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Entanglement Hamiltonian holds crucial clues in understanding quantum entanglement and its underlying

phenomenon in strongly-correlated systems. To date, however, a generic recipe to map out the operator form

of entanglement Hamiltonian remains outstanding. Here, we present a systematic framework which explicitly

reconstructs entanglement Hamiltonian based on the information of one entangled mode of the reduced density

matrix. We demonstrate its successful application to quantum spin lattice models. The obtained entanglement

Hamiltonians accurately recover the expectations from analytical theories and faithfully capture all features of

the reduced density matrices, which are evidenced by the agreement between the original and reconstructed full

entanglement spectra and the high density matrix fidelity.

Introduction.— Entanglement-based analysis continually

brings inspirational insights into the study of condensed mat-

ter systems, particularly those with strong interactions [1–

3]. As a way to quantify entanglement, one can bipartition

a given system into two parts (A and B), and construct the

reduced density matrix of A as ρA = TrB|ψ〉〈ψ|, using the

ground state wave function |ψ〉. The entanglement entropy,

S = −Tr(ρA ln ρA), quantifies the amount of quantum entan-

glement between the halves, which has proved to be a prof-

itable tool to explore quantum correlations encoded in ground

state [4–7]. Following the seminal work Ref. [8], more re-

cent developments have gone beyond the single number S,

and invoked the full eigenvalue spectrum {pn} of ρA, dubbed

as the entanglement spectra (ES). Nowadays, the ES has been

treated as a more fine-grained “fingerprint” to distinguish var-

ious topological orders [8–11], symmetry protected phases

[12, 13], symmetry broken phases [14, 15], quantum critical-

ity [16–21], to name a few.

The reduced density matrix can be formally written as

ρA = e−HE , and regarded as a thermal density matrix with

entanglement Hamiltonian (EH) HE at inverse temperature

β = 1. Knowledge of the EH in terms of its operator con-

tent is of vital importance, because it could offer an alterna-

tive picture of how subsystem A behaves, by appealing to our

intuition of thermodynamics. Moreover, the long-sought so-

lution to some open questions actually relies on the access to

the EH. For instance, a concrete form of the EH may pro-

vide insight for interesting problems such as bulk-edge corre-

spondence [8, 22] and subsystem thermalization in the non-

equilibrium dynamics [23–25]. From an information extrac-

tion point of view, both the entropy and the ES represent ways

of reducing the full information content in ρA to more man-

ageable forms. The analytical form of the EH, if achievable,

points to a different reduction scheme, whereby the exponen-

tially large complex-valued matrix elements in ρA are com-

pressed into a handful of coupling constants in the EH.

Generally, it is technically challenging to work out the com-

pact operator form of the EH, because the transformation

HE = − log ρA is non-linear. Only in a limited number of

tractable cases, the EH can be explicitly obtained either ex-

actly [26–29, 31] or perturbatively [32]. It has also been pro-

posed to map out the EH through fitting the ES [15, 33], but

it strongly depends on the empirical knowledge, and is thus

uncontrolled. In addition, when putting on a lattice, the cor-

rections to the field-theory predicted EH remains elusive [30].

Taken as a whole, despite these instructive attempts, to date

there is no generic recipe to derive the EH in a compact form

in strongly-correlated systems, thus a systematic scheme to

directly access the EH is highly desired.

In this paper, to fill this gap, we present a systematic strat-

egy to obtain the EH. Instead of evaluating HE = − log ρA
directly, we address this problem from an alternative angle,

and propose to construct HE based on the information of

eigenstate of ρA. We demonstrate and benchmark this scheme

on quantum spin lattice models. We confirm that, the ob-

tained numerical EHs in these models converge to analytical

forms, consistent with the corresponding conformal field the-

ory (CFT) or perturbatively around exactly solvable points.

Moreover, the method to quantify the accuracy of the obtained

EH are also discussed through maximizing the density matrix

fidelity. The present approach is not only applicable to a broad

range of systems, but also opens a door to a variety of prob-

lems in condensed matter systems. For instance, the resulting

EH bears an operator form similar to the corresponding physi-

cal Hamiltonian, which sheds some light on the understanding

of Haldane’s conjecture on entanglement spectra [8].

Method.— Our aim is to obtain the EH, HE = − log ρA,

explicitly in terms of intelligible operators. This problem is in

general analytically untractable due to the difficulty in eval-

uating the log. Below, we will instead (1) Confine ourselves

to a restricted operator space L consisting of linear combina-

tions of a prescribed set of basis operators, L = Span{La},

and then (2) Construct an operator HP ∈ L, such that it (ap-

proximately) shares one eigenstate with ρA (the entanglement

ground state). In principle, HP thus constructed may not be

HE , instead it could be a certain function of HE . However,

the EH obtained from the ground state of a local Hamiltonian

is itself believed to be local. Thus as long as one chooses

the operators {La} properly (e.g. by including enough local

operators), HP and HE should be equivalent up to a proper
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rescale. We find this is indeed the case in the two examples to

be discussed later.

To obtain HP , we use a recently reported method [34–36]

which takes as input a state |ξ〉 and a set of basis operators

{La}, and returns a set of weights {wa}, such that HP =
∑

a waLa has |ξ〉 as an (approximate) eigenstate. Specifically,

we take |ξ〉 as the entanglement ground state, and compute the

correlation matrix

Gab = 〈ξ|LaLb|ξ〉 − 〈ξ|La|ξ〉〈ξ|Lb|ξ〉 . (1)

Note thatG is positive-semidefinite [37]. The desired weights

are given by the eigenvector of the matrix G with the lowest

eigenvalue g0 ≥ 0,

{wa} :
∑

b

Gabwb = g0wa, g0 = min{Spec(G)} ≥ 0. (2)

One can easily verify that g0 = 〈ξ|H2
P |ξ〉 − 〈ξ|HP |ξ〉2, i.e.,

g0 is the “energy fluctuation” of the state |ξ〉 under “Hamilto-

nian” HP =
∑

a waLa. |ξ〉 becomes an exact eigenstate of

HP if g0 = 0. For small but nonvanishing g0, HP is the best

approximate parent “Hamiltonian” of |ξ〉 [38]. In practice,

one can start with a small set of simple operators (e.g., 1- and

short range 2-spin operators), and gradually add in more com-

plicated ones (e.g., n-spin operators, longer range couplings,

etc), until the calculated g0 drops below a desired threshold

value. When g0 is small enough, the related eigenvector gives

the local coupling strength in the EH. In this context, g0, the

fluctuation of the target state under the EH, serves the purpose

of a control parameter, similar to the ground state energy in

most variational calculation.

Although the above construction formally only ensures that

HP and HE (approximately) share one eigenstate |ξ〉, we

found in our study that the remainder of the eigenbasis also

match well whenever g0 is small, which we will quantify in

the examples later. Note also that there is no a priori relation

between the spectra of HP and HE even when the eigenba-

sis match exactly, this is why we take the more general form

HP = f(HE).
With HP fixed, we can determine the best f , in principle,

by maximizing the density matrix fidelity [39] between the

original ρA and its reconstruction ̺ = e−f(HP ),

F (ρA, ̺) = Tr
√√

ρA̺
√
ρA . (3)

We write the eigen-decomposition of ̺ as

̺(q) =
∑

n

qn|φn〉〈φn| , (4)

where q = (q1, q2, · · · ), qn = e−f(εn), and |φn〉 and εn are

the nth eigenstate and eigenvalue ofHP , respectively. In Sup-

ple. Mater. [37], we show that maximizing F (ρA, ̺) leads to

a self-consistent equation of q. Its solution implicitly defines

the f function through f(εn) = − log qn. When the eigenba-

sis {|φn〉} of HP matches well with the entanglement states

J⊥

(b)(a)

FIG. 1. (a) One-dimensional spin−1/2 chain and (b) spin lad-

der made of two coupled periodic spin−1/2 chain. The dashed line

shows the entanglement bipartition into two subsystem A (red) and

B (blue), each of which encloses L sites.

{|ξn〉}, the optimal q can be approximated by (see [37])

qn ≃ 〈φn|ρA|φn〉 ∀n . (5)

Under this approximation, ̺ describes the diagonal ensemble

of ρA in the reconstructed {|φn〉} basis.

Before going into examples, we remark that the EH can

in principle be calculated by numerically evaluating − log ρA
using exact diagonalization. Such calculations, however, re-

quire keeping track of the coefficients of exponentially many

operators |n〉〈n′| in a many-body complete basis {|n〉}. Our

method is numerically more efficient although it needs extra

input regarding the physical properties of the system (reflected

in the choice of {La}). More importantly, our method applies

to situations (e.g. in simulations using matrix product state)

where log ρA is hard to calculate numerically, as long as the

correlation matrix remains tractable. As a nontrivial exam-

ple, we demonstrate the quantum dynamics of equilibrated EH

using time-dependent density matrix renormalization group

(Ref. [37]).

One-dimensional chain.— As a first case example, we study

the EH of bipartition of a one dimensional spin−1/2 chain

model (as shown in Fig. 1(a)):

Ĥ =

2L
∑

n=1

ĥn,n+1 =

2L
∑

n=1

Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1.

For |∆| ≤ 1, the ground state can be effectively described

by a gapless Luttinger liquid. By implementing the numeri-

cal scheme discussed in the method section, we search for a

parent Hamiltonian with the form HP =
∑

n Jn,n+1ĥn,n+1

on modest partition sizes. We analyze the salient features

of the obtained EH. First of all, we identify one approxi-

mately zero eigenvalue in the spectrum of correlation matrix

(Tab. I). The coefficients Jn,n+1 in HP can be obtained from

the corresponding eigenvector. Since subsystems A and B

both have open boundaries after bipartition (Fig. 1(b)), trans-

lation symmetry is broken and Jn,n+1 is expected to be spa-

tially dependent. In Fig. 2(a), we show the spatial depen-

dence of Jn,n+1 (with proper normalization), where Jn,n+1 is

non-uniform and takes smaller values near the virtual bound-

ary. Importantly, for quantum critical phase of one dimen-

sional spin−1/2 chain model, the EH is consequently ex-

pected to have the following conformal field theory (CFT)
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TABLE I. Lowest eigenvalue g0 of correlation matrix G, and den-

sity matrix fidelity F (ρA, ̺) obtained on different system sizes L for

spin−1/2 Heisenberg chain (∆ = 1).

2× L 20 24 28 32

g0 3.9× 10−8 4.7× 10−8 4.4× 10−8 5.4 × 10−8

F (ρA, ̺) 0.99998 0.99998 0.99999 0.99997

form [23, 40–43]:

HCFT
E =

L−1
∑

n=1

fenv(ñ)ĥn,n+1, (6)

where fenv(ñ) = ñ(1 − ñ) is the envelope function and

ñ = (n + 1
2 )/L. To elucidate the accuracy of our numerical

method, we directly compare numerical results with the CFT

prediction (Eq. 6). As shown in Fig. 2(a), the dependence

of Jn,n+1 on n matches the CFT predicted envelope function

fenv (black dashed line).

The agreement between Jn,n+1 and fenv(ñ) suggests that

for this model, HP recovers HCFT
E , and may indeed closely

approximate the exact HE . To verify, we first compare

the ES {− log pn} and the eigenvalues {εn} of HP [44].

As shown in Fig. 2(b), down to order 10−7, the ES is ex-

tremely well captured by {εn}, evidenced by a simple lin-

ear fit − log pn = a + bεn. In addition, we compute the

fidelity between the original and reconstructed reduced den-

sity matrix, F (ρA, ̺) where ̺ = e−(a+bHP ). As shown in

Tab. I, F (ρA, ̺) > 0.9999 for all system sizes tested. We thus

conclude that HP and HE are indeed equivalent. Similar re-

sults are obtained throughout the gapless phase |∆| ≤ 1 on all

available system sizes. (∆ > 1 case please see [37].)

Spin ladder model.— We turn to study a two-leg spin−1/2
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FIG. 2. (a) Spatially varying coupling strengths Jn,n+1 of the par-

ent Hamiltonian of bipartition of a spin−1/2 Heisenberg chain.

The black dashed lines show the CFT predicted envelope function

fenv(ñ) = ñ(1 − ñ) and ñ = n+(n+1)
2L

. (b) Direct comparison

− log pn of the ES, qn by Eq. 41 and the eigenvalues εn of parent

Hamiltonian HP . The black line represents the best linear fit, with

the slope ∼ 1.00032 and intercept ∼ 10−5. Inset: One-to-one com-

parison of − log pn of the ES and eigenvalues εn grouped by quan-

tum number Sz
A in subsystem A. Different symbols show the results

computed on 2 × L systems: blue triangular (L = 10), red circles

(L = 12), green diamonds (L = 14), navy squares (L = 16).

TABLE II. Parameters of HE (Eq. 8) for J⊥/J‖ = 4 and ∆ = 1 for

spin ladder model.

2L g0 J1 J2 J3 J4

20 9.43 × 10−7 0.9979 −0.0642 0.0041 −0.0024

24 6.96 × 10−6 0.9979 −0.0646 0.0043 −0.0023

28 5.54 × 10−6 0.9979 −0.0647 0.0039 −0.0023

32 4.80 × 10−6 0.9979 −0.0637 0.0046 −0.0016

ladder Hamiltonian (as shown in Fig. 1(b)):

Ĥ = ĤA + ĤB + ĤAB

Ĥα=A(B) = J‖
∑

〈ij〉
[Sx

i,αS
x
j,α + Sy

i,αS
y
j,α +∆Sz

i,αS
z
j,α]

ĤAB = J⊥
∑

i

[Sx
i,AS

x
i,B + Sy

i,AS
y
i,B +∆Sz

i,AS
z
i,B ], (7)

where J‖ = cos θ describes the nearest-neighbor exchange

interaction in each chain, and J⊥ = sin θ is “rung” ex-

change coupling between two chains. Below, we focus on

the isotropic case ∆ = 1 and antiferromagnetic intra-chain

coupling J‖ > 0 (see [37] for the anisotropic ∆ > 1). The

nature of the ground state depends on the sign of J⊥. For an-

tiferromagnetic J⊥ > 0, spin singlets form on the rungs and

the ground state can be viewed as the product of rung singles

[45]. For ferromagnetic J⊥ < 0, the ladder system can be

effectively mapped onto a spin−1 chain, thus the ground state

is in the “Haldane” phase [46, 47].

We now reconstruct the EH HE on chain A using transla-

tionally invariant Heisenberg couplings,

HE =

Nr
∑

n=1

Jnĥn, ĥn =

L
∑

i=1

Si · Si+n, (8)

where ĥn is the n-th neighbor coupling, and Nr is long-range

interaction cut-off. As before, the coefficients Jn are ob-

tained through diagonalization of correlation matrix G. We

identify one approximate zero mode in the correlation spec-

trum. Tab. II shows one typical example of the correspond-

ing coupling constants in the EH. First of all, we found that

the reconstructed EH is dominated by the nearest-neighbor

coupling, J1 ≫ Jn>1. Further-neighbor couplings decay as

inter-spin distance increases, and we truncated at Nr = 4th

neighbor coupling, which already yields very good recon-

struction fidelity of F (ρA, ̺) > 0.998. The vanishingly

small long-ranged interactions reflects locality of the EH. We

thus conclude that the main feature of the EH is captured

by a spin−1/2 chain with nearest neighbor antiferromagnetic

Heisenberg couplings. In addition, in Tab. II, we observe an

unfrustrated ferromagnetic second-neighbor coupling J2 < 0.

The oscillatory nature of interaction couplings, which can be

antiferromagnetic or ferromagnetic depending upon the sepa-

ration, is reminiscent of the Ruderman-Kittel-Kasuya-Yosida

interaction from which indirect interaction couplings in sub-

system A can be induced through subsystem B.
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To further understand the obtained EH, we make a pertur-

bative calculation [37] in the strong inter-chain coupling limit

(J‖ ≪ J⊥). Up to order O(
( J‖

J⊥

)2
),

Hper
E ≈ Jper

1

∑

i

Si · Si+1 − Jper
2

∑

i

Si · Si+2, (9)

where Jper
1 = 2

J‖

J⊥
and Jper

2 = 1
2

( J‖

J⊥

)2
. Thus up to O(

J‖

J⊥
)2,

the EH behaves effectively as a spin−1/2 chain with first-

and second-neighbor couplings. In particular, the second-

neighbor coupling is ferromagnetic, consistent with our re-

sults in Tab. II. Fig. 3(b) shows quantitative agreement be-

tween perturbative and numerical results near J‖/J⊥ → 0,

where numerics from different system sizes converge to the

same perturbation theory values. This agreement not only pro-

vides an analytical understanding of the oscillatory nature of

interaction couplings, but also validates the accuracy of our

numerical results.

One major advantage of our current scheme is its appli-

cability in the whole parameter regime, which is beyond the

reach of perturbation-based effective theories. In Fig. 3(a), we

show the EH parameters as a function of θ = tan−1(J⊥/J‖),
up to fourth-neighbor couplings. At θ = 0, the two chains

are effectively decoupled, thus it is reasonable to obtain Jn>1

tending to zero. Away from this decoupling point, generally

long-ranged interaction terms appear in HE . We note that the

obtained couplings Jn/J1 show non-monotonic dependence

on θ.

With the reconstructed EH in hand, a natural question is if

it belongs in the same class with its physical counterpart ĤA.

Since the ground state of HE can be smoothly and adiabati-

cally connected to that of ĤA without gap closing (Fig. 3(c)),

we conclude that HE and ĤA are indeed in the same class

[48]. Interestingly, even though the whole system experiences

a quantum phase transition at θ = 0, the EH still faithfully

represents the physical Hamiltonian ĤA.

Summary and Discussion.— We have presented a numeri-

cal scheme to reconstruct the entanglement Hamiltonian HE

based on entangled modes of reduced density matrix, with the

help of the recently reported eigenstate-to-Hamiltonian map-

ping [34–36]. As a proof of principle, we applied this method

to two quantum spin lattice models. We found that the re-

constructed HE accurately recovers the expected results and

faithfully captures all features of the reduced density matrices,

which are evidenced by direct comparison to analytical the-

ories, the agreement between the original and reconstructed

full entanglement spectra, and the close-to-1 density matrix

fidelity.

This scalable recipe for constructing the entanglement

Hamiltonian opens up a number of directions worthy of fur-

ther exploration. We explicitly showed in our examples that

HE bears a similar form as the physical Hamiltonian, which

unambiguously supports the conjecture that there exists a deep

correspondence between the entanglement Hamiltonian and

the physical Hamiltonian with a virtual boundary [8, 22, 49].

Similar numerical calculations may be used to investigate the
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FIG. 3. (a) EH parameters Jn/J1 versus θ (up to fourth nearest

neighbor) for a given size L = 12. Inset: Density matrix fidelity

F (ρA, ̺) between ρA and ̺ versus θ. (b) Comparison EH parame-

ters J2/J1 and the perturbation theory Eq. 9 (red dashed line). Dif-

ferent symbols stand for L = 8 (green), L = 10 (blue), L = 12
(black). θ → π/2 relates to the strong inter-chain coupling limit. (c)

Wave function fidelity |〈φ0
E|ϕ

0
A〉| as a function of θ, where |ϕ0

A〉 and

|φ0
E〉 is the ground state of ĤA and HE , respectively.

time evolution of entanglement Hamiltonian [23–25], which

may provide intuitive pictures and additional insights regard-

ing the nature of entanglement propagation and subsystem

thermalization; see supplemental materials Ref. [37] for the

extraction of equilibrated entanglement Hamiltonian after a

quantum quench. This work also paves the way for future

studies of entanglement Hamiltonian in higher dimensions us-

ing matrix product state and similar variational ansatz, for

which the correlation matrix (Eq. 1) remains accessible at

moderate system sizes.

Note added.— At the final stage of preparing this

manuscript, we became aware of a different scheme to map

out entanglement Hamiltonian [50]. Applications of similar

numerical schemes to related problems have been reported in

[52, 53] shortly after the initial submission of this work.

Acknowledgments.— We thank Y. Zhang, D. N. Sheng,

Xueda Wen, J.X-.Zhu, D.P. Arovas for fruitful discussion.

This work was supported by U.S. DOE at Los Alamos Na-

tional Laboratory (W.Z., Z.S.H.). Y.C.H. was supported by

the Gordon and Betty Moore Foundation under the EPiQS ini-

tiative, GBMF4306, at Harvard University. This research was

also supported in part by Perimeter Institute for Theoretical

Physics (Y.C.H.). Research at Perimeter Institute is supported

by the Government of Canada through the Department of In-

novation, Science and Economic Development Canada and by

the Province of Ontario through the Ministry of Research, In-

novation and Science.



5

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008), URL http://link.aps.org/doi/10.1103/RevModPhys.80.517.

[2] N. Laflorencie, Physics Reports 646, 1 (2016), ISSN 0370-1573, quantum entanglement in condensed matter systems, URL

http://www.sciencedirect.com/science/article/pii/S0370157316301582.

[3] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010), URL http://link.aps.org/doi/10.1103/RevModPhys.82.277.

[4] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003), URL https://link.aps.org/doi/10.1103/PhysRevLett.90.227902.

[5] P. Calabrese and J. Cardy, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).

[6] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006), URL http://link.aps.org/doi/10.1103/PhysRevLett.96.110404.

[7] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006), URL http://link.aps.org/doi/10.1103/PhysRevLett.96.110405.

[8] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008), URL http://link.aps.org/doi/10.1103/PhysRevLett.101.010504.
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[21] I. Frérot and T. Roscilde, Phys. Rev. Lett. 116, 190401 (2016), URL https://link.aps.org/doi/10.1103/PhysRevLett.116.190401.

[22] X.-L. Qi, H. Katsura, and A. W. W. Ludwig, Phys. Rev. Lett. 108, 196402 (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.108.196402.

[23] J. Cardy and E. Tonni, Journal of Statistical Mechanics: Theory and Experiment 12, 123103 (2016), 1608.01283.

[24] P. Calabrese and J. Cardy, Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005), URL

http://stacks.iop.org/1742-5468/2005/i=04/a=P04010.

[25] Xueda Wen, Shinsei Ryu, Andreas W. W. Ludwig, arXiv.1807.04440.

[26] M.-C. Chung and I. Peschel, Phys. Rev. B 62, 4191 (2000), URL https://link.aps.org/doi/10.1103/PhysRevB.62.4191.

[27] I. Peschel, Journal of Physics A: Mathematical and General 36, L205 (2003), URL http://stacks.iop.org/0305-4470/36/i=14/a=101.

[28] L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010), URL http://link.aps.org/doi/10.1103/PhysRevLett.104.130502.

[29] I. Klich, D. Vaman, and G. Wong, Phys. Rev. Lett. 119, 120401 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.120401.

[30] V. Eisler and I. Peschel, ArXiv e-prints (2018), 1805.00078.

[31] B. Nienhuis, M. Campostrini, and P. Calabrese, Journal of Statistical Mechanics: Theory and Experiment 2009, P02063 (2009), URL

http://stacks.iop.org/1742-5468/2009/i=02/a=P02063.
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I. CONSTRUCTING A PARENT OPERATOR FROM AN EIGENSTATE, A LINEAR DEPENDENCY PERSPECTIVE

In Ref. 34 (see also Refs. 35 and 36), Qi and Ranard showed that given a manybody wavefunction |v〉, a (more or less) unique

parent Hamiltonian can be constructed in the form

H =
∑

i

wiLi , (10)

where {Li} is a set of Hermitian operators, if and only if the following “correlation matrix” M
(v)
ij has a unique zero eigenvalue

(with eigenvector (w1, w2, · · · )),

M
(v)
ij ≡ 1

2
〈v|{Li , Lj}|v〉 − 〈v|Li|v〉〈v|Lj |v〉 , (11)

∑

j

M
(v)
ij wj

!
= 0 . (12)

Restricting {Li} to spatially local operators, the above observation then provides a guiding principle for constructing a local

parent Hamiltonian for an arbitrary state |v〉. Note that |v〉 is not necessarily the ground state of thus constructedH .

We now provide an alternative perspective for the above and other related results, in terms of a linear dependence analysis. A

sufficient and necessary condition for a normalized state |v〉 to be an eigenstate of H is that

(I− Pv)H |v〉 = 0 , Pv ≡ |v〉〈v| , (13)

where I is identity, and Pv projects onto |v〉. Consider now a Hamiltonian of the form Eq. 10. Then

(I− Pv)H |v〉 =
∑

i

wi|ui〉 , |ui〉 ≡ (I− Pv)Li|v〉 . (14)

The unnormalized {|ui〉} states are generated by first “exciting” |v〉 by Li, and then projecting out the part parallel to |v〉. Eq. 13

is equivalent to demanding that the {|ui〉} states are linearly dependent,

∑

i

wi|ui〉 = 0 . (15)

Linear dependence of a set of vectors can be checked via a principal component analysis, which is mathematically equivalent

to a singular value decomposition (SVD). To proceed, we construct a D ×M matrix A by arranging |ui〉 as its ith column,

AD×M ≡ (|u1〉 , |u2〉 , · · · ) . (16)

HereD is the full Hilbert space dimension, andM is the rank of the operator set {La}, a = 1, 2, · · · ,M . The linear dependence

condition Eq. 15 is formally equivalent to demanding that A has at least one zero singular value (a more detailed discussion of

the related SVD will be provided below). Equivalently, the overlap matrix Gij = (A†A)ij = 〈ui|uj〉 should have at least one

zero eigenvalue, with the coefficients {wi} given by the corresponding eigenvector,

Gij = 〈ui|uj〉 = 〈v|LiLj |v〉 − 〈v|Li|v〉〈v|Lj |v〉 , (17)
∑

j

Gijwj
!
= 0 . (18)

Note that Qi and Ranard’s correlation matrix M is the real part of the hermitian G matrix. Replacing G with M is equivalent to

enforcing real-valuedness of the resulting coefficients {wi}, as required by the Hermiticity of H =
∑

wiLi. A non-Hermitian

parent operator H can be viewed as an annihilator of the state |v〉, as discussed in Ref. 36

1. Principal component analysis of the states {Li|v〉}

In practice, the choice of the basis operators {Li} is often based on physical intuition, so for efficiency reasons one may start

with a relatively small set of {Li}, and gradually add in more operators (e.g., in increasing order of spatial span or other physical



7

preferences), until the lowest singular value of A (or eigenvalue of G = A†A) converges toward zero. A natural question

therefore concerns the meaning of the SVD of A, which we now address. The SVD reads

AD×M = LΛR
† =

M
∑

i=1

λi|li〉〈ri| , Λ = Diag(λ1, λ2, · · · , λM ) , (19)

LD×M = (|l1〉, |l2〉, · · · , lM 〉) , RM×M = (|r1〉, |r2〉, · · · , |rM 〉 . (20)

The columns of L and R are the left and right singular vectors, respectively, and are denoted as |li〉 and |ri〉. Note that the right

singular vectors (which are the eigenvectors of G) are M -dimensional. Vectors in the right singular space Span{|ri〉} represent

operators in the operator space Span{Li}: Writing the ith right singular vector as

|ri〉 = (r
(1)
i , r

(2)
i , · · · , r(M)

i )t , (21)

then the corresponding “Hamiltonian” is

H(i) ≡
∑

j

Ljr
(j)
i = (L1, L2, · · · , LM )|ri〉 , (22)

similar in spirit to writing polarized spin operators as σb = b · σ. One can then verify that

(I− Pv)H
(i)|v〉 = A|ri〉 = λi|li〉 . (23)

The first equality follows from Eq. 16, and the second one follows from Eq. 19. Note that 〈v|li〉 = 0∀i, which can be checked

by left multiplying 〈v| to the above equation. In words, this equation means that the action of H(i) on |v〉 generates a deviation,

perpendicular to |v〉, as given by the corresponding left singular vector |li〉, with weight λi (the singular value). In particular, if

λi = 0, then one recovers Eq. 13, and |v〉 becomes an eigenstate of H(i). Thinking of H(i) = i∂t as a time evolution generator,

then the LHS is the covariant time derivative iDt. The ith left singular vector |li〉 is thus the normalized tangent vector generated

by H(i), and the corresponding singular value is related to the Fubini-Study metric in the time direction, λ2i = 〈v|D2
t |v〉, which

is also the energy fluctuation,

λ2i = 〈v|H(i)(I− Pv)H
(i)|v〉 = 〈H(i)2〉v − 〈H(i)〉2v . (24)

2. In what sense is the reconstructed parent operator optimal?

The right singular vectors satisfy orthonormality 〈ri|rj〉 = δij . What does it entail for their operator counterparts H(i)

(Eq. 22)? In order to carry this over to the operator space, one should additionally require the operators {Li} to satisfy certain

operator orthonormality, which, up until now, we have not enforced. Following Qi and Ranard [34], we use the Hilbert-Schmidt

inner product for operators,

〈A,B〉 ≡ 1

TrI
Tr(A†B) , (25)

where TrI = D is the full Hilbert space dimension. An orthonormal operator basis {Li} satisfies

〈Li, Lj〉 !
= δij . (26)

Then “Hamiltonians” corresponding to different right singular vectors also satisfy orthonormality,

〈H(i), H(j)〉 =
∑

i′,j′

r
(i′)
i r

(j′)
j 〈L(i′), L(j′)〉 = 〈ri|rj〉 = δij . (27)

In other words, these “eigen-Hamiltonians” {H(i)} form an orthonormal basis for the operator space spanned by {Li}. A

normalized traceless “Hamiltonian”H simply means its spectrum has unit variance, Tr(H2)/Tr(I)
!
= 1.

Using orthonormal {Li}, then in situations where an exact zero eigenvalue does not exist for G (Eq. 17), the parent operator

H(imin) corresponding to the lowest eigenvalue of G is an “optimal” approximate parent Hamiltonian, in the sense that out of

all normalized operators in the space of Span{Li}, H(imin) generates the lowest energy fluctuation on |v〉, or equivalently the

least deviation of H |v〉 from |v〉.
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II. QUANTIFYING THE QUALITY OF THE RECONSTRUCTED BASIS USING IPR

The method described in the text is based on the ansatz that the reduced density matrix (RDM) ρA can be written as a scalar

function y of a local operatorHP , and HP itself is to be (approximately) constructed, from an exact eigenstate |ξ〉 of ρA, in the

space of L ≡ Span{Li},

ρA
?
= y(HP ) , HP ∈ L . (28)

The construction scheme for HP , however, only guarantees that HP and ρA (approximately) share one eigenstate |ξ〉, with no

constraint on the remainder of the eigenbasis. Therefore, to claim that one has successfully reconstructed ρA in terms of {Li},

one needs to verify that the entire eigenbasis of HP approximately matches that of ρA.

A simple way to quantify the quality of one set of basis states {|φn〉} in terms of their similarity to a reference basis Ψ ≡
{|ψn〉}, is to use the inverse participation ratio,

IPR(φn|Ψ) =
1

∑N
m=1 |〈φn|ψm〉|4

∈ [1, N ] . (29)

The IPR measures effectively how many basis states in Ψ one needs to span a particular |φn〉. It is 1 if 〈φn|ψm〉 = δm,n, and

saturates to N if |〈φn|ψm〉| = 1√
N

∀m. In the context of RDM reconstruction, one would compute the IPR for each of the

eigenstates of HP in the exact eigenbasis of ρA; if all of them are close to 1, then HP and ρA approximately share the same set

of basis states.

1. Generalized IPR in the presence of degeneracy

When HP has degeneracy, there is a U(M) indeterminacy in an M -fold degenerate subspace M. Then taking a single

numerically obtained eigenstate out of this M -dimensional subspace may yield a “broadened” IPR (i.e., one> 1), even if upon a

U(M) transformation, each of the M (transformed) states could have a perfectly sharp IPR (i.e., = 1). To fix this, we generalize

the notion of IPR to a degenerate subspace. Denote the projection operator of this subspace and a corresponding density operator

as

PM =

nM
∑

n=n1

|φn〉〈φn| , ρM = PM/TrPM . (30)

The generalized IPR is defined as the exponentiated 2nd Renyi entropy, eS2 , of the diagonal ensemble in the Ψ basis,

IPR(PM|Ψ) =
1

∑N
m=1〈ψm|ρM|ψm〉2

. (31)

One can verify that the generalized IPR reduces to the standard one when there is no degeneracy (M → 1). Note that if PM
exactly matches an equal-dimensional subspace in the Ψ basis, PM =

∑nM

n=n1
|ψn〉〈ψn|, then 〈ψm|ρM|ψm〉 = 1

M , hence

IPR(PM|Ψ) = M . In other words, in the perfect match case, the generalized IPR is given by the dimension of the degenerate

subspace M. On the other hand, if each of the degenerate |φni
〉 still satisfies |〈φni

|ψm〉| = 1√
N
∀m, then 〈ψm|ρM|ψm〉 = 1

N ,

hence IPR = N . The generalized IPR thus reflects the notion of effective number of |ψ〉 states needed to span the subspace PM.

2. Direct comparison the eigenstates of entanglement Hamiltonian and those of parent Hamiltonian using IPR

In this section, we explicitly show the comparison of eigenstates of HP with those of HE using IPR. We take the 1D spin

chain as example again. Since the reconstructed HE has degeneracy, we use the generalized IPR introduced in Eq. 31 when

appropriate. In Fig. 4(a-b) we repeat the same scheme as in the main text and compare the eigenvalues of HP and HE . In

Fig. 4(c), we show the IPR of eigenstates of HP as labeled by their (renormalied) weight εn. It is found IPRn ≈ 1 for all

of eigenstates with weight εn > 10−6, showing that each eigenstate of HE is identical to the eigenstate of HP . Please note

that, for worst case, if the eigenstates of HP and that of HE are totally independent, it should be expected maximum value of

IPR ∼ N ∼ 2L/2 (L total system size) which is exponential growing with L. In Fig. 4(c), IPRn are all close to 1 show that

the eigenstates of HP has well captured the eigenstates of HE .
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FIG. 4. (a) Spatially varying coupling strengths Jn,n+1 of the parent Hamiltonian of bipartition of a one-dimension spin−1/2 chain model at

XY point (∆ = 0). The black dashed lines show the CFT predicted envelope function fenv(ñ) = ñ(1 − ñ) and ñ = n+(n+1)
2L

. (b) Direct

comparison − log pn of the ES, qn by Eq. 41 and the eigenvalues εn of parent Hamiltonian HP . The black line represents the best linear

fit, with the slope ∼ 1.000090 and intercept ∼ 10−9. Inset: One-to-one comparison of − log pn of the ES and eigenvalues εn grouped by

quantum number Sz
A in subsystem A. (c)Inverse participation ratio of eigenstates of parent Hamiltonian HP . Different symbols show the

results computed on 2× L systems: blue triangular (L = 10), red circles (L = 12), green diamonds (L = 14), navy squares (L = 16).

In the main text, we have demonstrated that the eigenvalue of parent Hamiltonian HP has one-to-one correspondence with

the entanglement spectra of reduced density matrix. Here, we further show that each eigenstate of HP can be captured by

the eigenstate of HE . Taking into account that density matrix fidelity F (ρA, ̺) = Tr
√√

ρA̺
√
ρA itself reveals the weighted

averaged wavefunction overlap between the eigenstates of HP and that of HE , we now can understand very large value of

density matrix fidelity as shown in the main text. In conclusion, the very large density matrix fidelity unambiguously sets up the

equivalence between HP and entanglement Hamiltonian HE .

In Fig. 4 and Tab. III, we show the results at parameter ∆ = 0 of spin chain model (Fig. 1(a) in main text). The reason for

this choice is two-fold. First, complementary to the Heisenberg point ∆ = 1 which has been shown in the main text, the results

at XY point ∆ = 0 provide additional evidences, supporting the EH are similar in the whole critical spin liquid regime |∆| ≤ 1.

Second, the XY point is analytic solvable through Wigner-Jordan transformation. Compared with the existing results [30], the

obtainingHE faithfully represents the dominant, conformal part of the exact entanglement Hamiltonian.

III. OPTIMIZING REDUCED DENSITY MATRIX RECONSTRUCTION FIDELITY

Under the ansatz Eq. 28, if the eigenbasis of the constructed HP matches exactly with that of the target RDM ρA, then the

scalar function y is implicitly determined through the map between their spectra, y(εn) = pn, where εn and pn are the eigenvalue

ofHP and ρA, respectively, associated with their common eigenvector |ψn〉. When the basis reconstruction is only approximate,

the best y function can be determined in principle by maximizing the fidelity between the original and reconstructed RDMs. For

clarity, in this section we will drop the subscript A and denote the target RDM as ρ. Its eigen decomposition is

ρ =
∑

n

pn|ψn〉〈ψn| . (32)

TABLE III. Lowest eigenvalue g0 of correlation matrix G, and density matrix fidelity F (ρA, ̺) obtained on different system sizes L. Here we

set ∆ = 0 in one-dimension spin−1/2 chain model.

2× L 20 24 28 32

g0 2.9× 10−14 1.4× 10−13 1.2× 10−13 9.4× 10−15

F (ρA, ̺) 0.99999 0.99998 0.99996 0.99991
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The reconstructed density matrix is ̺ = y(HP ) with as of yet unknown y, where HP =
∑

n εn|φn〉〈φn| is the reconstructed

parent operator. The eigen decomposition of ̺ is therefore

̺ =
∑

n

qn|φn〉〈φn| , (33)

where qn = y(εn). The fidelity between the original and the reconstructed RDMs is defined as

F (ρ, ̺) = TrF̂ (ρ, ̺) , F̂ (ρ, ̺) ≡
√√

ρ ̺
√
ρ . (34)

It will be useful to note that the operator F̂ (ρ, ̺) arises from the following polar decomposition,

√
ρ1
√
ρ2 = F̂ (ρ1, ρ2)U(ρ1, ρ2) , U(ρ1, ρ2)

† = U(ρ2, ρ1) , (35)

where the unitary U(ρ1, ρ2), although not of our concern in the present context, is related to Uhlmann’s parallel transport of

density matrices [39], and the second equation follows from the hermiticity of F̂ (ρ1, ρ2). The maximization of F can be viewed

as a variational problem in the space of normalized distributions {qn}, and once the optimal weights are obtained, y can be

determined (or defined) through y(εn) = qn.

The stationary condition for extremal F over the variational space of {qn} is

∂

∂qn

[

F − λ(
∑

m

qm − 1)
]

= 0 , (36)

where λ is the Lagrangian multiplier for the normalization
∑

m qm = 1. Using ∂Tr
√
A = 1

2Tr(
√
A

−1
∂A) for any invertible

operatorA, Eq. 36 becomes

∂F

∂qn
=

1

2
〈φn|Q̂|φn〉 = λ ∀n , (37)

where Q̂ =
√
ρF̂ (ρ, ̺)−1√ρ. Using Eq. 35, one can show that F̂ (ρ, ̺)−1 = U(ρ, ̺)

√
̺−1√ρ−1

, thus

Q̂ =
√
̺
−1
F̂ (̺, ρ)

√
̺
−1

, (38)

and Eq. 37 becomes 〈φn|F̂ (̺, ρ)|φn〉 = 2λqn ∀n. Note that
∑

n qn = 1, thus 2λ =
∑

n LHS = TrF̂ (̺, ρ) = F (̺, ρ), and we

finally arrive at a self consistent equation for the weights {qn},

〈φn|F̂ (̺, ρ)|φn〉
∑

n〈φn|F̂ (̺, ρ)|φn〉
= qn ∀n , (39)

note that the LHS depends on {qn} only through ̺.

1. Approximate optimal solution in the high-fidelity limit

When the two bases {|ψ〉} and {|φ〉} have a good match, the fidelity operator F̂ (Eq. 34) is dominated by its diagonal line

(say, in the {|φ〉} basis). In this case one may adopt the approximation that

〈φn|
√

F̂ 2(̺, ρ)|φn〉 ≃
√

〈φn|F̂ 2(̺, ρ)|φn〉 =
√
qn
√

〈φn|ρ|φn〉 . (40)

Substituting this into Eq. 39, one then obtains

qn ≃ 〈φn|ρ|φn〉 , (41)

that is, the optimal qn is the weight of the reconstructed eigenstate |φn〉 in the original (i.e. target) mixed state ρ.
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IV. ENTANGLEMENT HAMILTONIAN IN STRONG INTER-CHAIN COUPLING LIMIT

We will derive the entanglement Hamiltonian HE in the strong inter-chain coupling limit using perturbation theory. The

starting point is the physical Hamiltonian:

Ĥ = ĤA + ĤB + ĤAB

Ĥα=A(B) = J‖
∑

〈ij〉
[Sx

i,αS
x
j,α + Sy

i,αS
y
j,α +∆Sz

i,αS
z
j,α]

ĤAB = J⊥
∑

i

[Sx
i,AS

x
i,B + Sy

i,AS
y
i,B +∆Sz

i,AS
z
i,B]. (42)

In the limit of J⊥ ≫ J‖, we treat ĤA(B) as the perturbation to ĤAB . Thus the ground state of ĤAB can be viewed as a product

state of spin singlets:

|0〉 =
∏

i

|si〉, (43)

where |si〉 is the spin singlet living on inter-chain bond:

|si〉 =
1√
2
(| ↑i,A〉| ↓i,B〉 − | ↓i,A〉| ↑i,B〉), Es = (−1

2
− ∆

4
)J⊥ (44)

On each inter-chain bond, spin excitation state is described by spin triplet excitations:

|t+i 〉 = | ↑i,A〉| ↑i,B〉, Et+ =
∆

4
J⊥

|t0i 〉 =
1√
2
(| ↑i,A〉| ↓i,B〉+ | ↓i,A〉| ↑i,B〉), Et0 = (

1

2
− ∆

4
)J⊥

|t−i 〉 = | ↓i,A〉| ↓i,B〉, Et− =
∆

4
J⊥. (45)

At first-order perturbation theory, the first-order correction is

|1〉 =
∑

i

|t+i t−i+1〉
〈t+i t−i+1|ĤA + ĤB|0〉
E+ + E− − 2Es

+ |t−i t+i+1〉
〈t−i t+i+1|ĤA + ĤB |0〉
E− + E+ − 2Es

+ |t0i t0i+1〉
〈t0i t0i+1|ĤA + ĤB|0〉

2E0 − 2Es

=
J‖
4J⊥

∑

i

[
2

1 + ∆
|t+i t−i+1〉+

2

1 +∆
|t−i t+i+1〉 −∆|t0i t0i+1〉]

, where we use the notation:

|t+i t−i+1〉 = |s1〉 ⊗ ...|si−1〉|t+i 〉|t−i+1〉 ⊗ |si+2〉...|sL〉
|t−i t+i+1〉 = |s1〉 ⊗ ...|si−1〉|t−i 〉|t+i+1〉 ⊗ |si+2〉...|sL〉
|t0i t0i+1〉 = |s1〉 ⊗ ...|si−1〉|t0i 〉|t0i+1〉 ⊗ |si+2〉...|sL〉

and Hamiltonian elements can be calculated by using:

S+
i,AS

−
i+1,A|si〉|si+1〉 = −1

2
|t+i 〉|t−i+1〉

S−
i,AS

+
i+1,A|si〉|si+1〉 = −1

2
|t−i 〉|t+i+1〉

Sz
i,AS

z
i+1,A|si〉|si+1〉 =

1

4
|t0i 〉|t0i+1〉

The reduced density matrix can be obtained by (within first-order perturbation approximation):

ρA = TrB[|ψ〉〈ψ|] = TrB[(|0〉+ |1〉)(〈0|+ 〈1|)] (46)
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First we get

TrB|0〉〈0| =
∏

i

TrB|si〉〈si|

=
∏

i

[〈↑Bi |si〉〈si| ↑Bi 〉+ 〈↓Bi |si〉〈si| ↓Bi 〉]

=
∏

i

1

2
[| ↑Ai 〉〈↑Ai |+ | ↓Ai 〉〈↓Ai |] = 1

2L

Second, we calculate

TrB[|1〉〈0|+ |1〉〈0|] = J‖
4J⊥

[−∆TrB|t0i t0i+1〉〈0|+
2

1 +∆
TrB|t+i t−i+1〉〈0|+

2

1 + ∆
TrB|t−i t+i+1〉〈0|+

−∆TrB|0〉〈t0i t0i+1|+
2

1 +∆
TrB|0〉〈t+i t−i+1|+

2

1 +∆
TrB|0〉〈t−i t+i+1|]

= − 1

2L
J‖
4J⊥

[2∆4Sz
i S

z
i+1 + 4

2

1 +∆
(S+

i S
−
i+1 + h.c.)]

= − 1

2L
4J‖

J⊥(1 + ∆)
[
1

2
∆(1 + ∆)Sz

i S
z
i+1 +

1

2
(S+

i S
−
i+1 + h.c.)]

Here we use the following relations:

TrB|t0i t0i+1〉〈0| =
1

2L−2
[〈↑Bi ↑Bi+1 |t0i 〉|t0i+1〉〈si|〈si+1| ↑Bi ↑Bi+1〉+ 〈↓Bi ↓Bi+1 |t0i 〉|t0i+1〉〈si|〈si+1| ↓Bi ↓Bi+1〉+

〈↑Bi ↓Bi+1 |t0i 〉|t0i+1〉〈si|〈si+1| ↑Bi ↓Bi+1〉+ 〈↓Bi ↑Bi+1 |t0i 〉|t0i+1〉〈si|〈si+1| ↓Bi ↑Bi+1〉]

=
1

2L
[| ↓Ai ↓Ai+1〉〈↓Ai ↓Ai+1 |+ | ↑Ai ↑Ai+1〉〈↑Ai ↑Ai+1 | − | ↑Ai ↓Ai+1〉〈↑Ai ↓Ai+1 | − | ↓Ai ↑Ai+1〉〈↓Ai ↑Ai+1 |]

=
1

2L
4Sz

i S
z
i+1

and

TrB|t+i t−i+1〉〈0| =
1

2L−2
[〈↑Bi ↑Bi+1 |t+i 〉|t−i+1〉〈si|〈si+1| ↑Bi ↑Bi+1〉+ 〈↓Bi ↓Bi+1 |t+i 〉|t−i+1〉〈si|〈si+1| ↓Bi ↓Bi+1〉+

〈↑Bi ↓Bi+1 |t+i 〉|t−i+1〉〈si|〈si+1| ↑Bi ↓Bi+1〉+ 〈↓Bi ↑Bi+1 |t+i 〉|t−i+1〉〈si|〈si+1| ↓Bi ↑Bi+1〉]

=
1

2L
[−2| ↑Ai ↓Ai+1〉〈↓Ai ↑Ai+1 |]

=
1

2L
[−2S+

i S
−
i+1]
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Third, we derive

TrB[|1〉〈1|] =
∑

i,j

( J‖
4J⊥

)2
[

2

1 + ∆
|t+i t−i+1〉+

2

1 +∆
|t−i t+i+1〉 −∆|t0i t0i+1〉][

2

1 + ∆
〈t+j t−j+1|+

2

1 +∆
〈t−j t+j+1| −∆〈t0j t0j+1|]

=
( J‖
4J⊥

)2 ∑

i

[
22

(1 + ∆)2
TrB|t+i t−i+1〉〈t+i+1t

−
i+2|+

22

(1 + ∆)2
TrB|t+i t−i+1〉〈t−i+1t

+
i+2| −

2∆

1 +∆
TrB|t+i t−i+1〉〈t0i+1t

0
i+2|

22

(1 + ∆)2
TrB|t−i t+i+1〉〈t+i+1t

−
i+2|+

22

(1 + ∆)2
TrB|t−i t+i+1〉〈t−i+1t

+
i+2| −

2∆

1 +∆
TrB|t−i t+i+1〉〈t0i+1t

0
i+2|

− 2∆

1 +∆
TrB|t0i t0i+1〉〈t+i+1t

−
i+2| −

2∆

1 +∆
TrB|t0i t0i+1〉〈t−i+1t

+
i+2|+∆2TrB|t0i t0i+1〉〈t0i+1t

0
i+2|]

+
( J‖
4J⊥

)2
[

22

(1 + ∆)2
TrB|t+i+1t

−
i+2〉〈t+i t−i+1|+

22

(1 + ∆)2
TrB|t+i+1t

−
i+2〉〈t−i t+i+1| −

2∆

1 +∆
TrB|t+i+1t

−
i+2〉〈t0i t0i+1|

22

(1 + ∆)2
TrB|t−i+1t

+
i+2〉〈t+i t−i+1|+

22

(1 + ∆)2
TrB|t−i+1t

+
i+2〉〈t−i t+i+1| −

2∆

1 +∆
TrB|t−i+1t

+
i+2〉〈t0i t0i+1|

− 2∆

1 +∆
TrB|t0i+1t

0
i+2〉〈t+i t−i+1| −

2∆

1 +∆
TrB|t0i+1t

0
i+2〉〈t−i t+i+1|+∆2TrB|t0i+1t

0
i+2〉〈t0i t0i+1|]

=
1

2L−3

( J‖
4J⊥

)2
[

22

(1 + ∆)2
1

2
(S+

i S
−
i+2 + h.c.) +

∆2

8
42Sz

i S
z
i+2]

=
1

2L
( J‖
J⊥

)2 1

2
[

22

(1 + ∆)2
1

2
(S+

i S
−
i+2 + h.c.) + ∆2Sz

i S
z
i+2]

And we need the relations:

TrB|t0i t0i+1〉〈t0i+1t
0
i+2| =

1

8
4Sz

i S
z
i+2 (47)

TrB|t+i t−i+1〉〈t−i+1t
+
i+2| =

1

2
| ↑Ai ↓Ai+1↓Ai+2〉〈↓Ai ↓Ai+1↑Ai+2 | (48)

TrB|t−i t+i+1〉〈t+i+1t
−
i+2| =

1

2
| ↓Ai ↑Ai+1↑Ai+2〉〈↑Ai ↑Ai+1↓Ai+2 | (49)

TrB|t+i+1t
−
i+2〉〈t−i t+i+1| =

1

2
| ↑Ai ↑Ai+1↓Ai+2〉〈↓Ai ↑Ai+1↑Ai+2 | (50)

TrB|t−i+1t
+
i+2〉〈t+i t−i+1| =

1

2
| ↓Ai ↓Ai+1↑Ai+2〉〈↑Ai ↓Ai+1↓Ai+2 | (51)

(52)

At last, we sum up all calculations together:

ρA = TrB[(|0〉+ |1〉)(〈0|+ 〈1|)]

=
1

2L
[

1− 4J‖
J⊥(1 + ∆)

[
1

2
∆(1 + ∆)Sz

i S
z
i+1 +

1

2
(S+

i S
−
i+1 + h.c.)] +

( J‖
J⊥

)2 1

2
[

22

(1 + ∆)2
1

2
(S+

i S
−
i+2 + h.c.) + ∆2Sz

i S
z
i+2]

]

≈ 1

Z exp(−Hper
E ) (53)

, where

Hper

E = J̃xy
1

∑

i,α=x,y

Sα
i S

α
i+1 + J̃zz

1

∑

i

Sz
i S

z
i+1 − J̃xy

2

∑

i,α=x,y

Sα
i S

α
i+2 − J̃zz

2

∑

i

Sz
i S

z
i+2, (54)

and J̃xy
1 = 4

1+∆

J‖

J⊥
, J̃zz

1 = 2∆
J‖

J⊥
, J̃xy

2 = 2
(1+∆)2

( J‖

J⊥

)2
and J̃zz

2 = ∆2

2

( J‖

J⊥

)2
. Here we only keep the leading term in nearest

neighbor and second nearest neighbor couplings. The form that we show in the main text is the case for isotropic case ∆ = 1.

The anisotropic form will be discussed in Sec. .

V. COMPARISON ENTANGLEMENT SPECTRA WITH EIGENVALUES SPECTRUM OF PARENT HAMILTONIAN

The equivalence between the entanglement HamiltonianHE and parent HamiltonianHP can be validated through the analysis

of universal feature in the entanglement spectra (ES). Here we show the comparison of ES of entanglement Hamiltonian and
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eigenvalue spectrum of parent Hamiltonian in spin ladder model (the results for 1D spin chain model has been shown in the

main text). Fig. 5 shows typical ES (measured from the minimal value ξ0) plotted as a function of momentum K = 2πk
L

(k = 0, 1, ..., L − 1), since the translational symmetry along the chain direction is preserved. For the isotropic case ∆ = 1
(Fig. 5(a)), the low-lying excitations of ES form an arch structure, which can be fitted by the des Cloiseaux-Pearson dispersion

relations ξi− ξ0 = v| sinK| (red dashed line). It strongly suggests the ES can resemble gapless quantum critical behavior which

is intrinsic to the quantum spin−1/2 Heisenberg chain [17, 51]. Importantly, the eigenvalue spectra of obtained HP shows the

very similar features (Fig. 5(b)). As a direct comparison, we plot εn − ε0 and ξn − ξ0 (ξn = − log pn) in Fig. 5(c). It is found

that eigenvalue εn has one-to-one correspondence with ξi, and a linear relationship εn ∝ ξn can be established (red dashed line).

Here, the comparison between entanglement spectra and eigenvalue spectra of HP clearly establishes the relationship between

entanglement Hamiltonian and reduced density matrix: HE = f(HP ) ≈ HP .
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FIG. 5. (a) Entanglement spectra (ξi−ξ0), obtained from reduced density matrix, are grouped by total momentum K along the chain direction.

(b) Energy spectra (Ei − E0) of reconstructed entanglement Hamiltonian HE . In (a-b), the lowest spectra branch is fitted as v| sinK| by red

dashed line. (c) Direct comparison of entanglement spectra (ξi − ξ0) and energy spectra (Ei − E0). All low-lying spectra are computed on

2× L ladders shown in black circles (L = 10), green squares (L = 12) and blue diamonds (L = 14). Here we set θ = π/3 and ∆ = 1.0.

VI. ANISOTROPIC CASE

1. Spin ladder model

In the main text, we focus on the isotropic case in spin-ladder model. Here we briefly discuss the anisotropic case (∆ > 1). In

our extensive tests, our numerical scheme works well for both isotropic and anisotropic Heisenberg model. For the anisotropic

case, we can also map out the entanglement Hamiltonian within the same scheme. Here we show spin ladder model (Fig. 1(b)

of main text) and take J⊥/J‖ = 4 and ∆ = 2 as an example:

Ĥ = ĤA + ĤB + ĤAB

Ĥα=A(B) = J‖
∑

〈ij〉
[Sx

i,αS
x
j,α + Sy

i,αS
y
j,α +∆Sz

i,αS
z
j,α]

ĤAB = J⊥
∑

i

[Sx
i,AS

x
i,B + Sy

i,AS
y
i,B +∆Sz

i,AS
z
i,B]. (55)

The targeting operator space is chosen to be:

HE =

Nr
∑

n=1

Jxy
n ĥxyn + Jzz

n ĥzzn

ĥxyn =

L
∑

i=1

(Sx
i S

x
i+n + Sy

i S
y
i+n), ĥ

zz
n =

L
∑

i=1

Sz
i S

z
i+n. (56)
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Within the same scheme shown in the main text, the obtained parameters of entanglement Hamiltonian is shown in Tab. IV.

As shown in Tab. IV, HE breaks the spin rotation symmetry Jxy
n 6= Jzz

n . We also confirm that the parameters in HE can be

compared with perturbation theory as shown in the Sec. . These facts point to that HE is effectively described by the XXZ spin

chain with spin rotation symmetry breaking. This is not surprising since the parent Hamiltonian breaks spin rotation symmetry

explicitly.

TABLE IV. Parameters of entanglement Hamiltonian HE for anisotropic spin ladder model. Here we set J⊥/J‖ = 4 and ∆ = 2.

L g0 Jxy
1 Jxy

2 Jzz
1 Jzz

2

10 1.34 × 10−8 0.304 −0.039 0.952 −0.065

12 6.37 × 10−7 0.299 −0.039 0.951 −0.061

14 8.89 × 10−7 0.303 −0.038 0.950 −0.067

2. Spin chain model

For the spin chain model, we also study the entanglement Hamiltonian for anisotropic case ∆ > 1. The subsystem entangle-

ment Hamiltonian is obtained in the same methodology as discussed in the main text. The coupling strength of entanglement

Hamiltonian is shown in Fig. 6 for various ∆. Since the spin rotation system is breaking, we distinguish the longitudinal and

transversal mode here. Generally, by increasing ∆ > 1, the longitudinal part dominates over the transversal mode. Another

notable feature is the fluctuation around the entanglement boundary becomes apparent, which can be attributed to localized

magnon quasiparticle around the open boundary. We also compare the results with the envelope function from the CFT (see

main text) in Fig. 6. It is clear that, the entanglement Hamiltonian doesnot match the CFT prediction, especially for large ∆
case. This can be understood that, in ∆ > 1 case, the low-energy effective theory is not CFT any more, thus the entanglement

Hamiltonian does not satisfy the CFT form.
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FIG. 6. Coupling strength of entanglement Hamiltonian of spin-1/2XXZ model: Ĥ =
∑2L

n=1 ĥn,n+1 =
∑2L

n=1 S
x
nS

x
n+1 + Sy

nS
y
n+1 +

∆Sz
nS

z
n+1. Different panels show various ∆ > 1. The subsystem size is chosen to be LA = 12. The squared dots and crossed dots

respectively represent the longitudinal and transverse coupling strength Jzz
n,n+1, J

xy
n,n+1. The dashed lines show various envelope function for

entanglement Hamiltonian fCFT (x) = B(LA − x)x/LA (B is a renormalized factor).


