−1∆hW (u, v) = g(v)h(v)−1WM (v)U0(u) (125)

where

g(v) =

δh∑
k=0

khkv
k (126)

δh ≡ degv h(v), hk is defined through h(v) =
∑
k hkv

k,

and k ≡ (k mod pNM ). Note that since W (u, v) is `-
local, despite Eq 125 containing h(v)−1, is of v-degree
bounded by `. By our recursion assumption, h(v)M−1

must divide Eq 125.
Let us prove that h(v) - g(v) and g(v) 6= 0. First, since

degv h(v) = degv g(v) and h(v) is irreducible, if h(v) is to
possible divide g(v), it must be that g(v) = const · h(v).
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This can only be the case if (k mod pNM ) ≡ k0 is the
same for all k. But then,

h(v) = k0

imax−1∑
i=0

hk0+ipNM v
k0+ipNM (127)

= k0v
k0

(
imax−1∑
i=0

hk0+ipNM v
i

)pNM
(128)

which contradicts with the fact that h(v) is irreducible,
as imax > 1 and pNM > 1 (which is the case here). The
g(v) = 0 is the k0 = 0 case of this. Thus, g(v) 6= 0 and
h(v) - g(v).

Going back, we have that

h(v)M−1 | g(v)h(v)−1WM (v) (129)

=⇒ h(v)M | g(v)WM (v) (130)

but since h(v) - g(v), it must be the case that h(v)M |
WM (v).

Now, consider W ′(u, v) = W (u, v) − UM (u)WM (v),
which is a sum of two consistently `-local polynomi-
als (using Lemma IX.4), and so is also consistently `-
local. By our recursion assumption, it then follows that
h(v)m | Wm(v) for m < M . Thus, h(v)m | Wm(v) holds
for all m in W (u, v).

By recursion in M , we have therefore proved that for
all W (u, v), h(v)m |Wm(v) must be true for all m. Thus,
{h(v)m} generates an optimal basis for th.

If f̃(x) = x−kaf(x) is irreducible, then Lemma IX.5
is sufficient to obtain all consistently (a, b)-local W (u, v).
To do so, we simply have to find all (k,m) where the

basis element vkK f̃
m(u, v) is (a, b)-local, and take a linear

combination of them. If there are Nloc(a, b) such basis
elements, then the pNloc(a,b) possible linear combinations
are exhaustive.

In the case that f̃(x) is not irreducible, there may
be consistently (a, b)-local polynomials that do not fall
within this family. However, note that it is always pos-
sible to expand f̃(x) in terms of its unique irreducible
factors

f̃(x) = f0(x)r0f1(x)r1 . . . (131)

The next two Lemmas allows us to use this result con-
struct an optimal basis for f̃(x), based on this factoriza-
tion.

Lemma IX.6. Let h(x) be an irreducible polynomial,
and r > 0 an integer. Then, {Vm(v) = h(v)m} generates
an optimal basis for thr , where m = bm/pαcpα and α is
the power of p in the prime factorization of r.

Proof. First, note that if p - r, p is coprime to r, then
being consistently `-local under th is equivalent to be-
ing consistently `-local under thr . This follows from the
fact that, if W (u, v) has maximum m value m = M ,

then tp
NM

h W (u, v) = W (u, v). If W (u, v) is consistently

`-local under th, then tnhW (u, v) = tn mod pNm

h W (u, v)
is, by definition, `-local for all n. If W (u, v) is instead
consistently `-local under thr = trh, then trnh W (u, v) =

trn mod pNm

h W (u, v) is `-local for all n. But, rn takes on
all value mod pNm , and so these two conditions are equiv-
alent. Thus, Lemma IX.5 states that {h(v)m} generates
an optimal basis for th, which therefore also generates an
optimal basis for thr . Indeed, if p - r, h(v)m = h(v)m

and the proof is complete.
Next, consider the case where r = pα is a power of p.

Notice that trh(u, v) = th(ur, vr) in this case is a function
of only ur and vr. Let W (u, v) be `-local and decompose
it as

W (u, v) =

r−1∑
i=0

r−1∑
j=0

(u− 1)r−1−ivjWij(u
r, vr) (132)

such that each of the ij “block” does not mix under evo-
lution by trh. Thus, each ij may be treated as an inde-
pendent system in terms of variables ũ ≡ ur and ṽ ≡ vr,
with L̃ ≡ L/r. Thus, by Lemma IX.5, each ij component
(and therefore W (u, v)) is only consistently `-local if and
only if in the decomposition

Wij(u
r, vr) =

L/r−1∑
m̃=0

(ur − 1)L/r−1−m̃Wij,m̃(vr) (133)

h(vr)m̃ | Wij,m̃(vr) for all i, j, m̃. Defining m ≡ i + m̃r,
W (u, v) may be written as

W (u, v) =

L−1∑
m=0

Um(u)

r−1∑
j=0

vjWij,m̃(ur, vr) (134)

=

L−1∑
m=0

Um(u)Wm(v) (135)

where Wm(v) =
∑r−1
j=0 v

jWij,m̃(ur, vr), so W (u, v) is con-

sistently `-local if and only if h(vr)m̃ |Wm(v). To elimi-
nate reference to m̃, we may use the fact that m̃ = bm/rc,
such that m = rm̃. Therefore, W (u, v) is consistently `-
local if and only if h(v)m |Wm(v) for all m, and {h(v)m}
generates an optimal basis for thr when r = pα as well.

Finally, consider the general case r = r̃pα, where p - r̃.
We have just shown that {h(v)m} generates an optimal
basis for thpα . Since r̃ is coprime to p, by our first argu-
ment, this also generates an optimal basis for thr .

Lemma IX.7. Suppose {V1,m(v)} and V2,m(v) generate
optimal bases for th1

and th2
respectively, and V1,m(v)

and V2,m′(v) share no common factors for all m, m′.
Then, {Vm(v) = V1,m(v)V2,m(v)} generates an optimal
basis for th1h2

.

Proof. Let W (u, v) be `-local which we expand as

W (u, v) =

M∑
m=0

Um(u)Wm(v) (136)
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where M is the largest m for which Wm(v) 6= 0. If
V1,m(v)V2,m(v) | Wm(v), then W (u, v) is consistently `-
local under th1

and th2
, and therefore also under th1h2

.
We then need to prove the reverse implication, that
W (u, v) being consistently `-local under th1h2

implies
V1,m(v)V2,m(v) | Wm(v) for all m. We will prove this
by recursion in M . The base case, M = 0, is trivial
since V0(v) = V1,0(v)V2,0(v) = 1 is a requirement from
Lemma IX.2. Now, suppose this has been proven for all
M ′ < M .

First, assume that W (u, v) is consistently `-local under
th1 but not th2 . Then, consider ∆h1h2W (u, v), which has
largest m < M and is consistently `-local under th1h2

by
Lemma IX.3. Our recursion assumption, then, implies
that ∆h1h2

W (u, v) is also consistently `-local under th1

and th2
individually. Then,

tmh1h2
W (u, v) = W (u, v) +

m−1∑
i=0

tih1h2
∆12W (u, v) (137)

and so

tnh1
tmh1h2

W (u, v) = tnh1
W (u, v) +

m−1∑
i=0

tnh1
tih1h2

∆12W (u, v)

(138)
which is `-local. But, if we choose n = (k−m mod pNM ),
then we get that tkh2

W (u, v) is always `-local. Thus,
W (u, v) is consistently `-local under th2 as well, which
contradicts our initial assumption. Therefore, W (u, v)
cannot be consistently `-local under th1 but not th2 . The
same is also true with h1 ↔ h2.

Next, assumeW (u, v) is neither consistently `-local un-
der th1 nor th2 . Then, consider

W ′(u, v) ≡ V1,M (v)W (u, v) (139)

which is consistently ` + degv V1,M (v) ≡ `′-local under
th1h2

(notice that if `� L, then `′ � L as well). W ′(u, v)
is also `′-local under th1

, since V1,m(v) | V1,M (v) for all

m ≤ M by Lemma IX.2. However, since V1,M (v) shares
no common factors with any V2,m(v), W (u, v) is still not
consistently `′-local under th2 . But, we just showed pre-
viously that we cannot have a situation in which W (u, v)
is `′-local under th1h2 and th1 but not th2 , thus leading to
a contradiction. W (u, v) must therefore be consistently
`-local under both th1 and th2 .

This means that V1,m(v) | Wm(u, v) and V2,m(v) |
Wm(u, v) for all m. Since V1,m(v) and V2,m(v) share
no common factors, this means that V1,m(v)V2,m(v) |
Wm(u, v). Thus, {V1,m(v)V2,m(v)} generates an optimal
basis for th1h2

.

We may now prove Theorem IX.1. Let us factorize
f̃(x) into its Nf unique irreducible polynomials,

f̃(x) =

Nf∏
i=0

fi(x)ri (140)

Using Lemma IX.6, an optimal basis for tfrii
, is gener-

ated by {fi(v)mi}, where mi = bm/pαicpαi , and αi is the
power of p in the prime factorization of ri. Since fi(v)mi

for different i share no common factors (as fi(v) are irre-
ducible), Lemma IX.7 then says that {f0(v)m0f1(v)m1}
generates an optimal basis for tfr00 f

r1
1

. This may be it-

erated to construct an optimal basis for tfr00 f
r1
1 f

r2
2

and

so on. Finally, one gets that {
∏
i fi(v)mi} generates an

optimal basis for tf̃ , which is therefore also an optimal

basis for tf . This is exactly {Vm(v)}, and the proof is
complete.
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