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Motivated by recent experiments realizing correlated phenomena and superconductivity in 2D van
der Waals devices, we consider the general problem of whether correlation effects may be enhanced
by modifying band structure while keeping a fixed weak interaction strength. Using determinantal
quantum Monte Carlo, we study the 2D Hubbard model for two different band structures: a regular
nearest-neighbor tight-binding model, and a partially flat band structure containing a non-dispersing
region, with identical total non-interacting bandwidth Wtot. For both repulsive and attractive weak
interactions (|U | � Wtot), correlated phenomena are significantly stronger in the partially flat
model. In the repulsive case, even with U an order of magnitude smaller than Wtot, we find the
presence of a Mott insulating state near half-filling of the flat region in momentum space. In the
attractive case, where generically the ground state is superconducting, the partially flat model
exhibits significantly enhanced superconducting transition temperatures. These results suggest the
possibility of engineering correlation effects in materials by tuning the non-interacting electronic
dispersion.

Introduction.– The recent discovery of superconduc-
tivity in the twisted bilayer graphene (TBG) [1, 2] has
spurred increasing interest in 2D van der Waals materi-
als with structural deformations [3–10] and has inspired
new venues to search for high Tc superconductivity [11–
18]. In TBG, the band structure hosts tiny regions near
K and K ′ valleys with nearly flat energy dispersions [19–
24]. When these regions are partially occupied, a phase
diagram similar to that of high Tc cuprates has been
reported [1, 2]. Alongside and possibly compounding
other effects, e.g., [25], it is widely believed that due
to the large density of states (DOS) at the two tiny
(nearly) flat regions, the system exhibits strong corre-
lation physics [2, 26–37]. Besides the specific case of
TBG, a series of recent experiments have shown super-
conductivity in a variety of twisted heterostructures [38–
41], supporting the generic possibility of achieving cor-
relation effects by modifying band structure. Inspired
by these experiments on Moiré heterostructures and the
broader quest of understanding flat bands [42–44], we
introduce “Partially Flat Band” (PFB) models wherein
the band structure is neither fully flat nor fully dispersive
(see Fig. 1). In PFBs, the bare kinetic (i.e., not interac-
tion induced [45, 46]) dispersion εk is nearly flat over a
finite fraction of the Brillouin zone (BZ) with a diverging
DOS.

There are no reliable theoretical tools to obtain the
effective low energy action for the PFB. Perturbation
theory fails due to the divergence of the DOS over a fi-
nite portion of the BZ. Other conventional methods of
strongly correlated systems such as the Wolff-Schrieffer
transformation become inapplicable. These difficulties
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FIG. 1. A schematic band structure of partially flat band
systems. The band structure contains a (nearly) flat region
with a high DOS and a narrow bandwidth Wflat. In the PFB
system, the interaction energy scale may be much smaller
(larger) than the total (flat region) bandwidth; thus: Wflat �
|U | � Wtot. The blue region denotes occupied energy states
when the interaction is switched off. However, using DQMC
we find that all single particle states inside the flat region are
(almost) equally occupied upon considering interaction effects
(see the text). Due to the absence of any mass gap between
the flat and dispersive areas, the two regions are strongly
coupled through interactions.

are tied to the existence of three significantly different
energy scales: (i) the bandwidth associated with the flat
region, (ii) the total bandwidth, and (iii) the interaction
energy scale which is much greater than (i) yet far smaller
than (ii). Interactions can mix the smoothly connected
flat and dispersive regions. These two regions may ac-
tively exchange particle and energy. Thus, if the nearly
flat region is partially filled, the dispersive region cannot
be disregarded. A projection of the interactions onto the
flat region is unjustified.

To better grasp the physics of PFB systems, we intro-
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duce a toy model allowing numerical studies on general
lattices. Herein, a large fraction (of order one) of the
band structure is (nearly) flat. We utilize the Deter-
minental Quantum Monte Carlo (DQMC) approach to
obtain the phase diagram for both repulsive and attrac-
tive weak Hubbard interactions. Due to the existence of
flat areas, correlation effects are pronounced and we ex-
pect to encounter evidence of strong correlation physics
despite only weak interactions. In particular, we observe
an emergent Mott insulating state near half-filling of the
flat region in momentum space. Our calculations show
that the momentum space electron occupation number
becomes nearly uniform and fractional all over the flat
region. This is inconsistent with the Luttinger theorem
and constitutes another indication that we either have
a gapless non-Fermi liquid or a Mott insulating phase.
Lastly, we find a considerable enhancement of the super-
conducting transition temperature for attractive interac-
tions which can be generated via, e.g., retarded phonon-
mediated electron-electron coupling [31, 47–49].
Model.– The Hubbard model Hamiltonian is given by

H =
∑
kσ

εkc
†
kσckσ + U

∑
i

ni↑ni↓. (1)

Here, c†kσ creates an electron of momentum k and spin
σ, the (non-interacting) band dispersion is εk, and niσ =

c†iσciσ is the number operator on site i. The local (on-
site) interaction is parameterized by U . Thanks to its
possible relevance to high-Tc cuprate superconductors,
the repulsive (U > 0) Hubbard model on a square lat-
tice has been the focus of many numerical studies[50–52].
Due to the fermion sign problem in quantum Monte Carlo
(QMC) simulations of the repulsive Hubbard model, un-
biased numerical results are absent at temperatures rele-
vant to the putative superconducting phase of the model
(though a variety of techniques suggest the presence of
d-wave superconductivity and various competing phases
[53–57]). By contrast, the attractive Hubbard model
(U < 0) is amenable to sign-problem-free QMC simula-
tions, allowing for detailed characterization of the s-wave
superconducting phase, including calculation of Tc. We
will study both the repulsive and attractive realizations
of this model.

For simplicity and to ease comparison to existing stud-
ies of Hubbard models, we performed the simulations on
the commonly studied periodic square lattice geometries.
Here, the band structure

εk = (1 + f sign(ε0k))ε0k (2)

where the nearest neighbor hopping dispersion ε0k =
−2t(cos kx + cos ky) and the parameter f controls the
flatness of the band. The nearest neighbor hopping t is
set to 1 as the unit of energy and temperature in this
work. For f = 1, the dispersion εk = 0 when ε0k ≤ 0 (half
the BZ) and εk = 2ε0k otherwise. We refer to the f = 0
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FIG. 2. Doping dependence of average fermion sign (a),

charge compressibility χ = ∂〈n〉
∂µ

(b), and double occupancy

ratio (c) in the partially flat band model with a repulsive
interaction U > 0. In the inset of (c), we plot the double
occupancy ratio for the regular band Hubbard model with
strong interactions. Simulations here are on a 16× 8 periodic
cluster at temperature T = U/15. Error bars are ±1 standard
error of the mean, determined by jackknife resampling.

model as the “regular band” Hubbard model and to the
f = 1 system as the “PFB Hubbard model”.

Importantly, the total bandwidth is fixed to Wtot = 8
in either case. Hence, our data showcase the effects
of introducing a flat region in the non-interacting dis-
persion, while keeping the total bandwidth constant.
We focus on the hole-doped models (average occupancy
〈n〉 = 〈n↑ + n↓〉 < 1), such that if f = 1, the non-
interacting Fermi level lies inside the flat region.
Repulsive interaction.– We first consider the repulsive
model with a partially flat band and weak interactions
U ≤ 2. The presence of the fermion sign problem re-
stricts accessible temperatures to T >∼ U/15 for moderate
system sizes (∼ 100 sites), with certain fillings amenable
to somewhat lower temperatures. Interestingly, the av-
erage sign in the DQMC simulation is enhanced near a
density of 〈n〉 ∼ 0.6 per unit cell and decreases rapidly
away from this value [Fig. 2(a)]. This behavior is rem-
iniscent of that in the repulsive Hubbard model with a
regular band, where the sign is protected by particle-hole
symmetry at exactly half-filling (〈n〉 = 1); doping away
from half-filling (such that 〈n〉 6= 1) leads to a severe sign
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FIG. 3. (a) Momentum resolved electron filling 〈nk〉 = 〈c†kck〉
for the partially flat band model with repulsive interaction
U = 2 at temperature T = 0.133 and average filling 〈n〉 =
0.62, on a periodic 16 × 16 cluster. (b) Single particle spec-
tral function A(k, ω) along high-symmetry cuts obtained for
the same simulation using maximum entropy analytic con-
tinuation. (c) Single particle density of states N(ω) for the
same parameters at inverse temperatures β = 1/T as given
in the legend. Inset: charge compressibility as a function of
temperature.

problem [58, 59]. While no such symmetry is exactly
manifest in the partially flat model, the similar behav-
ior of the 〈n〉 ∼ 0.6 PFB system to the regular Hubbard
model at half-filling hints at similar (Mott insulating)
underlying physics.

To confirm this, we examine the charge compressibil-

ity χ = ∂〈n〉
∂µ in Fig. 2(b). As a function of filling, χ has

a pronounced dip around 〈n〉 ∼ 0.6. The compressibil-
ity at 〈n〉 = 0.62 decreases with lowering temperature
[Fig. 3(c), inset], indicating insulating behavior and sug-
gesting an incompressible gapped ground state. To relate

this behavior to Mott physics and quantitatively assess
correlation effects, we compare the number of doubly oc-
cupied sites 〈n↑n↓〉 to the uncorrelated case (in which
〈n↑n↓〉 = 〈n↑〉〈n↓〉 = 〈n〉2/4). The ensuing ratio is plot-
ted in Fig. 2(c). For a regular Hubbard model [inset of
Fig. 2(c)], at half-filling, this ratio is suppressed when
there are strong interactions. This ratio remains sup-
pressed upon hole-doping but rises for electron-doping
where double occupancy becomes unavoidable. In the
PFB model, we observe the same behavior relative to a
filling of 〈n〉 ∼ 0.6 at which a crossover occurs. The sup-
pression, even for U ∼ 1, of double occupancy in the PFB
system is comparable in magnitude to that of the regu-
lar band Hubbard model with U ∼ 8. Taken together,
the analogies between the weakly interacting PFM model
and the regular band strongly interacting Hubbard model
demonstrate that even weak interactions can enable cor-
related phenomena given the correct band structure.

Having established a Mott insulating state in the PFB
model when 〈n〉 ∼ 0.6, we now explore in greater depth
the momentum and energy dependence of the single-
particle properties. In Fig. 3(a), we plot the electron

occupancy 〈nk〉 = 〈c†kck〉. As is evident from Eq. 2, the
non-dispersive flat region is delineated by |kx|+ |ky| ≤ π.
In this region, the electron occupancy varies from 0.52
to 0.55 while the total filling (Fig. 3(a)) is 〈n〉 = 0.62.
Thus, the crossover seen in Fig. 2 at 〈n〉 ∼ 0.6 corre-
sponds to a half-filling of the flat portion of the PFB.
Inconsistency with Luttinger’s theorem implies a gapless
non-Fermi liquid type behavior or a featureless gapped
(Mott insulating) state, and considering other evidences
we presented earlier, we believe it should be a Mott in-
sulator. This special behavior of the occupancy suggests
a modified mean-field approach to the PFB for the effec-
tive low energy action from which the emergence of the
Mott insulator becomes obvious (see Appendix A).

To corroborate these statements, we computed the
single-particle spectral function A(k, ω) by an analytical
continuation of the imaginary time Green’s function us-
ing the Maximum Entropy method [60]. Fig. 3(b) shows
A(k, ω) along high-symmetry cuts of the BZ. The most
pertinent feature is the presence of a Mott gap through-
out the flat region. In Fig. 3(b), for U = 2 and a temper-
ature T = 0.133, the gap is largest (∼ 0.8) at k = (0, 0),
and gradually drops near the boundaries of the flat re-
gion. Fig. 3(c) provides the single-particle density of
states N(ω) = 1

L2

∑
kA(k, ω) for different temperatures;

the gap opening temperature is estimated to be between
T = 0.22 and 0.33 concomitant with the onset of insulat-
ing behavior in the charge compressibility [inset].
Attractive interaction.– While we have found strong
indications of Mott insulating physics in the repulsive
partially filled model with only weak interactions, the
sign problem prevents a detailed study of phases that
emerge by doping away from 〈n〉 ∼ 0.6. By con-
trast, we can establish concrete results on the effect
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FIG. 4. Estimates of the superconducting transition tem-
perature Tc for the regular attractive (a,b,c) and PFB (d,e)
Hubbard models. Here, U = −2 and 〈n〉 = 0.8. We plot the
superfluid stiffness ρs in (a), the s-wave pair-field susceptibil-

ity multiplied by L−7/4 (b,d), and the static spin susceptibil-
ity (c,e). The dashed line in (a) is 2T/π. The shaded regions
indicate estimates of Tc.
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FIG. 5. Parameter dependence of static spin susceptibility in
the regular attractive Hubbard model (a,b) and in the par-
tially flat band model (c,d). The downturn in the static spin
susceptibility signals formation of singlet pairs and provides
a rough indication of Tc.

of the modified band structure on superconductivity
in the attractive Hubbard model via DQMC [61]. In
2D simulations, accurate estimates of superconducting
Tc may be obtained using the Nelson-Kosterlitz crite-
rion for superfluid stiffness: ρs(Tc) = 2Tc/π. For fi-
nite cluster simulations, the temperature where ρs(T )
intersects with 2T/π estimates Tc in the thermody-
namic limit. In DQMC, ρs may be calculated as
[62] ρs = 1

4 (Λxx(qx → 0, qy = 0)− Λxx(qx = 0, qy → 0))
where the static current-current susceptibility Λxx(q) =∑
i

∫ β
0
dτ e−iq·ri〈jx(i, τ)jx(0, 0)〉. Here, the current den-

sity operator j(i) =
∑
lσ itil (ri − rl) c

†
iσclσ where til is

the hopping (related to the dispersion through til =
− 1
L2

∑
k e

ik·(ri−rl)εk.)

We show the results of this analysis in Fig. 4(a), for the
attractive regular band Hubbard model for U = −2, and
〈n〉 = 0.8. Comparing simulations on different cluster
sizes allows us to estimate Tc ≈ 0.056(5) for these pa-
rameters. Here, the minimal cluster size for a reasonable
estimate of Tc is ∼ 20× 20. (In a previous DQMC simu-
lation of the attractive Hubbard model [62] for U = −4,
a lattice of size ∼ 10×10 was sufficient for estimating Tc.
For low |U |, the longer superconducting coherence length
requires larger clusters to mitigate finite-size effects.)

A PFB requires many real-space hopping amplitudes
to be non-zero. Consequently, the computation of
the current correlator becomes expensive. As an al-
ternative, we infer Tc from the behavior of the pair
field susceptibility and of the static spin susceptibil-
ity. The equal-time s-wave pair field susceptibility is
given by Ps = 〈{∆,∆†}〉, where ∆† = 1

L

∑
i c
†
i↑c
†
i↓ =

1
L

∑
k c
†
k↑c
†
−k↓ is the s-wave pair field creation oper-

ator at zero net momentum. The spin susceptibil-
ity is given by χzz(q, τ) = 〈TτSz(q, τ)S†z(q)〉, where

Sz(q) = 1
L

∑
i e
−iq·ri

(
c†i↑ci↑ − c

†
i↓ci↓

)
. We focus on the

static spin susceptibility at q = 0: χzz(q, ω = 0) =∫ β
0
dτ χzz(q, τ). (We consider only the z component of

spin; χxx, χyy, and χzz are identical within statistical
errors).

Upon cooling below Tc, one expects that the formation
of singlet pairs suppresses the static spin susceptibility.
In the absence of a pseudogap, the onset temperature
of this suppression provides an estimate of Tc. A corre-
sponding rise of the pair field susceptibility would confirm
that the suppression of spin susceptibility is due to the
onset of superconductivity.

Figs. 4(a-e) display the results of DQMC calculations
for the temperature dependence of the pair field suscep-
tibility and the static spin susceptibility. For the reg-
ular band, we observe the expected downturn in spin
susceptibility and rise in pair field susceptibility near
Tc ≈ 0.056(5). Similar behavior occurs in the PFB model
at Tc ≈ 0.11(1) (in the PFB model, the system size de-
pendence is weak, but it is computationally infeasible to
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simulate even larger clusters to eliminate the possibility
of a gradual shift). Together these data indicate that
the attractive Hubbard model with a PFB has doubled
the superconducting transition temperature of the model
with a regular dispersion. This increase is partially antic-
ipated by the larger density of states in the PFB. We em-
phasize that this is while keeping the interaction strength
and the total noninteracting bandwidth fixed.

An enhancement of superconductivity in the attractive
PFB appears for different interaction strengths and dop-
ings. In Figs. 5(a,b), we vary the interaction strength for
both the regular band and the PFB models. As before,
the downturn in the static spin susceptibility roughly in-
dicates Tc. When |U | = 3, the Hubbard model Tc rises
to 0.12(2) for the regular band model and 0.18(2) for
the PFB model. For a smaller interaction strength of
|U | = 1, the PFB model has Tc ≈ 0.06(5) while the Tc of
the regular band model was too low to be readily accessi-
ble. In Figs. 5(c,d), we contrast the effects of additional
hole doping within the two models. As the number den-
sity varies from 〈n〉 = 0.8 to 〈n〉 = 0.6, the regular band
Hubbard model Tc decreases from 0.056(5) to 0.035(5)
while the PFB model shows little variation in its Tc.

Conclusions.– We introduced and studied PFB sys-
tems. PFBs may be realized in diverse experimental are-
nas, e.g., TBG or heavy fermion systems. Our DQMC
analysis illustrates that the existence of flat subregions
enhances the correlation effects even for interactions sig-
nificantly weaker than the total bandwidth. We found
a Mott insulating state for weak local repulsion and an
s-wave superconductor with a considerably enhanced Tc
for weak local attraction. Our PFB model may aid the
understanding of TBG and other Moiré heterostructures
whose band structure hosts extremely tiny (nearly) flat
areas due to the very large spatial extent of the Moiré
super-lattices. Studying systems with such super-cells
is not computationally feasible. As we discussed earlier,
the dispersive non-flat regions that are connected to small
flat domains of the TBG may not be ignored. Thus, a
projection of the Hamiltonian onto the flat region is not
possible. One needs to keep single particle (hole) exci-
tations with energies of order the interaction scale |U |
above (below) the flat region. Our PFB model captures
these essential features and provides a simple toy model
to study TBG which is computationally feasible as well
(albeit by imposing triangular lattice symmetry).

The ideal PFB (i.e., the model exhibiting exactly flat
subregions of the band) requires the existence of finite
hopping amplitudes between distant sites. Nonetheless,
we may truncate these amplitudes beyond a cutoff dis-
tance without impacting the low energy physics. In doing
so, we may still achieve nearly flat regions with enhanced
correlation. Remarkably, augmenting a nearest neighbor
hopping tight binding amplitude (t = 1) by an additional
next nearest neighbor hopping amplitude t2 ≈ −0.54 suf-
fices to achieve a high DOS in the lower half of the band

structure on the square lattice. Such a simple model
might be realizable in 2D van der Waals devices with
square lattice symmetry or in cold atoms systems via
photo-induced coupling experiments or through applying
pressure, and is expected to have an amplified supercon-
ducting transition temperature.
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APPENDIX A: A MODIFIED MEAN-FIELD
APPROACH TO THE PARTIALLY FLAT BAND

SYSTEMS

In this appendix, we discuss a modified mean field the-
ory that can successfully explain quintessential features
of PFB systems, e.g., the emergence of the Mott insu-
lator near the half-filling of the flat region. The essen-
tial ingredient is the fact that the occupation number of
the single particle energy eigenstates does not follow the
Fermi-Dirac distribution since we have a Fermi volume
rather than a Fermi surface. Instead, the k− space occu-
pancy is uniform over the flat region (where the chemical
potential crosses).Thus, all associated flat band states are
partially occupied.

Motivated by the physics of square lattice regular
Hubbard model near half-filling, we focus on the anti-

ferromagnetic order. We assume that
〈
ni,↑−ni,↓

2

〉
=

(−1)im, where m denotes the staggered magnetiza-
tion. We invoke the standard mean field approximation
ni,↑ni,↓ ≈ 〈ni,↑〉ni,↓ + ni,↑ 〈ni,↓〉 − 〈ni,↑〉 〈ni,↓〉. Plugging
this approximation into the model Hamiltonian, Eq. 1 of
the main text, and performing a Fourier transformation,
we obtain

HMF =
∑
k,σ

((εk − µ) c†k,σck,σ −mUσc
†
k+Q,σck,σ + h.c.),(3)

where Q = (π, π). The above mean-field Hamiltonian
can be readily diagonalized. We then have

HMF =
∑

|kx|+|ky|≤π,σ

(E+,kγ
†
+,kγ+,k + E−,kγ

†
−,k,σγ−,k,σ),(4)
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where Eτ,k = τ
√
ε2k + (Um)

2 − µ denotes the energy

eigenvalue associated with band τ = ± at momentum k
and γτ,k the corresponding annihilation operator which
is a linear combination of ck,σ and ck+Q,σ. The self-
consistency of our assumption about the staggered mag-
netization implies the following identity:

m =
∑
i

(−1)i

2Ns
〈ni,↑ − ni,↓〉HMF

= −mU
∑
k,τ

f (Eτ,k)

Eτ,k
.(5)

Here, f (Eτ,k) denotes the occupation number of energy
band τ at momentum k, and Ns = L2 is the number of
sites. Normally, f is replaced by the Fermi-Dirac dis-
tribution so that all negative energy states (those below
the chemical potential) are fully occupied at T = 0, and
excited states (those above the chemical potential) are
empty. In PFBs, the chemical potential crosses many
zero-energy states (more than the total electron density),
and thus it is not, a priori, clear which states are occupied
or empty. This feature can generally lead to exotic be-
haviors in flat band systems such as the fractional quan-
tum Hall systems. However, our DQMC study of the
PFB system shows that the occupation number is nearly
uniform all over the flat sub-region where the chemical
potential is tuned. We have verified that this remains
the case even for nearly flat sub-regions (so long as the
interaction scale is larger than the bandwidth Wflat of
the sub-region with a high DOS, see Fig. 1 of the main
text). Implementing this observation into the f (Eτ,k)
functional, we observe that, different from the regular
band Hubbard model, the mean-field anti-ferromagnetic
order parameter remains finite even away from the half-
filling (with the filling fraction being relative to that of
the total band).

In the conventional band Hubbard model, the Fermi-
Dirac distribution can rationalize the appearance of anti-
ferromagnetic order at half-filling. However, at the mean
field level, any doping away from half-filling (relative to
the entire band structure), even if infinitesimal, will erad-
icate the antiferromagnetic order. Using the modified
mean-field approximation, we find that although the flat
subregion is partially occupied, the staggered magneti-
zation is non-zero. Consequently, the anti-ferromagnetic
spin-density wave (SDW) will open up a mass gap sep-
arating the (nearly) flat sub-region from the dispersive
sub-regions. In other words, an interaction-induced SDW
mass gap will appear at the |kx| + |ky| ≤ π surface cor-
responding to half-filling. Thanks to the existence of fi-
nite gap separating the modified (nearly) flat region from
the remaining band structure, we can focus on the lower
flat sub-band and employ the standard techniques of the
strongly correlated system on a modified (nearly) flat
sub-band. One consequence of this simple analysis is
that the system will exhibit a Mott insulating phase at

half-filling of the lower (nearly) flat emergent sub-band
(i.e., at a quarter filling of the original band).

To summarize, the interaction generates an SDW or-
der, doubles the unit cell, and the relevant flat sub-band
around the chemical potential becomes separated from
other bands (which were otherwise smoothly connected
to the flat sub-band in the absence of interaction). Note
that the bandwidth and structure factors of the emergent
(nearly) flat sub-band differ from those of the original
flat subregion. The emergent well-separated (nearly) flat
sub-band is not fully occupied and the interaction pro-
jected the emergent flat sub-band will dictate its fate.
Mott physics, as well as other related strong correla-
tion phenomena, are possible. This picture can be eas-
ily generalized to more complicated situations where the
(nearly) flat subregion is smaller by considering smaller
nesting vectors (different and shorter Q vectors) that lead
to larger unit cells.
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