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We consider the Hall conductivity of composite fermions in the theory of Halperin, Lee, and Read
(HLR). We present a fully quantum mechanical numerical calculation that shows, under suitable
conditions, the HLR theory exhibits a particle-hole symmetric dc electrical Hall response in the
presence of quenched disorder. Remarkably, this response of the HLR theory remains robust even
when the disorder range is of the order of the Fermi wavelength. We find that deviations from
particle-hole symmetric response can appear in the ac Hall conductivity at frequencies sufficiently
large compared to the inverse system size. Our results agree with a recent semi-classical analysis
by Wang et al., Phys. Rev. X 7, 031029 (2017) and complement the arguments based on the fully
quantum-mechanical model by Kumar et al., Phys. Rev. B 98, 11505 (2018). These results provide
further evidence that the HLR theory is compatible with an emergent particle-hole symmetry.

I. INTRODUCTION

In the limit of an infinitely strong perpendicular mag-
netic field, electrons in two spatial dimensions (2D)
are spin polarized and their dynamics is governed en-
tirely by the lowest Landau level (LLL). When the
LLL is half-filled (ν = 1/2), the electron fluid can ex-
hibit Landau level particle-hole symmetry: the electri-
cal Hall conductivity must equal σxy = 1/2 in units1 of
e2/h, as a consequence.2 This result holds for frequen-
cies sufficiently small compared with the cyclotron en-
ergy. Particle-hole symmetry therefore places an impor-
tant constraint on any long wavelength description of the
half-filled Landau level.3

A useful description of the dynamics of electrons at
ν = 1/2 involves composite fermions.4,5 There are two
prominent composite fermion effective field theories. The
first, pioneered by Halperin, Lee and Read (HLR),6 in-
volves non-relativistic composite fermions, which can be
viewed as electrons bound to two flux quanta. Be-
cause the particle-hole transformation does not act in
a transparent fashion on the HLR Lagrangian2,7, it has
been unclear whether the HLR theory is compatible with
particle-hole symmetry, i.e., if there is a limit of the HLR
theory in which the theory is particle-hole symmetric. By
contrast, an alternate theory,8 recently constructed by
Son, manifestly preserves particle-hole symmetry. The
composite fermions in Son’s theory are electrically neu-
tral fermionic vortices of the electron fluid and are de-
scribed by a Dirac Lagrangian.

Despite the differences in their formulations, recent
work suggests that the composite fermion theories of
HLR and Son may have the same long wavelength ex-
perimental consequences. In an insightful recent study
by Wang et al.,9 a semi-classical analysis demonstrated
that a number of observables in the HLR theory can
indeed exhibit particle-hole symmetry if the effects of
quenched disorder are properly incorporated. We have
recently studied the HLR mean-field theory with disor-
der beyond the semi-classical approximation.10 In partic-

ular, we found that the particle-hole symmetry in dc Hall
response of the HLR theory is a result of the supersym-
metric quantum-mechanical structure of the composite
fermion Hamiltonian. This relation, which relies on the
precise correlation (see Eq. (6)) that flux attachment im-
poses between the potential and magnetic field disorders
that the composite fermions experience, enabled us to
argue that the HLR theory represents a quantum phase
transition between an insulator and an integer quantum
Hall state of composite fermions. Universality of the
resistivity tensor11 at such a phase transition leads to
particle-hole symmetric Hall conductivity. In addition,
within a mean-field approximation, the HLR and Son
theories have been found to produce coincident quantum
oscillation minima in the presence of an external periodic
potential.12

The implication of these works is that particle-hole
symmetry in the HLR theory emerges at low energies
as a property of an IR fixed point of the renormal-
ization group, rather than being manifest in the bare
Lagrangian.13

However, there are further questions to which numeri-
cal calculations can provide answers. First, in the work of
Wang et al., the dc Hall conductivity was obtained from
a 1/(kFR) expansion, valid when the range R of disor-
der is long compared to the Fermi wavelength 2π/kF . Is
particle-hole symmetry preserved at higher orders in this
expansion? Second, does the Hall conductivity maintain
its particle-hole symmetric value at non-zero frequencies?
Third, is supersymmetry of the composite fermion Hamil-
tonian necessary for particle-hole symmetric dc Hall re-
sponse?

Our goal here is to answer these three questions. To
this end, we present fully quantum mechanical calcula-
tions of the composite fermion Hall conductivity in the
presence of quenched disorder. We study the problem nu-
merically using a continuum model and confirm that the
particle-hole symmetric dc response can survive in the
HLR theory even for disorder configurations that vary on
the order of the Fermi wavelength (see Fig. 2). This is in



agreement with the conclusions of Ref. 10. At non-zero
frequencies, we observe a deviation from particle-hole
symmetric Hall response (see Fig. 3), the size of which
is reduced as the system size of our model is increased.
Lastly, we study the degree to which the particle-hole
symmetric response is robust against perturbations that
violate the supersymmetric structure of the HLR Hamil-
tonian: we study composite fermions on a lattice with
nearest neighbor hopping in the presence of disorder (see
Fig. 4).

II. PARTICLE-HOLE SYMMETRY AND
COMPOSITE FERMIONS: BRIEF REVIEW

Electrons in a half-filled LLL are described by a La-
grangian of the form,

Lel = ψ†(r)

(
i∂t + µ+At −

1

2m
(i∂j +Aj)

2

)
ψ(r)+Lint,

(1)
where ψ(r) destroys a spin-polarized electron of mass m
at position r = (t,x), At(x) is the electromagnetic scalar
potential, A(x) is the electromagnetic vector potential
corresponding to the transverse magnetic field B⊥(x) =
∇×A(x), µ is the chemical potential adjusted so that the
Landau level is half-filled, B⊥(x) = 4π〈ψ†ψ(x)〉, and Lint

represents interactions involving pairs of electrons (e.g.,
the Coulomb interaction). In the composite fermion the-
ory of HLR,6 the low-energy behavior is postulated to be
governed by a new set of fermions with Lagrangian,

Leff = Lf + Lcs + Lint, (2)

where

Lf = f†
(
i∂t + µ+At + at −

1

2mf
(i∂j +Aj + aj)

2

)
f,

Lcs =
1

2

1

4π
εµνλaµ∂νaλ,

Lint = −
∫
d2x′f†(t,x)f(t,x)U(x− x′)f†(t,x′)f(t,x′).

(3)

In Leff , f(r) destroys a composite fermion of effective
mass mf at position r, aµ is an emergent U(1) gauge
field, U(x) is a two-particle interaction, and the anti-
symmetric symbol εtxy = 1. The Chern-Simons term,
Lcs, implements the attachment of two units of emer-
gent gauge flux to every composite fermion. This follows
from the equation of motion of at that sets 4π〈f†f(x)〉 =
−εij〈∂iaj(x)〉. Furthermore, since the electron and com-
posite fermion densities are equal, 〈ψ†ψ(x)〉 = 〈f†f(x)〉,
composite fermions feel vanishing effective magnetic field
on average, Beff = B⊥(x) + εij〈∂iaj(x)〉 ≈ 0. Ignoring
the fluctuations of aµ, the mean-field ground state of the
composite fermions is a filled Fermi sea.

To determine the condition that composite fermions
must satisfy in order for the electrons to exhibit particle-
hole symmetric electrical response, we can make use of an

exact relation between the electrical and the composite
fermion conductivity tensors. This relation can be de-
duced without explicitly taking quenched disorder into
account. Intuitively, since composite fermions carry two
flux quanta, their current generates an additional electri-
cal Hall voltage which in turn alters their Hall resistivity
(see Appendix). More formally, the relation between con-
ductivities is obtained by integrating out the composite
fermions and emergent gauge field aµ to obtain an effec-
tive response theory for the external field Aµ (see Ap-
pendix). As long as the composite fermion longitudinal
conductivity is non-zero, particle-hole symmetric electri-
cal response (σxy = 1/4π) implies that the composite
fermion Hall conductivity,2

σcf
xy = − 1

4π
. (4)

Thus, the composite fermion metal must have a large
Hall response in order to satisfy particle-hole symmetry,
an unseemly request for a metal in vanishing effective
magnetic field.

However, as discussed by Wang et al.,9 this naive ex-
pectation of vanishing Hall response is incorrect. Since
the Chern-Simons Lagrangian breaks time-reversal sym-
metry, a Hall response for the composite fermions is not
forbidden. Although, the large value required of σcf

xy may
be surprising. Because the analysis leading to Eq. (4) re-
quires finite σcf

xx, a complete resolution of the issue nec-
essarily requires the study of the effects of quenched dis-
order, present in any real system, to which we turn next.

III. COMPOSITE FERMION MEAN-FIELD
THEORY WITH DISORDER

The effects of chemical potential disorder can be incor-
porated as a shift µ→ µ+V (x), where V (x) is a random
potential. We take V (x) to satisfy

V (x) = 0, V (x)V (x′) = ge−(x−x′)2/R2

, (5)

where the overline denotes averaging with respect to the
disorder distribution and “R” represents the range of dis-
order. In the composite fermion frame, the disorder has
two manifestations. First, since composite fermions are
charged under Aµ, they directly couple to the random
chemical potential, which, in turn, leads to a spatially
varying composite fermion density. Second, the flux at-
tachment constraint, 4π〈f†f(r)〉 = −εij〈∂iaj(r)〉, im-
plies the composite fermions also experience a random
magnetic field b(x) of zero mean due to the spatially-
varying composite fermion density. Thus, within a mean-
field approximation where the fluctuations of the emer-
gent gauge field are ignored, the effect of disorder on the
composite fermion metal is equivalent to that of a free
fermion gas in the presence of both potential and flux
disorder, with a precise local correlation between the two
disorder variables:

b(x) = −4πκV (x) (6)
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FIG. 1. (a) A cartoon of a typical spatial configuration with
pure flux disorder. Such disorder corresponds to an incorrect
treatment of chemical potential disorder (as viewed by the
electrons) within the HLR theory. (b) A cartoon of a typ-
ical spatial configuration of random composite fermion den-
sity and magnetic flux disorder “slaved” to one another as in
Eq. (6). In both cases, the system has an average density n̄.

where κ is the local compressibility that relates the local
composite fermion density to their local chemical poten-
tial. Being linear in V (x), Eq. (6) assumes sufficiently
weak chemical potential disorder.

In the remainder, we will focus upon the effects of ran-
dom potential and magnetic disorders – slaved to one
another as in Eq. (6) – on the Hall conductivity of free
composite fermions, i.e., the mean-field approximation
to the HLR composite fermion theory. When both mag-
netic and potential disorders are slaved to one another
in this way, new features can arise that are not present
for either magnetic or potential disorder in isolation (or
together, but uncorrelated to one another). As is well-
known, all states of a free 2D Fermi gas in the presence of
a disordered chemical potential are localized.14 Further-
more, in the presence of purely magnetic disorder with
zero average magnetic field, all states of a free 2D Fermi
gas also remain localized.1516 This is because for every
region with flux δb, there is an equivalent contribution
from another region with the opposite flux −δb. The
average filling fraction then is zero and although time-
reversal is broken in each disorder realization, there is a
‘statistical’ time-reversal symmetry, obtained upon dis-
order averaging (Fig. 1(a)).

By contrast, when both potential and flux disorders are
slaved to one another, statistical time-reversal symmetry
is lost: intuitively, a non-zero Hall effect is possible in
such a system since a larger density of particles have a
counterclockwise cyclotron motion (see Figure 1 (b)). As
a heuristic estimate, consider two typical regions: one
with density n̄+ δn and another with density n̄− δn as
in Fig. 1(b). Since the filling fractions in these regions
have opposite signs due to the slaving of disorder, the
Hall conductance from these regions is

σcf
xy '

1

2π
νeff =

δn

δb
≈ − 1

4π
. (7)

Such a motion in general can produce a non-quantized

Hall effect, which in turn, for free fermions, implies ex-
tended states at the Fermi energy. The only question re-
mains whether or not such cyclotron motion percolates,
leading to observable transport. To address this ques-
tion, we study the problem numerically on lattices with
slaved potential and flux disorder.

IV. NUMERICAL ANALYSIS

A. Continuum model

Within the mean-field approximation, we treat com-
posite fermions as free nonrelativistic fermions in the
presence of slaved disorder. The single-particle Hamil-
tonian is taken to be

Hcf =
(pj − aj)2

2mf
− V (x), (8)

where mf is the composite fermion mass and aj is the
fluctuation of the vector potential that is slaved by
Eq. (6) to the potential disorder V (x).

To first order in the disorder potential, the fluctua-
tion of the composite fermion density δn(k) = κ(k)V (k),
where δn(k) represents the Fourier components of com-
posite fermion density modulation due to the Fourier
transformed disorder potential V (k). For a 2D free Fermi
gas, κ(k) = mf/2π for |k| < 2kF . So, we assume that
κ(k) = mf/2π as long as the Fourier components of po-
tential with |k| > 2kF are small. Consequently, Eq. (6)
becomes:

εij∂iaj(x) = b(x) = −2mfV (x). (9)

We model V (x) as a superposition of randomly-located
impurities each with an individual potential given by:

V (x) =
2V0

R√πni
e−2|x|2/R2

. (10)

where ni is the number of impurities per unit area and the
variance of disorder is given by V 2

0 . We choose the num-
ber of attractive impurities to be equal to the number of
repulsive impurities so that odd moments of the disorder
potential vanish when disorder averaged, thereby, ensur-
ing that the disorder is particle-hole symmetric in a sta-

tistical sense. In addition, V (x0)V (x0 + x) ∝ e−|x|2/R2

.
For a numerical calculation, one needs to consider a

finite dimensional Hilbert space. First, we place com-
posite fermions on a finite system with size L × L. The
calculations are performed by taking plane waves as the
basis of the Hilbert space. Next, we choose a cutoff Λ
on the allowed momenta |k| ≤ Λ in such a way that the
results are insensitive to the precise value of the cutoff.
Because the cutoff breaks gauge invariance, it is impor-
tant to choose a gauge that minimizes the errors due to
the circular cutoff. We take

aj(k) = −ib(k)
εijki
k2

. (11)
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FIG. 2. dc σcf
xy is plotted for two different strengths of disorder

in the continuum model defined by Eq. (8) in (a) and (b). The
system size L ranges from 50/kF to 67/kF and the cutoff Λ
ranges from 3kF to 3.35kF . In each of the plots, two different
Fermi energies are considered.

The Hamiltonian in Eq. (8) is transformed to the plane
wave basis and it is diagonalized to obtain the wavefunc-
tions and the corresponding energies. Then we use the
Kubo formula to calculate the frequency dependent com-
posite fermion Hall conductivity:

σcf
xy(ω) = − i2π

L2

∑
l 6=n

f(En)− f(El)

En − El
vxnlv

y
ln

En − El + ω + iη
,

(12)

where vj = (pj −aj)/m, Hcf |n〉 = En |n〉, vjnl = 〈n| vj |l〉
and f(E) is the Fermi-Dirac distribution. In addition, ω
is the angular frequency of the probing electric field and
η is a smearing factor.

A temperature of the order of eigenvalue spacing is
included so as to reduce fluctuation effects due to disor-
der. We then average σcf

xy over a number of disorder re-
alizations. The exact number of disorder realizations de-
pends on the size of disorder-induced fluctuations. Typ-
ically, these fluctuations are larger for weaker disorder
and smaller system sizes.

1. Continuum results

dc Hall conductivity: We plot the computed com-
posite fermion dc Hall conductivity in Fig. 2 as a function
of the dimensionless parameter kFR. We have disorder
averaged it over approximately 2 × 104 disorder realiza-
tions and set η = 0. It can be seen that the composite
fermion Hall conductivity equals −1/4π (up to numerical
error) when kFR is large. Remarkably, σcf

xy maintains its
particle-hole symmetric value even when kFR ∼ 1. This
behavior appears to persist as the disorder strength is
varied, indicating some robustness of this result to the
strength and range of disorder.
ac Hall conductivity: We numerically calculate the

ac composite fermion Hall conductivity σcf
xy(ω) for a

range of values of frequencies ω and system sizes L at a
fixed Fermi energy EF and fixed disorder strength. Be-
cause the real part of (En − El + ω + iη) in Eq. (12) is
generally smaller for ω > 0 than when ω = 0, we have
used a small smearing factor η = 0.1×2πmf/L

2 to reduce
fluctuations. For the largest system size considered, the
disorder average is taken over 105 disorder realizations.
For smaller system sizes, the number of disorder realiza-
tions is larger. The results are plotted in Fig. 3.

We notice that at ω > 0, σcf
xy(ω) deviates from −1/4π.

The degree of deviation becomes smaller as system grows
in size. However, an extrapolation of the data, using a
power law in system size, suggests that the ac Hall con-
ductivity is not particle-hole symmetric in the thermo-
dynamic limit. In addition, we find the deviation to be
stronger for weaker disorder.

In our numerics, we expect the Hall conductivity to be
a scaling function of 3 parameters:

σcf
xy ≡ σcf

xy

(
ω

EF
, ωτ,

`

L

)
(13)

where ` and τ are respectively the mean-free path and the
scattering time due to disorder. Also, EF is the Fermi
energy. With the amount of data we have, we find it
difficult to isolate the individual contributions of ω/EF
and ωτ variables to the deviation of ac-Hall conductivity
from its particle-hole symmetric value. The latter con-
tribution is the one interesting to effective field theories.
Thus, our calculations are not conclusive about whether
the HLR theory violates particle-hole symmetry at finite-
frequencies.17

It is worth noting that the flux attachment procedure
in the HLR theory doesn’t respect the particle-hole sym-
metry of the lowest Landau level. Thus, we expect this
symmetry to be an emergent one. It is strictly valid
only at the critical point in the zero wavevector, zero
frequency limit. This should be contrasted with a micro-
scopic symmetry. For example, in the Ising model, the
time-reversal symmetry of spins prohibits the appearance
of irrelevant operators of the kind φ2n+1, where n ∈ Z,
in the effective field theory. Also, φ represents the Ising
order parameter. However, for an emergent symmetry,
the irrelevant operators are not constrained in this way.
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FIG. 3. (a) Re(σcf
xy) vs ω/EF for various system sizes, LkF =

54, 43, 36, 29 and 23 (from top to bottom). (b) Re(σcf
xy)(ω) vs

1/L for ω/EF = 0, 0.05, 0.075, 0.088, 0.1 and 0.125 (from top
to bottom). These frequencies are chosen because their error
bars are relatively small. The data has been fitted to a power
law, i.e. Re(σxy(ω)) = Re(σxy(ω))L=∞+aL−γ . In both plots,
the momentum space cutoff Λ = 3.6kF , the disorder strength
V0/EF = 0.19, and the disorder range kFR = 5.4.

Thus the observables like Hall conductivity can violate
the symmetry at finite q, ω. Results of this section sup-
port the idea that the particle-hole symmetry in the HLR
theory is of the latter kind.

B. Tight-binding model

In Ref. 10, it was pointed out that the condition in
eq. (9) is crucial in obtaining the particle-hole symmet-
ric Hall conductivity for comosite fermions. In particular,
the arguments were based on the supersymmetric quan-
tum mechanical structure of the Hamiltonian present
only for a quadratic form of the dispersion as in eq. (8).
In this section, we study the degree to which the particle-
hole symmetric response is robust against perturbations
that violate the supersymmetric structure of the HLR
Hamiltonian. To this end, we modify the quadratic dis-
persion by having composite fermions hop on a lattice

and experience the slaved potential and flux disorder.
We repeat an analysis similar to the previous section

for the dc composite fermion Hall conductivity only for a
tight-binding Hamiltonian on a L×L square lattice with
nearest-neighbor hopping:

Hcf = t
∑
〈ij〉

c†i cje
iaij −

∑
i

Vic
†
i ci. (14)

As in the continuum case, we slave the potential and
flux disorders locally. However, since magnetic flux lives
on plaquettes while the potential lives on lattice sites, we
take the flux on a plaquette (φi) to be proportional to the
average of the potential on its four surrounding vertices
Vavg,i:

φi = −4πκ× Vavg,i (15)

The compressibility on the lattice κ is calculated self-
consistently for the combined disorder and is taken to be
independent of the wavevector.

The potential disorder is modeled in the following way:

Vi =
V0

N
∑
j

fj e
−2(xi−xj)2/R2

(16)

where fi ∈ [−1/2, 1/2] are uncorrelated random numbers.
N is determined by the condition that the variance of the

disorder is given by V 2
0 . Also, ViVj ∝ e−(xi−xj)2/R2

.
The Hamiltonian is diagonalized in real space for the

tight-binding model. Then, the dc Hall conductivity of
the composite fermions is computed using the Kubo for-
mula given in Eq. (12). In this case, we take the disorder
average over approximately 104 realizations.

1. Tight-binding Results

The results for tight-binding Hamiltonian are pre-
sented in Fig. 4. We have considered slightly stronger
and shorter ranged disorder compared to the contin-
uum case. The composite fermion Hall conductivity
shows similar behavior as in the continuum model for
long ranged disorder, i.e., σcf

xy ≈ −1/4π for large kFR.
However, deviations from this value appear as kFR →
1. These results present evidence that the composite
fermions have a particle-hole symmetric Hall conductiv-
ity in the limit of infinite range disorder even for a non-
quadratic dispersion.

V. DISCUSSION

Employing a standard mean-field approximation,
which neglects fluctuations of the emergent gauge field,
we have shown that the HLR theory can exhibit a
particle-hole symmetric composite fermion Hall conduc-
tivity equal to −1/4π in the presence of quenched dis-
order. As stressed in recent works,9,10 the key to ob-
taining this result lies in incorporating the effects of the
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FIG. 4. dc σcf
xy is plotted for two different strengths of disorder

in the tight-binding model defined by Eq. (14) in (a) and (b).
The system size L ranges from 60/kF to 70/kF . In each of
the plots, two different Fermi energies are considered.

flux attachment constraint that relates the local varia-
tion in flux to that of the density of composite fermions:
4π〈n(x)〉 = −〈εij∂iaj(x)〉. Going beyond leading order
in an expansion in 1/kFR, we have shown, using two dif-
ferent microscopic models, that particle-hole symmetric
dc response is robustly satisfied to excellent approxima-
tion even in the regime kFR ∼ O(1). In one of these
models (continuum), we have also numerically calculated
the composite fermion Hall conductivity at finite frequen-
cies. We find deviations from particle-hole symmetric re-
sponse at sufficiently large frequencies compared with the
inverse system size, which are reduced as the system size
increases.

In this work, we are limited by the use of mean-field
theory for composite fermions. However, a complete un-
derstanding of the half-filled Landau level necessarily re-
quires solving the problem in the presence of both disor-
der and gauge fluctuations. Being a notoriously difficult
problem, our results are only indicative of the physics of
the full theory.

It is important to consider other tests of an emergent
particle-hole symmetry of the ν = 1/2 state, both exper-
imentally and theoretically. Levin and Son17 have de-

rived a remarkable linear relation between the electrical
Hall conductivity and scalar potential susceptibility that
any particle-hole symmetric state must satisfy. Wang
and Senthil18 have found particle-hole symmetry places
a strict constraint on the thermal Hall conductivity of
the electronic state. To date, it is unknown whether ex-
periment or the HLR theory is compatible with either
constraint that these works derive.
Acknowledgement: SR and PK were supported by

the DOE Office of Basic Energy Sciences, contract DE-
AC02- 76SF00515. MM was supported in part by the
UCR Academic Senate.

Appendix A: Linear response dictionary between
electrons and composite fermions

Starting from the composite fermion Lagrangian Leff =
Lf + Lcs + Lint with

Lf = f†
(
i∂t +At + at −

1

2mf
(i∂j +Aj + aj)

2

)
f,

Lcs =
1

2

1

4π
εµνλaµ∂νaλ,

Lint = −
∫
d2x′f†(t,x)f(t,x)U(x− x′)f†(t,x′)f(t,x′),

(A1)

we formally integrate out the fermions to obtain

Leff [A, a] =
1

2
(Aµ + aµ) Πcf

µν (Aν + aν) +
1

2
aµΠcs

µνaν

(A2)

where Πcf is the gauge interaction mediated by the com-
posite fermions and Πcs

µν = 1
4π εµλν∂λ represents the sta-

tistical interaction due to the Chern-Simons term. The
above is more a definition of an exact composite fermion
response Lagrangian rather than a result of a pertur-
bative calculation. To read off the electromagnetic re-
sponse, we integrate out aµ and define

LEM =
1

2
AµΠEM

µν Aν (A3)

where

ΠEM
µν =Πcf

µα

[
Πcf + Πcs

]−1

αβ
Πcs
βν . (A4)

Eq. (A4) is a dictionary relating conductivities of elec-
trons to those of composite fermions. Working in the
gauge at = At = 0, we can express the above kernels as

ΠEM =
iω

2π

(
σxx σxy
−σxy σxx

)
Πcf =

iω

2π

(
σcf
xx σcf

xy

−σcf
xy σcf

xx

)
Πcs =

iω

2π

(
0 1/2
−1/2 0

)
. (A5)
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After some elementary algebra, we find that the following
relation between resistivity tensor of electrons (ρab) and
composite fermions (ρcf

ab):

ρab = −4πεab + ρcf
ab, εab =

(
0 1
−1 0

)
. (A6)

Inverting the resistivity relation above, it follows that

σxy =
1

4π

4πσcf
xy + 16π2(σcf

xx)2 + 16π2(σcf
xy)2

1 + 8πσcf
xy + 16π2(σcf

xx)2 + 16π2(σcf
xy)2

. (A7)

If σcf
xx 6= 0, the requirement of particle-hole symmetry,

namely that σxy = 1/4π, implies that

σcf
xy = −1/4π. (A8)
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