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Symmetry-protected and symmetry-enriched topological (SPT/SET) phases in three dimensions
are quantum systems that support non-trivial two-dimensional surface states. These surface states
develop finite excitation energy gaps when the relevant symmetries are broken. On the other hand,
one-dimensional gapless modes can populate along interfaces that separate adjacent gapped surface
domains with distinct symmetry-breaking orders. A surface strip pattern in general reduces the
low-energy SPT/SET surface degrees of freedom onto a 2D array of gapless 1D channels. These
channels can be coupled to one another by quasiparticle tunneling, and these inter-wire interactions
collectively provide an e↵ective description of the surface state. In this paper, we study a general
class of symmetry-preserving or breaking SPT/SET surface states that admit finite excitation energy
gaps and Abelian topological orders via the coupled wire construction. In particular, we focus on the
prototype Abelian surface topological orders that fall under the ADE classification of simply-laced
Lie algebras. We also elaborate on the emergent symmetry and duality properties of the coupled
wire models.

I. INTRODUCTION

Topological phases of matter have been drawing at-
tention in the past decade of both condensed matter
and high energy physicists since the discovery of topo-
logical insulators (TIs) and superconductors (TSCs)1,2.
They are attractive not only because they present ex-
otic properties in theory, but also because some of these
phenomena can be verified in materials. They introduce
new frontiers in previously well-studied physical con-
cepts, such as quantum phase transitions in condensed
matter physics and quantum anomalies in high energy
physics.

Topological phases are quantum phases that do not
adiabatically connect to trivial ones. The ground states
of these phases are quantum mechanically entangled to
an extent that any deformation path connecting a topo-
logical state and a trivial state must go through a quan-
tum phase transition where the bulk excitation energy
gap closes. For example, a topological insulating phase
must be separated from a normal insulating phase by
a gapless Dirac/Weyl (semi)metallic phase or critical
point3. This is intimately related to the fact that, gener-
ically in three dimensional real space, a topological ma-
terial and a normal one are distinctly separated by an
anomalous two dimensional surface. For example, the
gapless Dirac surface state provides a definitive measur-
able signature of a topological insulator4. Some topologi-
cal phases require the presence of symmetries. For exam-
ple, topological insulators rely on time reversal symme-
try, which protects the Kramers degeneracy of the surface
Dirac point, and charge conservation, which disallows
pairing. In general, symmetries provide a finer classi-
fication of topological phases by forbidding deformation
paths that violate them. These phases are referred to
as symmetry-protected or symmetry-enriched topologi-
cal (SPT/SET) phases depending on whether the 3D
bulk support integral or fractional quasiparticle excita-

tions. However, this paper will not focus on the distinc-
tion between SPT and SET, and its general results will
be applicable to both situations.

The surface of an SPT/SET state can obtain a finite
excitation energy gap by (a) breaking the relevant sym-
metry, or (b) developing a surface topological order that
supports fractional surface quasiparticle excitations that
are absent in the bulk. For example, the Dirac surface
state of a topological insulator can acquire a finite Dirac
mass by breaking time reversal or a superconducting pair-
ing gap by breaking charge conservation. On the other
hand, it can gain a many-body energy gap while preserv-
ing all symmetries. However, the symmetric surface must
carry topological order, such as the T-Pfa�an, that sup-
ports quasiparticle and charge fractionalization5–8. The
main focus of this paper is to develop an exactly solvable
model technique in describing a collection of prototype
classes of Abelian SPT/SET surface states.

We will focus on three classes of surface states that
corresponds to the ADE classification of simply-laced
Lie algebra9. These simple a�ne Lie algebras at level 1
were explored as conformal field theories that e↵ectively
describes the 1 + 1D boundary edge states of 2 + 1D
Abelian topological phases10,11. In this paper, we dis-
cover a relationship between the ADE classification and
SPT/SET surface states. The A-class corresponds to a
series of charge U(1) conserving gapped surface states
that live on the symmetry breaking boundary surfaces of
topological (crystalline) insulators12 or fractional topo-
logical insulators13. The D-class corresponds to a se-
ries of superconducting gapped surface states of topo-
logical superconductors14,15. The E-class corresponds to
three exceptional surface states of a topological paramag-
net16,17. For simplicity, we only consider Abelian surface
topological orders, whose quasiparticle excitations can be
fractional but cannot support non-local quantum infor-
mation storage. The non-simply-laced simple Lie alge-
bras in the B,C, F,G series corresponds to non-Abelian
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surface topological orders, and will not be addressed in
this paper.

We will explore these correspondences using the ex-
actly solvable coupled-wire model technique on the sur-
face SPTs/SETs. In general, coupled wire models may
have several advantages compared with the more con-
ventional pure field theoretic approaches. One can write
down microscopic many-body interacting Hamiltonians
explicitly in terms of local electronic degrees of freedom.
In many situations, these Hamiltonians can be theoreti-
cally designed in a way so that they are exactly solvable
and do not require a mean-field approximation. In ad-
dition, one can also perform explicit symmetry and du-
ality transformations on the local fields and study the
topological properties of the ground states, quasiparticle
excitations as well as their braiding statistics.

Generalizing sliding Luttinger liquid theories18–22, the
coupled wire construction was first developed in Ref. 23
to study the Laughlin24 and Haldane-Halperin hierar-
chy25,26 fractional quantum Hall (FQH) states. Later
this construction was applied to non-Abelian FQH
states27–32, anyon systems10,33,34, spin liquids35, stud-
ies on duality36 and many other areas in two spatial
dimensions. Recently, the coupled wire construction
has also been applied to study three spatial dimensional
Abelian and non-Abelian topological systems37–39, Dirac
(semi)metals40, Weyl (semi)metals41, Dirac supercon-
ductors42 and other strongly correlated fractional topo-
logical systems43.

The application of the coupled-wire technique on the
surface of an SPT/SET relies on an anisotropic reduction
of low-energy surface degrees of freedom onto a 2D array
of parallel 1D wires. The simplest example were demon-
strated on the surface a topological insulator44 with a
magnetic surface stripe order with alternating magnetic
orientations (see figure 1). The Dirac surface state be-
comes massive in the interior of each magnetic strip.
This leaves behind chiral Dirac channels with alternat-
ing propagating directions that live along the interfaces
between strips where the magnetic order flips. A similar
construction was also applied to the surface of topologi-
cal superconductors45. In this paper, instead of deriving
from the 3D bulk of an SPT/SET, we begin with the
assumption that an array of chiral channels – each de-
scribed by certain conformal field theory (CFT) related
to one of the ADE a�ne Lie algebras at level 1 – can
be generated by similar alternating symmetry-breaking
stripe order on the surface of an SPT/SET. This assump-
tion can be verified in the three prototype examples of
topological (crystalline) insulators, superconductors and
paramagnets mentioned above. On the other hand, it
may also be applicable to other more exotic types of
SPT/SET such as fractional topological insulators and
superconductors.
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FIG. 1. Coupled wire description of a topological surface
state. (a) Emergence of surface channels through alternating
symmetry breaking. (b) Gapless surface state resulting from
uniform competing inter-channel backscattering Hbc. (c) Sur-
face gapping through channel bipartition and non-competing
inter-channel dimerization Hdimer.

A. Summary of results

Figure 1 summarizes the coupled wire models that
describes the surface ADE topological orders of
SPTs/SETs. The surface state of a generic SPT/SET
gains a finite excitation energy gap in the interior of
each symmetry-breaking strip. The remaining gapless
degrees of freedom are localized along 1D interfaces be-
tween adjacent strips with distinct symmetry-breaking
orders. The low-energy degrees of freedom along each
interface are e↵ectively described by a conformal field
theory (CFT), or more precisely, an a�ne Kac-Moody
current algebra (also known as an a�ne Lie algebra9

or Wess-Zumino-Witten (WZW) theory46,47). In single-
body mean-field topological band insulators and super-
conductors, the gapless modes along these line inter-
faces, or line defects in general, were completely clas-
sified48. Such an interface host a number of copies of
chiral Dirac (or Majorana) fermions that propagate in a
single-direction and is described a U(N)1 (resp. SO(N)1)
current algebra. However, our surface wire construction
does not only restrict to the non-interacting case. It also
applies to general SPTs/SETs such as fractional topo-
logical insulators, which lead to fractional surface Parton
Dirac U(N)1/ZN orbifold channels49,50, and topological
paramagnets, which lead to surface E8 channels51.

In this paper, we explore the possible surface interac-
tions that lead to non-trivial Abelian surface topolog-
ical orders regardless of whether the interactions pre-
serve or break the relevant symmetries of the underly-
ing SPT/SET. In other words, the surface topological
orders are not necessarily anomalous and for some cases,
are realizable in non-holographic pure 2D systems. In-
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stead, we are interested in surface states that facilitate
non-trivial quasiparticle fractionalization through surface
many-body interactions. The coupled wire construction
provides an exact solvable description of such interac-
tions. The oscillating symmetry-breaking surface stripe
order requires the propagating directions of the gapless
interface channels to alternate. The gapping interactions
are theoretically constructed (see figure 1(c)) by first de-
composing the current algebra G along each interface
channel into two decoupled fractional components

G ⇠ GA ⇥ GB , (1)

and subsequently backscattering the two current compo-
nents to adjacent interfaces in opposite directions

H = u
X

y even

Jy

GA
· Jy+1

GA
+ u

X

y odd

Jy

GB
· Jy+1

GB
. (2)

The collection of backscattering interaction between frac-
tional Kac-Moody currents is a 2 + 1D generalization of
the 1+ 1D AKLT spin chain52,53, and leads to fractional
gapped quasiparticle excitations. We apply the models
to the A, D and E series, where the decomposition (1) is
given by (105) for the A classes, (72) for the D classes,
and (141) for exceptional E classes.

In addition to the exactly solvable model, the cou-
pled wire construction also provides an explicit descrip-
tion of symmetries and dualities. Although time reversal
symmetry is necessarily broken by each chiral channel,
the array of channels with alternating propagating di-
rections collectively recovers an emergent antiferromag-
netic time reversal (AFTR) symmetry, which accompa-
nies local time reversal with a half-translation y ! y+1.
We will elaborate on how the AFTR symmetry is pre-
served in the D class and how it is broken in the A and
E classes. On the other hand, duality is also a central
theme in theoretical physics. It is a powerful technique
that relates distinct theories with no a priori common
origins. For example, the order and disorder (i.e. low
and high temperature) phases of the 2D classical Ising
model are related by the Kramers-Wannier duality.54 Du-
ality provides a field theoretical mapping between weakly
and strongly interacting phases. Recently, there has been
some work on non-supersymmetric dualities at the field
theoretical level55–58and the concept of duality has also
been established in a coupled wire description of compos-
ite Dirac fermions36. In this paper, we perform similar
constructions to the gapped surface ADE topological or-
ders. Although it is mentioned in Introduction, Table IA
summarizes the 3d bulk SPT/SET phases corresponding
to the ADE classifications of surface topological orders
discussed in this paper. For a coupled wire construction
of these 3d bulk systems, we will discuss it in a separate
paper.

The outline of this paper is as follows. In Sec. II, we
explicitly demonstrate the coupled wire construction in
two simple and specific examples, and elaborate on the
central themes that can be systematically carried over to

Classification 3d bulk SPT/SET Section in this paper
Class A TCI, FTI Sec. V
Class D TSC Sec. IV
Class E TP, E8 QH59 Sec.VI

TABLE I. 3d bulk SPT/SET topological phases correspond-
ing to the surface topological orders of ADE classifications
discussed in this paper. TCI=topological crystalline insu-
lator, FTI=fractional topological insulator, TSC= topolog-
ical superconductor, TP=topological paramagnet16,17, QH =
quantum Hall.

the general scenarios. Sec. III briefly reviews the cou-
pled wire derivation of the duality between free Dirac
fermion and QED3 proposed in Ref. 36. Sec. IV reviews
the coupled wire models for surface Majorana fermions
discussed in Ref. 45 and discuss their duality properties.
Next, we introduce the topological orders and duality
properties of the A and E classes systematically in Sec. V
and VI respectively. Sec. VII concludes this paper and
provides further discussions as well as future directions.
Appendix A is a brief review of the Haldane’s nullity
gapping condition60 for bosonized sine-Gordon models.
Appendix B contains the relevant background informa-
tion of the ADE classifications and their representations.

II. GENERAL COUPLED WIRE
CONSTRUCTION OF SURFACE GAPPING

INTERACTIONS

The coupled wire construction provided exactly solv-
able many-body interacting models of surface states of
symmetry protected topological (SPT) phases. Examples
include the T-Pfa�an surface state of a topological insu-
lator44, and the SO(3)3-like surface state of a topologi-
cal superconductor45. These surface states preserve the
relevant symmetries of the SPT phase. The T-Pfa�an
surface state5–8 preserve time-reversal and charge con-
servation, while the SO(3)3-like superconducting surface
preserve time-reversal61. They arise as a consequence
of strong many-body interaction beyond the single-body
mean field description. The massless Dirac (Majorana)
fermion on the surface of a topological insulator (resp. su-
perconductor) cannot acquire a single-body mass term
without breaking the relevant symmetries. In general,
the surface state of a SPT phase can only develop a fi-
nite excitation energy gap while preserving symmetries
by many-body interactions that introduce additional sur-
face topological order. This allows fractional quasipar-
ticle surface excitations to emerge that carry fractional
properties, such as electric charge and exchange statis-
tics. For example, the T-Pfa�an surface state supports
excitations with fractionally quantized electric charge in
units of e/4.
The coupled wire description of topological surface

states is based on an anisotropic surface arrangement
where the relevant symmetries emerge in the long wave-
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length low energy limit. The surface of a topological
insulator (superconductor) can be mimicked by an ar-
ray of 1D chiral Dirac (resp. Majorana) channels with
alternating propagating directions (see figure 1). Elec-
tronic quasiparticles propagate continuously along each
channel and tunnel discretely from one wire to the next.
The inter-channel tunneling amplitude is suppressed by
an energy barrier, which comes from symmetry break-
ing interactions that remove or integrate out low-energy
electronic degrees of freedom in the surface strips be-
tween channels. For example, the symmetry breaking
interactions are given by the Dirac (Majorana) mass on
the surface of a topological insulator (resp. superconduc-
tor). The symmetry breaking interactions correspond
to order parameters, such as magnetization or pairing
phase. These symmetry breaking order parameters al-
ternate from strips to strips (see figure 1(a)). For ex-
ample, the surface magnetization flips between adjacent
strips. Consequently, the 1D interface, where the Dirac
mass changes sign, bounds the chiral Dirac mode in low-
energy. Similarly, the pairing phase conjugates from one
strip to the next, and therefore the interface between
adjacent surface strips hosts the chiral Majorana mode.
Symmetry is restored in an “antiferromagnetic” manner
because the order parameters are conjugated by the sym-
metry between neighboring strips and the propagating
directions are reversed by the symmetry between neigh-
boring channels.

The coupled wire Hamiltonian consists of the kinetic
energy of each chiral channel Hy

KE and backscattering

coupling potentials Hy+1/2
bc between neighboring chan-

nels, where each channel is labeled by an integer y
that represents its vertical position in the array (see
figure 1(b) and (c)). The antiferromagnetic symmetry
requires the inter-channel backscatterings to have uni-
form strength. In other words, symmetry forbids inter-
channel dimerization, where counter-propagating chan-
nels are pairwise coupled. Under a dimerization where

the strength of Hy+1/2
bc alternates between even and odd

y, the surface state acquires a symmetry breaking energy
gap. Similar to the Su-Schrie↵er-Heeger model62, there
are two topologically distinct gapped phases – one where

Hy+1/2
bc is stronger for even y and channels are paired be-

tween y = 2n and 2n + 1, and the other where Hy+1/2
bc

is stronger for odd y and channels are paired between
y = 2n�1 and 2n. The critical point that separates these

two phases has uniform Hy+1/2
bc (see figure 1(b)). It pre-

serves the relevant symmetry and has vanishing energy
gap. For example, the array of chiral Dirac (Majorana)
channels under uniform inter-channel coupling recovers
the massless Dirac (resp. Majorana) fermions on the sur-
face of a topological insulator (resp. superconductor).

The uniform backscattering model that preserves the
antiferromagnetic symmetry is gapless because adjacent
backscattering terms compete. Moreover, the antifer-
romagnetic symmetry forbids any channel dimerization.
On the other hand, if each channel can be fractionalized

and bipartitioned into two decoupled components, then
they can be backscattered and dimerized in opposite di-
rections (see figure 1(c)). This is a higher dimensional
analogue of the Haldane integral spin chain63,64 and the
AKLT spin chain52,53, where the integral spin on each
site is fractionalized into a pair of half-integral spins and
they are independently dimerized with neighboring ones.
The backscattering of these fractional degrees of freedom
are now non-competing because they act on orthogonal
Hilbert spaces. Moreover, the antiferromagnetic sym-

metry is preserved if the dimerization strength Hy+1/2
dimer

is uniform. The channel fractionalization is stabilized
by the many-body inter-channel backscattering Hy+1/2

dimer ,
which are combination of products of local electronic op-
erators.
In this paper, we consider a variety of SPT phases,

whose surface state can be mapped into an array of
integral electronic channels. The SPT phase could be
protected by certain combinations of global symmetries
such as time-reversal and local symmetries represented
by a continuous group. Instead of elaborating on the
3D SPT phases, we target surface topological order and
begin with the general assumption that the surface ar-
ray of chiral channels is supported by some unknown 3D
SPT bulk. In particular, we focus on situations where
these channels can be bosonized. Before inter-channel
coupling, each channel can be described in low-energy
by a conformal field theory (CFT), which falls under the
ADE classification of a�ne Lie algebra9 at level one. The
A-series consists of the Lie algebras Ar = SU(r + 1),
where r is the rank of the algebra. The D-series con-
sists of Dr = SO(2r), and the E-series consists of the
exceptional E6, E7 and E8. These algebras form the
fractional degrees of freedom under the bipartition of
channels. Their general construction will be discussed in
upcoming sections. In this section, we present the main
ideas in the coupled wire construction by demonstrating
the A3 = SU(4) and D3 = SO(6) case.

A. SO(6) and U(4) as illustrative examples

In this subsection, we take the SO(6) and U(4) sur-
face models as examples to illustrate the coupled wire
construction. In particular, we demonstrate the inter-
channel backscattering sine-Gordon interactions. The
ground state of each of these interactions exhibits an
angle order parameter, which is the ground state ex-
pectation value of the angle variable in the sine-Gordon
potential. These angle order parameters can take dis-
crete values in a lattice, which will be referred to as the
“Haldane’s dual lattice”. We also present the fractional
gapped excitations that corresponds to deconfined kinks
of the sine-Gordon interactions. These excitations can
be created or destroyed by bosonized vertex operators,
whose exponents lie also in the dual lattice.
We begin with the SO(6)1 model. This model can be

supported by the surface of a class DIII topological super-
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conductor14,15 with topological index N = 12. The sur-
face carries 12 massless Majorana fermions, which cannot
be turned massive without breaking time reversal sym-
metry. The surface state can be mimicked by a coupled
wire model previously provided in Ref. 45. An antiferro-
magnetic surface pair density wave – where the surface
is decorated by an array of parallel strips with alternat-
ing time-reversal breaking pairing phases ' = ±⇡/2 –
supports an array of chiral Majorana interfaces. Each
is sandwiched between adjacent strips with time-reversal
conjugate Majorana mass, and carries 12 chiral Majorana
 1
y
, . . . , 12

y
, where y labels the interface.

We group the Majorana fermions in two collections
 A,i
y

=  i
y
and  B,i

y
=  6+i

y
, for i = 1, . . . , 6. Each col-

lection generates a SO(6) Wess-Zumino-Witten (WZW)
algebra (also known as Kac-Moody or a�ne Lie algebra)
at level one. The algebra consists of current operators

JC,jk

y
= i C,j

y
 C,k

y
(3)

for 1  j < k  6 and C = A,B. We first pair Ma-
jorana fermions into Dirac fermions cC,j

y
= ( C,2j�1

y
+

i C,2j
y

)/
p
2, for j = 1, 2, 3, and bosonize each Dirac

fermion cC,j
y

⇠ ei�
C,j
y . The bosonized variables follow

the action with Lagrangian density

L0 =
X

y

X

C=A,B

2

4 (�1)y

2⇡

3X

j=1

@t�
C,j

y
@x�

C,j

y

+
3X

j,j0=1

Vjj0@x�
C,j

y
@x�

C,j
0

y

3

5 , (4)

where Vjj0 is a non-universal velocity matrix. The alter-
nating sign (�1)y signifies the alternating propagating
directions of the channels. The action dictates the equal-
time commutation relation
h
�C,j

y
(x), @x0�C

0
,j

0

y0 (x0)
i
= 2⇡i�CC

0
�jj

0
�yy0�(x� x0) (5)

or equivalently the time-ordered correlation function

�C,j

y
(z)�C

0
,j

0

y0 (z0) = ��CC
0
�jj

0
�yy0 log(z � z0) + . . . (6)

up to non-singular terms and Klein factors, where z ⇠
⌧ + i(�1)yx is the (anti)holomorphic complex space-time
parameter.
The current operators (3) can be expressed in terms of

the bosonized variables. There are 3 Cartan generators

HC,j

y
= i@�C,j

y
⇠ cC,j

y

†
cC,j

y
= i C,2j�1

y
 C,2j
y

(7)

that form a maximal set of mutually commuting Hermi-
tian operators. In addition, there are 12 roots

EC,↵
y

= exp
�
i↵j�

C,j

y

�
, (8)

which act as ladder operators on the root lattice. The
root vectors ↵ = (↵1,↵2,↵3) all have integral entries

↵j = 0,±1 and length square |↵|2 = 2 so that there are
two and only two non-zero entries. Each vertex operator
EC,↵

y
can be expressed as a complex quadratic combi-

nation of Majorana fermions (3). The Cartan genera-
tors and roots therefore generate the complexified SO(6)
WZW algebra for each channel y and sector C = A,B.
One can pick a set of three linearly independent simple
roots

RSO(6) =

0

@
�� ↵1 ��
�� ↵2 ��
�� ↵3 ��

1

A =

0

@
0 1 1
1 �1 0
0 1 �1

1

A . (9)

All 12 roots can be expressed as integral linear combi-
nation of the simple ones. The choice of simple roots
recovers the Cartan matrix of SO(6) by the inner prod-
uct

KSO(6) = RSO(6)R
T

SO(6) =

0

@
2 �1 0
�1 2 �1
0 �1 2

1

A . (10)

The roots also generate and lie inside a face-centered cu-
bic lattice FCC = spanZ{↵1,↵2,↵3} in three dimension.
We refer to this as the root lattice.
Now we introduce the inter-channel backscattering

sine-Gordon potential

Hdimer = �u

2

X

y

X

↵

EA,↵
y

EB,�↵
y+1

= �u
X

y

X

↵

cos
�
↵ · 2⇥y+1/2

�
, (11)

where 2⇥y+1/2 = (2⇥1
y+1/2, 2⇥

2
y+1/2, 2⇥

3
y+1/2) and

2⇥j

y+1/2 = �A,j
y

� �B,j

y+1. In a periodic cylinder geometry
with L = 2l channels, there are 3L counter-propagating
pairs of bosons and there are also 3L linearly independent
sine-Gordon angle variables ↵ · 2⇥y+1/2. The angle vari-
able satisfy the “Haldane nullity” gapping condition60

⇥
↵ · 2⇥y+1/2(x),↵

0 · 2⇥y0+1/2(x
0)
⇤
= 0. (12)

There are actually 12L sine-Gordon terms because there
are 12 roots in SO(6). However, only 3L of them are lin-
early independent, but the redundant sine-Gordon terms
do not compete. Collectively, they pin the angle variables

↵ ·
⌦
2⇥y+1/2

↵
2 2⇡Z (13)

in the ground state, for all root vectors ↵. Since the roots
generate a FCC lattice, eq.(13) requires the ground state
expectation values of the angle variables

⌦
2⇥y+1/2

↵
to

lie in the body-centered cubic (BCC) reciprocal lattice

L⇥ ⌘ {2⇥ : ↵ · 2⇥ 2 2⇡Z}
= 2⇡BCC = spanZ {2⇡�1, 2⇡�2, 2⇡�3} ,

(14)

R_
SO(6) =

0

@
�� �1 ��
�� �2 ��
�� �3 ��

1

A =

0

@
1/2 1/2 1/2
1 0 0
1/2 1/2 �1/2

1

A . (15)
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Here, �I = 1
2"IJK↵

J ⇥ ↵K/
⇥
↵1 · (↵2 ⇥↵3)

⇤
are the

simple dual roots so that ↵I · �J = �I
J
. In Lie al-

gebra language, �I are called fundamental weights. In
the following discussion, we use the terms “simple dual
roots”, “primitive reciprocal vectors” and “fundamental
weights” interchangeably. We refer to the lattice L⇥ of
simultaneous minima of the sine-Gordon potentials as
the “Haldane’s dual lattice”. In Lie algebra language,
spanZ{�1,�2,�3} are called weight lattice. To comply
with physics community, we use “Haldane’s dual lattice”
in the following discussions.

The inter-channel backscattering interactions (11)
therefore freeze the angle-variables and introduce an
finite excitation energy gap. Deconfined excitations
are of the form of kinks where the expectation value⌦
2⇥y+1/2(x)

↵
jumps discontinuously along x from one

lattice value to another. They can be represented using
fractional vertex operators

V C,�
y

(x0) = exp
⇥
i�j�

C,j

y
(x0)

⇤
(16)

that corresponds to a primary field of SO(6)1, where
� = (�1, �2, �3) can take non-integral entries. For ex-
ample, the vertex operator V A,�

y
(x0) creates a kink for⌦

2⇥y+1/2(x)
↵
at x0 because

V A,�
y

(x0)
†2@x⇥

j

y+1/2(x)V
A,�
y

(x0)

= 2@x⇥
j

y+1/2(x) + i
h
�k�

A,k

y
(x0), 2@x⇥

j

y+1/2(x)
i

= 2@x⇥
j

y+1/2(x)� 2⇡(�1)y�j�(x0 � x) (17)

from the equal-time commutation relation (5). Integrat-
ing the above equation x near x0, we see the vertex op-
erator creates a discontinuity for

⌦
2⇥y+1/2(x)

↵
, where it

jumps by �2⇡� from x < x0 to x > x0. The excitation is
deconfined if the angle-variable on both sides of x0 min-
imizes all the sine-Gordon potentials in (11). Otherwise,
it will cost a linearly diverging energy to pull apart from
its anti-partner. This restricts the jump of height of the
kink 2⇡� to also live in the Haldane’s dual lattice L⇥.
In other words, deconfined excitations are represented
by vertex operators V C,�

y
(16) where � lives in the BCC

lattice (14). Similarly, we have

V B,�
y

(x0)
†2@x⇥

j

y�1/2(x)V
B,�
y

(x0)

= 2@x⇥
j

y�1/2(x) + 2⇡(�1)y�j�(x0 � x). (18)

It shows that if � is one of the reciprocal vectors in
the BCC lattice (14), then V C,�

y
creates a deconfined

quasiparticle excitation in the form of a kink of the sine-
Gordon angle order parameter

⌦
2⇥y�1/2(x)

↵
.

It is crucial to recognize that in general the kink excita-
tions may be fractional, in which case they must come in
kink and anti-kink pairs. The notion of “quasi-locality”
is set by the 3D SPT/SET bulk, which may already sup-
port long-range entangled topological order and carry
non-trivial quasiparticle and quasi-string excitations. We

will address this issue soon after the description of SO(6)
primary fields and Wilson strings below. At the mo-
ment, we consider “quasi-local” surface vertex operators
that consists of a product of both the A and B sectors.
We see that the combination V A,�

y
(x0)V B,�

y
(x0) creates

a kink-antikink pair in
⌦
2⇥y+1/2(x)

↵
and

⌦
2⇥y�1/2(x)

↵
.

The kink and anti-kink can be separated vertically by
applying the string of vertex operators

�A,�
y,y0(x0) =

y
0Y

y00=y

V A,�
y00 (x0)V

B,�
y00 (x0), (19)

on the ground state, where y0 > y. This create a kink
and anti-kink pair in

⌦
2⇥y0+1/2(x)

↵
and

⌦
2⇥y�1/2(x)

↵

without creating extra kinks in between (see figure 2).
This is because the e↵ect of V A,�

y00 (x0) and V B,�
y00+1(x0)

cancel. Physically what happens is that a pair of kink-
antikink excitations are created in each wire in be-
tween and consequently the quasiparticle is transported,
which is explicitly shown in Eq. (17) and (18) In this
sense, these excitations are deconfined along the y di-
rection. It should be noticed that the kink-anti-kink
pair can only be created by the operator string (19),
which is constructed by the series of “quasi-local” op-
erators V A,�

y00 (x0)V
B,�
y00 (x0). They cannot be created by

V A,�
y0 (x0)V B,�

y
(x0) alone without a string in between be-

cause of surface locality. We will address the surface
“quasi-localilty” later. In addition to Eq. (11), the full
Hamiltonian also involves velocity terms from its kinetic
part and possibly backscattering of the Cartan genera-
tors. Although they do not in general commute with the
quasiparticle string (19), this does not a↵ect the decon-
finement of a quasiparticle pair. This is because when
acting on the ground state, the open string (19) only cre-
ates a kink-anti-kink pair while leaving the angle-variable
order parameter h2⇥y+1/2(x)i locally constant except at
the kinks. Since h@x⇥y+1/2(x)i = 0 except at the end
of the strings, velocity terms do not contribute a linear-
diverging confining energy.
The quasiparticle kinks can be moved in the x-

direction by applying

⇢y(x, x0) = ei
´ x
x0
�j@x0�C,j

y (x0), (20)

which moves a quasiparticle excitation from x0 to x on
the same wire, without creating extra kinks in between.
Together with (19), they describe the two-dimensional
local motion of the quasiparticle kinks.
These deconfined excitation operators form represen-

tations of the SO(6)1 a�ne Lie algebra. They obey the
operator product expansion with the current generators
(7) and (8)

HC,j

y
(z)V C,�

y
(z0) =

�j
z � z0

V C,�
y

(z0) + . . . ,

EC,↵
y

(z)V C,�
y

(z0) = (z � z0)↵·�V C,↵+�
y

(z0) + . . . . (21)

In particular, primary fields are vertex operators with
bounded singularities ↵ · � � �1. More precisely, each
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...
...

y+1

y−1

y

y−2

G
GA GB

G
GA GB

kink

anti-kink

= V
A,�
¯y00 (x0)V

B,�
¯y00 (x0) =y00 y00 y00

A B

FIG. 2. A string of “quasi-local” operators (19) creates a pair
of fractional surface excitations in the form of a kink and anti-
kink pair of the sine-Gordon order parameter

⌦
2⇥y�1/2(x)

↵
.

primary field is represented by a super-selection sector of
vertex operators {V C,�1

y
, . . . , V C,�r

y
} that transform un-

der

EC,↵
y

(z)V C,�a

y
(z0) =

(E↵
⇢
)a
b

z � z0
V C,�b

y
(z0) + . . . (22)

where E↵
⇢

is the r-dimensional irreducible matrix repre-
sentation of the root E↵ of SO(6). The current operators
E↵ are therefore raising and lowering operators that ro-
tate V � ! V ↵+� if ↵ · � = �1. The singular factor
1/(z � z0) reflects the unit scaling dimension of the cur-
rent operators, and higher order non-singular terms are
non-universal.

The SO(6) a�ne Lie algebra at level 1 has four pri-
mary fields labeled by 1, , s+, s�. They corresponds
to the trivial, vector, even and odd spinor representa-
tions of SO(6) respectively. We now show their corre-
sponding super-sectors of vertex operators. The primary
field  at wire y and sector C = A,B is generated by

{e±i�
C,1
y , e±i�

C,2
y , e±i�

C,3
y }, which form the 6-dimensional

vector representation of SO(6). These vertex operators
can also be decomposed into real and imaginary compo-

nents ei�
C,j
y =  C,2j�1

y
+ i C,2j

y
, where  C,1

y
, . . . , C,6

y
are

Majorana fermions with spin (i.e. conformal scaling di-
mension) h = 1/2. The even/odd twist primary fields
s± are generated by ei"·�/2, where " = ("1, "2, "3) and
"j = ±1. " is even (odd) if "1"2"3 = +1 (resp. �1). The
collection of even (odd) vertices form the even (resp. odd)
spinor representation of SO(6). These vertices operators
have spin hs± = 3/8.

Using eq.(17), the vector primary field  A
y
at x0 creates

an 2⇡ kink of the sine-Gordon angle variable so that

h2⇥y+1/2(x0 + �)i � h2⇥y+1/2(x0 � �)i = �2⇡(�1)yej ,
(23)

where the expectation values are taken with respect to

the excited state ei�
A,j
y (x0)|GSi. On the other hand, the

spinor primary fields (s±)Ay at x0 creates a ⇡ kink where

h2⇥y+1/2(x0 + �)i � h2⇥y+1/2(x0 � �)i = �⇡(�1)y".
(24)

Since the “heights” of the kinks, which are given by the
right hand side of the two equations above, belong to
the Haldane’s dual lattice L⇥ (see eq.(14)), the primary
fields correspond to deconfined excitations that only cost
a finite amount of energy to create and do not cost energy
to move.
At this point, it is essential to address the surface

“quasi-locality”’ and take into account the 3D bulk
SPT/SET state that supports the surface state. The
12 Majorana fermions  A,1

y
, . . . , A,6

y
and  B,1

y
, . . . , B,6

y

associates a SO(12)1 WZW algebra along each wire y.
The primary fields in the SO(12)1 CFT are quasiparti-
cle excitations that are supported by the 3D bulk, and
should not be treated as fractional excitations allowed by
the surface gapping interactions. For the purpose of de-
scribing the surface topological order, primary fields in
SO(12)1 should be regarded as “quasi-local” in the sense
that such an excitation can be present without having a
partner on the surface. This is because its partner can
exist in the 3D bulk. On the other hand, the surface
backscattering potential (11) allows additional fractional
excitations that must come in pairs on the boundary sur-
face. These are quasiparticles that do not connect to any
bulk excitations.
The SO(12)1 WZW algebra that associates to the

“quasi-local” primary field excitations is generated by the
Cartan operators HA,j

y
, HB,j

y
defined in (7) as well as the

the 60 roots

E�
y
= exp

⇥
i
�
�A
j
�A,j

y
+ �B

j
�B,j

y

�⇤
(25)

where the root vectors � = (�A1 ,�
A
2 ,�

A
3 ,�

B
1 ,�

B
2 ,�

B
3 ) have

integral entries �C
j

= 0,±1 and length square |�|2 = 2
so that there are two and only two non-zero entries. The
simple roots can be chosen to be

RSO(12) =

0

BBBBB@

�� �1 ��
�� �2 ��
�� �3 ��
�� �4 ��
�� �5 ��
�� �6 ��

1

CCCCCA
=

0

BBBBB@

1 �1 0 0 0 0
0 1 �1 0 0 0
0 0 1 �1 0 0
0 0 0 1 �1 0
0 0 0 0 1 �1
0 0 0 0 1 1

1

CCCCCA
.

(26)

The “quasi-local” surface excitations that connect to the
3D bulk are represented by the vertex operator

V l
y
(x0) = exp

⇥
i
�
lA
j
�A,j

y
(x0) + lB

j
�B,j

y
(x0)

�⇤
(27)

where the weight vectors l = (lA1 , l
A
2 , l

A
3 , l

B
1 , l

B
2 , l

B
3 ) satisfy

� · l 2 Z (28)

for all SO(12) roots �. The weight vectors are integral
combinations of the simple dual roots or fundamental
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weights

R_
SO(6) =

0

B@
�� l1 ��
...

...
...

�� l6 ��

1

CA =

0

B@

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1
2

1
2

1
2

1
2

1
2 � 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1

CA , (29)

which obey �I · lJ = �I
J
. The entries of a general weight

vector l is either all integers or all half-integers.
It is useful to notice that there is a tensor product

structure (referred to as conformal embedding or level
rank duality in the CFT context9)

SO(12)1 ◆ SO(6)1 ⇥ SO(6)1 (30)

that splits the “quasi-local” SO(12)1 primary fields (27)
into the fractional SO(6)A1 and SO(6)B1 components

V l
y
(x0) ⇠ exp

�
ilA
j
�A,j

y
(x0)

�
exp

�
ilB
j
�B,j

y
(x0)

�

= V A,lA
y

V B,lB
y

. (31)

In particular, if � = (�1, �2, �3) lies inside the BCC Hal-
dane dual lattice (14), then the combination V A,�

y
V B,�
y

is a SO(12)1 primary field and therefore represents a
“quasi-local” excitation that connects to the 3D bulk.
This shows that the vertex operator string (19) com-
poses of “quasi-local” excitations. For example, in the
class DIII topological superconductor case, a hc/2e flux
vortex inside the bulk corresponds to the vertex V "

y

for each layer y that interests flux vortex, where " =
(1/2, . . . , 1/2). It associates to the vertex operator stringQ

y1

y=y0
V "
y

on the surface, and create a pair of ⇡-kink
quasiparticle excitations (see figure 3). Each vertex op-
erator V "

y
is “quasi-local” as it connects to the bulk, but

the ⇡-kink excitations are fractional. They are supported
by the surface backscattering interactions and can only
exist on the boundary surface.

⇡-kink
⇡-kink

hc/2e flux

FIG. 3. A hc/2e flux vortex in the topological superconduct-
ing bulk associates to a string of vertex operators on the sur-
face (represented by the blue stars) and create a pair of ⇡-kink
excitations (red dots).

Next, we illustrate the U(4)1 model. The array of
wire is now supported on the surface of some three di-
mensional symmetry protected topological state (see fig-
ure 1(a)), and each wire hosts eight Dirac fermions. The

3D SPT state can be a topological crystalline insulator12

with mirror Chern number 8 that supports 8 massless
surface Dirac cones. It can be a topological paramag-
net16,17 that supports 8 neutral Dirac fermion along a
time reversal breaking domain wall. Alternatively, it can
also be a fractional bosonic topological insulator where a
local boson is fractionalized into 8 parton Dirac fermions
and the surface hosts 8 parton Dirac cones. In this pa-
per, we do not focus on the origin of the wire array, but
instead we concentrate on its symmetric gapping inter-
actions.
Here, the 8 Dirac fermions of each wire is decomposed

into two groups cA
j

= cj ⇠ ei�
A
j and cB

j
= c4+j ⇠ ei�

B
j ,

for j = 1, 2, 3, 4. Each sector is described by a U(4) Kac-
Moody conformal field theory at level 1. The bosonized
variables follow the action with Lagrangian density

L0 =
X

y

X

C=A,B

2

4 (�1)y

2⇡

4X

j=1

@t�
C,j

y
@x�

C,j

y

+
4X

j,j0=1

Vjj0@x�
C,j

y
@x�

C,j
0

y

3

5 , (32)

where Vjj0 is a non-universal velocity matrix. We further
decompose each sector C = A,B into

U(4)1 ⇠ U(1)4 ⇥ SU(4)1. (33)

U(1)4 represent the diagonal component and is generated
by the bosonized variable

4�C
⇢,y

= ↵0 · �C

y
= �C,1

y
+ . . .�C,4

y
, (34)

where ↵0 = (1, 1, 1, 1). Although in this paper we do
not focus on charge conservation, for the charge preserv-
ing SPT states, the U(1)4 sector is solely responsible for
electric charge transport. The SU(4) Kac-Moody current
algebra at level 1 is generated by the 3 Cartan generators

HC,j

y
= i@�C,j

y
� i@�C,j+1

y
(35)

for j = 1, 2, 3, and the 12 roots

EC,↵
y

= exp
�
i↵j�

C,j

y

�
(36)

where the root vectors ↵ = (↵1,↵2,↵3,↵4) 2 �SU(4)

has entries ↵j = 0,±1, length square |↵|2 = 2 and is
traceless ↵1 + ↵2 + ↵3 + ↵4 = 0. The SU(4)1 represents
electrically neutral degrees of freedom if the SPT state
preserves charge symmetry. It also completely decoupled
from U(1)4 as all the roots ↵ are orthogonal to ↵0.
One can pick the simple roots of SU(4) to be

RSU(4) =

0

@
�� ↵1 ��
�� ↵2 ��
�� ↵3 ��

1

A =

0

@
1 �1 0 0
0 1 �1 0
0 0 1 �1

1

A . (37)

This recovers the Cartan matrix of SU(4)

KSU(4) = RSU(4)R
T

SU(4) =

0

@
2 �1 0
�1 2 �1
0 �1 2

1

A , (38)
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which is identical to that of SO(6) (see eq.(10)). Con-
sequently, as an a�ne Lie algebra or a Kac-Moody alge-
bra, SU(4) and SO(6) are equivalent. For instance, they
have the identical dimension d = 15 and rank r = 3. The
root structures of the two are also isomorphic except the
SO(6) roots are presented in three dimensions whereas
the SU(4) ones are presented in a 3D orthogonal comple-
ment of (1, 1, 1, 1) in four dimensions. The equivalence
implies the SU(4) roots span a face-centered cubic root
lattice FCC = spanZ{↵1,↵2,↵3}.

The inter-channel backscattering sine-Gordon poten-
tial (see also figure 1(a)) is

Hdimer = HU(1)4 +HSU(4)1 , (39)

HU(1)4 = �u
X

y

cos
�
4�A

⇢,y
� 4�B

⇢,y+1

�

= �u
X

y

cos
⇣
2⇥1

y+1/2 + . . .+ 2⇥4
y+1/2

⌘
,

HSU(4)1 = �u

2

X

y

X

↵

EA,↵
y

EB,�↵
y+1

= �u
X

y

X

↵

cos
�
↵ · 2⇥y+1/2

�
,

where 2⇥y+1/2 = (2⇥1
y+1/2, 2⇥

2
y+1/2, 2⇥

3
y+1/2, 2⇥

4
y+1/2)

and 2⇥j

y+1/2 = �A,j
y

� �B,j

y+1. Similar to the SO(6)1
Hamiltonian (11), the backscattering term here also in-
troduces a finite excitation energy gap. The angle vari-
ables of the sine-Gordon Hamiltonian obey the Haldane
nullity gapping condition (c.f. (12)). The SU(4) current-
current backscattering provides more than enough gap-
ping terms, and linearly dependent redundant terms are
non-competing if u > 0. The ground state expectation
values of the angle variables h2⇥y+1/2i belongs in the
“Haldane’s dual lattice”

L⇥ ⌘
�
2⇥ : ↵ · 2⇥,↵0 · 2⇥ 2 2⇡Z

 
(40)

so that the sine-Gordon energy (39) is minimized. The
dual lattice can be decomposed into two orthogonal com-
ponents

L⇥ = LU(1)
⇥ + LSU(4)

⇥ , (41)

LU(1)
⇥ = spanZ{2⇡�0},

LSU(4)
⇥ = 2⇡BCC = spanZ{2⇡�1, 2⇡�2, 2⇡�3},

where the primitive reciprocal vectors of LU(1)
⇥ and

LSU(4)
⇥ are

�µ =
1

3!
"µ⌫��

↵⌫ ^↵� ^↵�
↵0 · (↵1 ^↵2 ^↵3)

, (42)

�0 =
1

4
(1, 1, 1, 1),

R_
SU(4) =

0

@
�� �1 ��
�� �2 ��
�� �3 ��

1

A =
1

4

0

@
3 �1 �1 �1
2 2 �2 �2
1 1 1 �3

1

A .

Similar to the SO(6)1 case, the deconfined excitations
of the sine-Gordon model (39) are kinks of the angle vari-
ables where h2⇥y+1/2i jumps discontinuously from one
value to another in L⇥. The kinks can be created by frac-
tional vertex operators V C,�

y
= exp

⇥
i�j�C,j

y

⇤
(c.f. (16)),

where in this case the fractional lattice vectors are four
dimensional � = (�1, �2, �3, �4). Excitations can be de-
composed into U(1)4 and SU(4)1 components that as-
sociates to kinks of HU(1) and HSU(4) in (39) respec-
tively. For U(1)4, the primary fields [n]⇢ are vertex op-

erators ein�
C
⇢,y = ein(�

C,1
y +...+�C,4

y )/4, where n is an inte-
ger. They carry spins (or conformal scaling dimensions)
h[n]⇢ = n2/8.
For SU(4)1, certain vertex operators can be grouped

together into super-selection sectors {V C,�1

y
, . . . , V C,�r

y
}

and corresponds to a primary field of SU(4)1. Vertices
of each super-sector transform among each other under
the SU(4)1 a�ne Lie algebra (c.f. (22)). As SU(4)1 and
SO(6)1 are equivalent, there is a one-to-one correspon-
dence between the primary fields. Using the same nota-
tion in SO(6)1, the primary fields 1, , s+, s� of SU(4)1
corresponds to the trivial, vector, fundamental and anti-
fundamental representations of SU(4). The primary field
 corresponds to the super-sector of 6 vertex operators

ei�
 ·�C

y , where � = (1, 1,�1,�1)/2 or any permuta-
tion of the entries. The super-sector of the primary field

s± consists of the 4 vertex operators ei�
s± ·�C

y , where
�s± = ±(3,�1,�1,�1)/4 or any permutation of the en-
tries. The spins (i.e. conformal scaling dimensions) of the
primary fields are h = 1/2 and hs± = 3/8, which un-
surprisingly match that of the primary fields of SO(6)1.
Before we end this section, let us take a closer look

at the sine-Gordon terms for SU(4)1 sector. Usually we
take u > 0 such that the sine-Gordon terms are pinned
at their respective minima to gap out the system from
the renormalization group (RG) analysis. What if u < 0
or even u is a complex parameter? This is related to
the duality properties of ADE surface topological orders
discussed later. So let us study the general structure of
sine-Gordon terms when u = |u|ei# is complex valued.
The general sine-Gordon is

HSU(4)1 = � |u|
2

X

y

X

↵2�+

⇣
EA,↵

y
EB,�↵

y+1 ei#

+EA,�↵
y

EB,↵
y+1 e

�i#

⌘

= �|u|
X

y

X

↵2�+

cos
�
↵ · 2⇥y+1/2 + #

�
, (43)

where �+ is the set of positive roots. In this case, we
find that as long as # 6= ⇡, the system is gapped; when
# = ⇡ the system becomes gapless. Reversing the sign of
⇥y+1/2 is equivalent to taking the complex conjugate of
u, namely,

2⇥y+1/2 ! �2⇥y+1/2 , u ! u⇤ , #! �#, (44)

which is also equivalent to a reflection with respect to the
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real axis in the u complex plane. The duality transfor-
mation on the u-plane is shown in Fig. 4. Since SO(6)1
has the same root structure as SU(4)1, the above analysis
also works for SO(6)1 theory. The ground state structure
is shown in Fig. 5.

|u|
Im(u)

Re(u)

–|u|

–|u|
|u|
P

Q
#

D̂

FIG. 4. Duality transformation of the sine-Gordon term on
the u-plane. D̂ is the duality operator. Under D̂, points on
the circle with radius |u| is reflected with respect to the real
axis. P,Q are self-dual points. P describes a gapless point,
which can be seen in Fig. 5(c). Other points on the circle
describe gapped phases.

FIG. 5. The ground state expectation values of h2⇥y+1/2i

that minimize the sine-Gordon Hamiltonian (43) for (a) # =
0, (b) # = �3⇡/5 and (c) # = ⇡. The plots are taken over
the fundamental region in R3 modulo the Haldane dual lattice
L

SU(4)
⇥ in (41). The sine-Gordon Hamiltonian generically has

a finite energy gap and a single minimum for �⇡ < # < ⇡. At
# = ⇡, there are gapless Goldstone modes on the boundary
of the fundamental region.

III. REVIEW OF FREE DIRAC
FERMION/QED3 DUALITY

In this section, we review the coupled wire derivation
of the free Dirac fermion/QED3 duality following Ref. 36
and 65. Written explicitly, the duality says

SDirac =

ˆ
dx3 i ̄�µ(@µ � iAµ) 

l

SQED3
=

ˆ
dx3 i ¯̃ �µ(@µ � iaµ) ̃+

1

4⇡
✏µ⌫⇢Aµ@⌫a⇢,

(45)

where aµ is a dynamical U(1) gauge field and Aµ is a
background U(1) field. Since in 2+1d, a single copy
of Dirac fermion with unit charge su↵ers from the tra-
ditional “parity” anomaly, the duality is better under-
stood to hold at the surface of a 3+1d topological in-
sulator. We add quotation marks for “parity” because
strictly speaking, parity is in the connected component
of the rotation group in 2+1d. Therefore, the anomaly
is better called as an anomaly of time-reversal symme-
try T or reflection symmetry R. Detailed clarifications
can be found in Ref. 66. Several derivations have been
given from the field-theoretic perspectives. Specifically,
what they have done is to start from the conjectured
fermion/boson duality, which is the duality between a
single free Dirac fermion and a complex boson coupled to
a dynamical U(1) gauge field at the O(2) Wilson-Fishier
fixed point with quartic interactions.57,58 Then they per-
form flux attachment to the original duality to obtain the
fermion/fermion duality. The same can be performed at
the coupled wire level, which may be clearer in the sense
that one can see the explicit interactions at the micro-
scopic level. We now review it below.
Let us start from the array of 1D chiral electron wires,

each aligned along x-direction. The Hamiltonian can be
written as

H =
X

y

ˆ
dx vx(�1)y †

y
(�i@x) y

� vy(�1)y( †
y
 y+1 + h.c.), (46)

where in Eq. (46) y is the wire label along y-direction.
Wires labeled by even y carry right-moving electrons and
odd y carry left-moving electrons. The first term in
Eq. (46) describes the kinetic energy of electrons and
the second term describes uniform inter-wire hopping
between neighboring wires (see figure 1(b)). Using a
two-component spinor  (x, y) = ( 2y(x), 2y+1(x))T ,
Eq. (46) can be rewritten in the continuum limit as

H =

ˆ
dxdy †[vx�

z(�i@x) + vy�
y(�i@y)] , (47)

where the sum
P

y
is replaced by

´
dy. Eq. (47) therefore

recovers the e↵ective Hamiltonian for a single copy of
Dirac fermion in 2+1d. Now let us bosonize the Dirac
fermion on each wire by  y = ei�y , where �y is a chiral
boson field satisfying the commutation relation

[�y(x),�y0(x0)] = �yy0(�1)yi⇡sgn(x� x0)

+ i⇡sgn(y0 � y), (48)

where sgn(s) = s/|s| and sgn(0) = 0. The first and
second lines of Eq. (48) give the correct anticommuta-
tion relations of fermions in the same wire and between
di↵erent wires, respectively. Written in terms of boson
fields, the original Dirac action in Eq. (45) becomes

SDirac =
X

y

ˆ
dxdt

⇥ i(�1)y

4⇡
@x�y@t�y +

vx
4⇡

(@x�y)
2

+ vy(�1)y cos (�y � �y+1)
⇤
. (49)



11

Under renormalization group (RG) flow, this theory re-
mains gapless due to the competition between neighbor-
ing sine-Gordon terms.

...
...

�2y+3

�2y+2

�2y+1

�2y

�2y�2

�2y�1
...

...
...

...

'2y, ✓2y

'2(y+1), ✓2(y+1)

'2(y�1), ✓2(y�1)

FIG. 6. Pictorial illustration of the duality transformation in
Eq. (50) or (51). Two flux quanta from +1 and �1 attached
to each pair of wires.

Now let us perform the duality transformation

�̃y(x) =
X

y0

sgn(y � y0)(�1)y
0
�y0(x) ⌘

X

y0

Dyy0�y0(x).

(50)

This duality transformation (50) is a flux attachment (see
figure 6). Using the non-chiral basis between wire 2y and
2y+1, '2y, ✓2y = (�2y ±�2y+1)/2, Eq. (50) is equivalent
to

 ̃†
2y/2y+1 ⇠  †

2y+1/2y

Y

y0>y

e2i✓2y0
Y

y0<y

e�2i✓2y0 , (51)

where e2i✓2y brings a 2⇡ phase slip in '2y. Eq. (51) can
be understood as bringing two fluxes from positive and
negative infinities to the fermion at wire 2y/2y+ 1. One
can check that under duality (50), the equal-time com-
mutation relation only changes by a sign

[�̃y(x), �̃y0(x0)] = �[�y(x),�y0(x0)]. (52)

Physically it means that the dual fermions ei�̃y have op-
posite chiralities with the original ones. After duality
transformation, the original action (49) for the Dirac
fermion becomes

S̃Dirac =
X

y

ˆ
dxdt

n�i(�1)y

4⇡
@x�̃y@t�̃y +

vx
4⇡

(@xD
�1
yy0 �̃y0)2

+ vy(�1)y cos (�̃y � �̃y+1)
o
. (53)

One can see that in the dual action (53), the first and
last terms have the same form as the original action (49).
However, the second term is highly non-local. To resolve
this, one introduces two Lagrangian multipliers ã0,y, ã1,y
on each wire and rewrite Eq. (53) as

L̃Dirac =
X

y

�i(�1)y

4⇡
@x�̃y@t�̃y + LQED3

, (54)

where

LQED3
= L0 + Lstaggered-CS + LMaxwell + Ltunnel,

L0 =
X

y

i(�1)y

2⇡
@x�̃yã0,y +

X

y

ṽx
4⇡

(@x�̃y � ã1,y)
2,

Lstaggered-CS =
X

y

i(�1)y

8⇡
(�ã0,y)(ã1,y+1 + ã1,y),

LMaxwell =
X

y

1

16⇡


1

vx
(�ã0,y)

2 + vx(�ã1,y)
2

�
,

(55)

and �ãi,y ⌘ ãi,y+1 � ãi,y. Now one can see that the
dual Dirac theory is nothing but QED3, where ã0,y, ã1,y
are now the emergent U(1) gauge field under the gauge
fixing ã2,y = 0. The theory is invariant under the gauge
transformation

�̃y ! �̃y + fy,

ã0,y ! ã0,y + @tfy,

ã1,y ! ã1,y + @xfy,

ã2,y+1/2 ! ã2,y+1/2 + (fy+1 � fy), (56)

if we restore the ã2,y+1/2 component. Introducing these
emergent gauge fields in the path integral only con-
tributes an irrelevant overall multiplicative factor, which
is unimportant. Thus the duality between a single Dirac
fermion and QED3 is established at the path integral
level.
Let us now take a look at how symmetries transform

under duality. If we define time reversal (TR) symmetry
and particle-hole (PH) symmetry on the basis  as

T :  ! i�y , C :  ! i�y †, (57)

then under the duality transformation (50) with some
modifications to the transformation of � variables,65 we
have

T̃ :  ̃! i�y ̃†, C̃ :  ̃! i�y ̃. (58)

We see that TR and PH symmetries are exchanged under
duality. In the following discussion of the surface topo-
logical orders of ADE classifications, the generalization
of the duality transformation for the single Dirac fermion
will be utilized.

IV. D-SERIES: SO(N)1 SURFACE THEORY

A. Surface massless Majorana fermions in a
coupled wire model

The coupled wire model for D-series has been discussed
in Ref. 45 for the Majorana surfaces of topological su-
perconductors. A particular case for SO(6) was demon-
strated in section II. We here describe the general con-
struction. The generic coupled wire Hamiltonian for N
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copies of surface massless Majorana fermions is the sum

H0 +Hbc =
1X

y=�1
ivx(�1)j T

y
@x y

+
1X

y=�1
ivy 

T

y
 y+1, (59)

where the integer y labels the wire in the vertical di-
rection (see figure 1), and  = ( 1, . . . , N ) is an N -
component Majorana fermion. Majorana fermions on ad-
jacent wires have opposite chiralities. The uniform non-
dimerizing backscattering terms in Hbc on the second
line compete with neighboring ones, and the Hamiltonian
describes N massless Majorana fermions with linear dis-
persion in both the x and y directions. In this paper, we
are interested in Abelian surface topological phases, and
for this reason, we restrict N = 2r > 4. On each wire,
Majorana fermion pairs form Dirac fermions, which can
then be bosonized

ca
y
=

1p
2

�
 2a�1
y

+ i 2a
y

�
⇠ ei�

a
y , a = 1, . . . , r. (60)

The bosons satisfy the equal-time commutation relation
h
�a
y
(x),�a

0

y0(x0)
i
= i⇡(�1)y

⇥
�yy0�aa

0
sgn(x� x0)

+ �yy0sgn(a� a0)
⇤
+ i⇡sgn(y0 � y),

(61)

where terms on the second line enforces mutual anticom-
mutation product relations between Dirac fermions, and
sgn(x) = x/|x| = ±1 for x 6= 0 and sgn(0)=0. The first
line of Eq. (61) is equivalent to the commutator between
conjugate fields
h
@x�

a

y
(x),�a

0

y0(x0)
i
= 2i⇡(�1)y�yy0�aa

0
�(x� x0), (62)

which is dictated by the “pq̇” term of the Lagrangian
density

L0 =
1

2⇡

X

y

rX

a=1

(�1)y@x�
a

y
@t�

a

y
. (63)

The total Lagrangian density can be written in terms of
boson fields as L = L0 �H0, where

H0 = Vx

X

y

rX

a=1

@x�
a

y
@x�

a

y
(64)

is the non-universal sliding Luttinger liquid (SLL) com-
ponent along each wire. The non-dimerizing backscat-
tering terms in (59) can also be bosonized, and take the
form of Hbc = Vy

P
y

P
r

a=1 cos
�
�a
y
� �a

y+1

�
. However,

we suppress these single-body terms throughout this sec-
tion for the following reason. The bosonized Hamiltonian
density (64) has an additional local gauge symmetry

�a
y
! �a

y
+ 2⇡ma

y
(65)

where m1
y
, . . . ,mr

y
are either all integers or all half-

integers. This represents a local Z2 gauge symmetry that
transforms the Majorana fermions according to

 j

y
! (�1)My j

y
, (66)

where My ⌘ 2ma
y
modulo 2. Eq. (66) is violated by

the fermionic Hamiltonian density (59). Instead, the
fermionic H0 and Hbc in (59) are only symmetric under a
global Z2 symmetry where m = my is uniform. Through-
out this section, we focus on a bosonic coupled wire sur-
face constructions that preserve the local Z2 symmetry
(66). For example, the model mimics the surface of a
bosonic topological superconductor that supports emer-
gent Majorana fermion coupled with a Z2 gauge theory.
The vectors my = (m1

y
, . . . ,mr

y
)T that correspond to the

gauge transformation (65) live in a lattice

Lr

gauge =
�
m : 2ma 2 Z,m1 ⌘ . . . ⌘ mr mod 1

 

= spanZ

⇢
1

2
" =

1

2
("1, . . . , "r)T : "a = ±1

�
.

(67)

In this section, we focus on scenarios where r = 2n is
even. In this case, we further restricts the gauge vectors
my in (65) to live in the even lattice

Lr,+
gauge = spanZ

(
1

2
"+ : "a+ = ±1,

rY

a=1

"a+ = +1

)
(68)

for r = 2n � 4. The r = 2 case is special
and corresponds to the decomposable algebra SO(4) =
SU(2)⇥SU(2), where the even gauge lattice is L2,+

gauge =

spanZ
�
(1,�1)T , (1/2, 1/2)T

 
.

Before moving on, we briefly comment on the symme-
tries of the model. If the surface state is supported by
a bulk time-reversal symmetry-protected topology, then
the coupled wire model exhibits an antiferromagnetic
time-reversal (AFTR) symmetry,45 which accompanies
the time-reversal that flips the fermions’ propagating di-
rection with a half-translation that moves y ! y + 1.
In this case, the equal-time commutation relation (61)
needs to be modified to
h
�a
y
(x),�a

0

y0(x0)
i
= i⇡(�1)max{y,y0}⇥�yy0�aa

0
sgn(x0 � x)

+ �yy0sgn(a� a0) + sgn(y � y0)
⇤
,
(69)

to accommodate the antiferromagnetic symmetry

T ca
y
T �1 = (�1)yca†

y+1, T �a
y
T �1 = �a

y+1 + ⇡y. (70)

The discretization of surface state by a coupled wire
construction and its e↵ect on symmetries was explained
by the symmetry extension pattern discussed in Ref. 67
and 68 when gapped symmetric boundary states are con-
structed. The AFTR symmetry protects an odd number
of surface massless Majorana fermions from single-body
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backscattering. There can be additional global symme-
tries, such as mirror, that further protects an arbitrary
number of surface Majorana’s. In this work, we do not
focus on a particular symmetry, but instead concentrate
on the many-body gapping potential based on a frac-
tionalization scheme (see figure 1(c)) that can preserve
a range of symmetries. In this section, we also require
the many-body gapping potential to respect the local Z2

gauge symmetry (66).

B. Gapping potentials for surface Majorana
fermions

The simplest gapping terms are single-body backscat-
tering ones, such as

Hdimer = iu
X

y

rX

a=1

 a

y
 r+a

y+1 (71)

that dimerize Majorana channels and introduce mass
to all Majorana fermions. Unfortunately, these single-
body dimerizations do not respect the local Z2 symme-
try (66). Nevertheless, they illustrate the idea of de-
composition of the degrees of freedom along each wire:
N = 2r = r + r. In each pair, the two sets of Majo-
rana fermions  1

y
, . . . , r

y
and  r+1

y
, . . . , 2r

y
are backscat-

tered independently to adjacent wires in the opposite di-
rections. By introducing this single-body backscattering
term, we explicitly break and split the SO(2r)1 symme-
try into SO(r)1 ⇥ SO(r)1 along each wire.

With this idea in mind, we can introduce a second type
of gapping terms, which preserve the local Z2 symmetry
(66). From the decomposition of the SO(2r) WZW Kac-
Moody algebra (also known as conformal embedding)

SO(2r)1 � SO(r)A1 ⇥ SO(r)B1 , (72)

we can introduce the two-body Kac-Moody current
backscattering interactions

Hdimer = u
X

y

JSO(r)B

y
· JSO(r)A

y+1 (73)

for positive u (see figure 1(c)). The A sector contains
 1
y
, . . . , r

y
and the B sector contains  r+1

y
, . . . , 2r

y
. We

will show that (73) introduces a non-vanishing excitation
energy gap in the next subsection.

The SO(2r)1 WZW theory along the y-th wire is gen-
erated by the chiral current operator

J (a,b)
y

= (�1)yi a

y
 b

y
. (74)

Based on (72), we can decompose the current operators
into two sets: SO(r)A1 contains J (a,b) for 1  a < b  r
and SO(r)B1 contains J (a,b) for r + 1  a < b  2r. We
can see that these two sets of operators decouple in the
sense that their operator product expansions (OPE) are
trivial up to non-singular terms. Moreover, the Sugawara

energy-momentum tensor9 of the total SO(2r)1 algebra
decomposes into two decoupled parts,

TSO(2r)1 = TSO(r)A1
+ TSO(r)B1

, (75)

TSO(r)A1
=

1

2(r � 1)

X

1a<br

J (a,b)J (a,b)

= �1

2

rX

a=1

 a@ a, (76)

TSO(r)B1
=

1

2(r � 1)

X

r+1a<b2r

J (a,b)J (a,b)

= �1

2

2rX

a=r+1

 a@ a. (77)

The interaction (73) can be expressed using the Majorana
fermions

Hdimer = u
X

y

X

1a<br

 r+a

y
 r+b

y
 a

y+1 
b

y+1. (78)

We notice in passing the following observations. First,
it breaks O(2r) symmetry into O(r)A ⇥ O(r)B , which
transforms

 a

y
! (O(�1)y )a

b
 b

y
,  r+a

y
! (O(�1)y )a

b
 r+b

y
, (79)

where O is an r ⇥ r orthogonal matrix. Second, there
are alternative interaction terms, such as  a

y
 b
y
 r+a

y+1 
r+b

y+1,
that can compete with (78). However, as long as mirror
symmetry is broken, one of these can be dominant and
lead to a finite energy gap. Third, (78) is marginally
relevant. The renormalization group (RG) equation for
u is 69

du

d�
= +4⇡(r � 2)u2, (80)

showing that the interaction strength is growing at low
energy limit when r > 2, which is the case that we dis-
cuss.

1. Excitation energy gap

We now review that (78) introduces a non-vanishing
excitation energy gap. A proof can also be found in
Ref. 45. We focus on a single coupled pair of counter-
propagating SO(r)1 channels (see figure 1(c)) at some
even y. After relabeling  r+a

y
=  a

R
and  a

y+1 =  a

L

for a = 1, . . . , r, the interaction term between the y-th
and (y+1)-th wires becomes the O(r) Gross-Neveu (GN)
model70

HGN = �u

2
( R · L)

2. (81)

It is known that the GN model has an energy gap when
r > 2. For even r = 2n, we can use (60) to pair Majorana
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fermions into Dirac fermions

ca
R/L

=
1p
2
( 2a�1

R/L
+ i 2a

R/L
) ⇠ ei�

a
R/L , a = 1, . . . , n.

(82)

Eq. (81) bosonizes into

HGN ⇠ u
nX

a=1

@x�
a

R
@x�

a

L
� u

X

a1 6=a2

X

±
cos (2⇥a1 ± 2⇥a2)

= u
nX

a=1

@x�
a

R
@x�

a

L
� u

X

↵2�

cos (↵ · 2⇥), (83)

where 2⇥ = (2⇥1, . . . , 2⇥n), 2⇥a = �a
R
� �a

L
, and ↵ =

(↵1, . . . ,↵n)T are the SO(2n) roots that lives in

� =
�
↵ 2 Zn : |↵|2 = 2

 
. (84)

As a matter of fact, a subset of the sine-Gordon terms in
(83) will be su�cient in introducing an energy gap. We
take

�u
nX

I=1

cos (↵I · 2⇥) = �u
nX

I=1

cos

 
nX

J=1

KIJ(�
0J
R

� �0J
L
)

!

= �u
nX

I=1

cos (nT

I
K�), (85)

where ↵I = (↵I
1, . . . ,↵

I
n
) are the n linearly independent

simple roots of SO(2n) (c.f. (9) for SO(6))

RSO(2n) =

0

B@
�� ↵1 ��
...

...
...

�� ↵n ��

1

CA =

0

BBBB@

1 �1 0 . . . 0 0
0 1 �1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 �1
0 0 0 . . . 1 1

1

CCCCA
.

(86)

Here K = (KIJ)n⇥n = RSO(2n)R
T

SO(2n) is the Car-

tan matrix of SO(2n), and K = K � (�K) =
diag(K,�K) includes both the R and L movers. � =
(�0

R
,�0

L
)T , for �0

R/L
= (�01

R/L
, . . . ,�0n

R/L
) and �a

R/L
=

(RT

SO(2n))
a

J
�0J
R/L

= (↵J
a
)�0J

R/L
, are the bosonized variables

in the Chevalley basis, and nJ = (eJ , eJ)T . The “pq̇”
component of the Lagrangian density expressed in terms
of the Chevalley basis is

L0 =
1

2⇡

nX

a=1

@x�
a

R
@t�

a

R
� @x�

a

L
@t�

a

L
=

1

2⇡
@x�

TK@t�.

(87)

The n vectors nI are linearly independent and satisfy
“Haldane’s nullity gapping condition”60

nT

I
KnJ = 0, for I, J = 1, . . . , n. (88)

This shows (85) introduces a finite excitation energy gap.

The additional linearly dependent sine-Gordon terms
in (83) are complementary when u > 0, and they collec-
tively pin the non-competing ground state expectation
values ↵ · h2⇥i 2 2⇡Z. This defines the “Haldane’s dual
lattice” (c.f. (14) for SO(6))

L⇥ ⌘ {2⇥ : ↵ · 2⇥ 2 2⇡Z for all ↵ 2 �}
= 2⇡BCCn = spanZ {2⇡�1, . . . , 2⇡�n} ,

(89)

where the simple dual roots �I are

�I =
1

n! det(RSO(2n))
"IJ1...Jn�1↵

J1 ^ . . . ^↵Jn�1

R_
SO(2n) =

0

B@
�� �1 ��
...

...
...

�� �n ��

1

CA

=

0

BBBBBBBB@

1
1 1
1 1 1
...

...
...

. . .
1 1 1 . . . 1
1/2 1/2 1/2 . . . 1/2 1/2 �1/2
1/2 1/2 1/2 . . . 1/2 1/2 1/2

1

CCCCCCCCA

. (90)

The dual lattice L⇥ (up to a factor of 2⇡) is the body-
centered cubic lattice (BCC) in n dimensions, whose lat-
tice vectors have either all integral or all half-integral
entries. The mutual commutativity between the angle
variables 2⇥a ensures that (83) introduces a finite exci-
tation energy gap. Details of the Haldane’s nullity gap-
ping condition for the K-matrix formalism is reviewed in
Appendix A.
When r = 2n+ 1 is odd, Eq. (73) can still be applied

to introduce a finite energy gap. However, the gapping
Hamiltonian here cannot be fully bosonized because of
the extra odd Majorana fermion. Since this situation
has been discussed in detail in Ref. 45, it will not be
repeated here.

2. Quasiparticle excitations

The quasiparticle excitations of the sine-Gordon gap-
ping potential (83) take a similar structure to that of
the SO(6) case described in section II. Here, we only
present the main results. A quasiparticle excitation at
(x0, y0) can be created by a fractional vertex operator
V C,�
y0

(x0) = exp
⇥
i�a�C,a

y0
(x0)

⇤
, where C = A,B, a =

1, . . . , n and �A,a = �a, �B,a = �n+a are the bosonized
variables for the Dirac fermions cb = ( 2b�1+i 2b)/

p
2 ⇠

ei�
b

, for b = 1, . . . , r = 2n. The vector � = (�1, . . . , �n)
that corresponds to deconfined excitations can take all in-
tegral or all half-integral entries, and therefore it lives on
the BCC dual lattice L⇥ defined in (89). There are four
primary fields of the SO(2n)1 WZW CFT that generate
all deconfined excitations. Each primary field is a super-
selection sector of vertex operators that form an irre-
ducible representation of the SO(2n)1 algebra (c.f. (22)).
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The first is the trivial vacuum excitation 1 that cor-
responds to the trivial representation of SO(2n). The
fermionic primary field  consists of the vertex opera-

tors {ei�
C,1
y0

(x0), . . . , ei�
C,n
y0

(x0)}. Each of the vertex opera-
tors has conformal scaling dimension h = (�1)y0/2, and
creates a 2⇡ kink to the ground state expectation value
h2⇥y0±1/2i at x0 (c.f. 23), where the sign depends on
C = A,B. Each of the two spinor primary fields s± con-

sists of the set of fractional vertex operators ei"·�
C
y0

(x0)/2,
where the vector " = ("1, . . . , "n) has unit entries andQ

a
"a = 1 for s+ and �1 for s�. The two super-sectors

corresponds to the even and odd spinor representations
of SO(2n). Each of the vertex operators has a conformal
scaling dimension hs± = (�1)y0n/8, and creates a ⇡-kink
of h2⇥y0±1/2i at x0 (c.f. 24).

The four primary fields 1, , s+, s� in SO(2n)1 follow
a set of pair operator product expansion formulas. Con-
sequently, the four types of quasiparticle excitations in
the coupled wire model follow the corresponding fusion
rules

 ⇥  = 1,  ⇥ s± = s⌥,

s± ⇥ s± =

⇢
1, for even n
 , for odd n

.
(91)

C. Duality transformation of the Hamiltonian and
the symmetry

We now study the duality properties of the gapped
surface. The duality transformation here generalizes that
in Ref. 36.

�̃a
y
(x) =

X

y0

sgn(y � y0)(�1)y
0
�a
y0(x), (92)

where the flavor index a is a spectator in the transforma-
tion. Physically it means that we bring two flux quanta
from positive and negative infinities to each flavor of
chiral fermions independently. Equivalently, we define
the duality according to a particular U(1)rsubgroup of
SO(2r). We can check that the dual field �̃a

j
preserves

the commutation relation of the original boson field, up
to a minus sign

⇥
�̃a
y
(x), �̃a

0

y0(x0)
⇤
= �

⇥
�a
y
(x),�a

0

y0(x0)
⇤
. (93)

Physically, the dual fermion defined by  ̃a
y
(x) = ei�̃

a
y(x)

still satisfies the correct fermion anticommutation rela-
tion, but it has the opposite chirality of the original
fermion on each wire. After duality transformation, the
kinetic energy term in Eq.(64) becomes highly nonlocal
in terms of the dual bosons. This can be resolved by
introducing emergent gauge fields aa

j
(x) for each flavor

of bosons (c.f. the review in Sec.III), and such descrip-
tion will not be repeated here. Instead, we focus on the
gapping terms. Under Eq. (92), we have

�̃a
y+1 � �̃a

y
= (�1)y+1(�a

y+1 � �a
y
). (94)

Thus the sine-Gordon term in (83) keeps its original form,
namely,

�u
X

↵2�

cos
�
↵ · 2⇥̃

�
= �u

X

↵2�

cos
�
↵ · 2⇥

�
, (95)

where 2⇥̃a ⌘ �̃a
j
� �̃a

j+1. The sine-Gordon gapping po-
tential is therefore self-dual.

There is a comment on this duality transformation.
This self-dual interaction is a special case of the more gen-
eral case, where the coe�cient u of the current-current
interaction is complex valued, as we discussed in Sec. II.
Without loss of generality, we assume that |u| = 1. Thus
we can write u = ei✓. Eq. (95) corresponds to ✓ = 0.
As we vary ✓, in addition to cosine terms, there are sine
terms from current-current interaction, which flip sign
under duality transformation, seen from Eq. (94). Thus
the ground state structure would rotate in the Haldane
lattice space correspondingly. Then the duality transfor-
mation is a reflection with respect to the real axis in the
complex u plane. When � = ⇡, the interaction becomes
self-dual again. But now the system becomes gapless.
Therefore, the phase diagram on the u plane is a unit cir-
cle centered at the origin, with self-dual points located at
✓ = 0,⇡. All the points describe a gapped system except
✓ = ⇡.

We notice in passing the duality transformation of the
antiferromagnetic time-reversal symmetry. Under the
definition (70),

T �̃a
y
T �1 = ��̃a

y+1 �
⇡

2
(�1)y+1. (96)

The additional minus sign in front of �̃a
y+1, when com-

pared with (70), means T : c̃ ! c̃ now preserves dual
Dirac fermion number, whereas T : c ! c† flips the orig-
inal ones. The AFTR symmetry therefore carries an ad-
ditional particle-hole component when transferred across
the duality.

We conclude this section by making the following re-
marks. First, the duality transformation defined in
Eq.(92) is not unique. There are alternative duality
transformations that converge to the same equal-time
commutation relation (93). Second, the duality trans-
formation (92) does not work for the gapped phase of
SO(4). From Ref. 45, we see that SO(4) requires spe-
cial attention because the usual decomposition SO(4) ⇠
SO(2) ⇥ SO(2) leads to Gross-Neveu interactions that
only renormalize the boson velocities without introducing
an energy gap. For this purpose, an alternative decompo-
sition is needed – SO(4) ⇠ SU(2)⇥SU(2), and it leads to
a special gapping potential. The SU(2) gapping potential
is not self-dual under (92), and in fact, the dual theory is
highly non-local. We suspect the SO(4) ⇠ SU(2)⇥SU(2)
fractionalization is self-dual under some alternative du-
ality transformation that is out of the scope of this work.



16

V. A-SERIES: U(N)1 SURFACE THEORY

A. Surface gapless Dirac Hamiltonian via coupled
wire construction and decomposition

In this section, we discuss the U(N)1 theories con-
structed from N Dirac fermions. The U(4)1 prototype
was discussed in section II. Here we describe the general
situations. The N surface Dirac fermions, with Hamilto-
nian

H0 = iv
NX

a=1

X

s,s0=",#
ca
s

†(�x@x + �y@y)ss0c
a

s0 , (97)

can be supported by a topological bulk such as
a reflection-symmetric topological crystalline insulator
with mirror Chern number N71,72. By introducing al-
ternating symmetry breaking Dirac mass on the surface,

�V = ±m
NX

a=1

X

s,s0=",#
ca
s

†(�z)ss0c
a

s0 , (98)

the gapless electronic degrees of freedom are localized
along an array of one-dimensional interfaces (see fig-
ure 1(a)). Each interface, that is sandwiched between ad-
jacent stripes with opposite Dirac masses, hosts N chiral
Dirac fermions that co-propagate in a single direction48.

The Hamiltonian that describes the 1D arrays of low-
energy Dirac channels is

HD,0 =
1X

y=�1
ivx(�1)yc†

y
@xcy, (99)

where cy = (c1
y
, . . . , cN

y
) is an N -component chiral Dirac

fermion. After bosonizing these Dirac fermions via ca
y
=

ei�
a
y , we can write Eq. (99) in the same form as Eq. (64),

namely,

HD,0 = Vx

X

y

NX

a=1

@x�
a

y
@x�

a

y
, (100)

where Vx is some non-universal velocity. We can de-
compose a U(N)1 theory into a U(1) charge sector and
an SU(N) spin sector. This decomposition makes the
physics richer than that of the D-series, which we will
show later. The U(1) charge sector is represented by the
diagonal

�⇢
y
= N �̃⇢

y
= �1

y
+ . . .+ �N

y
(101)

and the neutral SU(N) sector is represented by

�y,I =
N�1X

J=1

KSU(N)
IJ

�̃J
y
=

NX

a=1

↵I

a
�a
y
, (102)

where I = 1, . . . , N � 1. Here ↵I = (↵I
1, . . . ,↵

I

N
), for

↵a

I
= �a

I
� �a

I+1, are the simple roots of SU(N). The

Cartan matrix of SU(N) is the inner product KSU(N)
IJ

=
↵I ·↵J . The roots of SU(N) form the collection of inte-
gral vectors

�SU(N) =

(
↵ 2 ZN : |↵|2 = 2,

NX

a=1

↵a = 0

)
. (103)

Details can be found in Appendix B.
The “pq̇” term of the Lagrangian density decomposes

into

L0 =
1

2⇡

X

y

(�1)y
NX

a=1

@x�
a

y
@t�

a

y
(104)

=
1

2⇡

X

y

(�1)yN@t�̃
⇢

y
@x�̃

⇢

y

+
1

2⇡

X

y

(�1)y
N�1X

I,J=1

KSU(N)
IJ

@t�̃
I

y
@x�̃

J

y
.

In this section, we focus on the partition N = p+ q that
splits

U(N)1 � U(p)1 ⇥ U(q)1
� (U(1)p ⇥ SU(p)1)| {z }

A�sector

⇥ (U(1)q ⇥ SU(q)1)| {z }
B�sector

. (105)

The partition separate the Dirac fermions into two
groups. The A sector consists of c1, . . . , cp, and the B
sector consists of cp+1, . . . , cp+q. We label the bosonized
variables by �A,a = �a for a = 1, . . . , p and �B,b = �p+b

for b = 1, . . . , q. The Lagrangian density (104) splits into

L0 = LA

0 + LB

0 (106)

LC

0 =
1

2⇡

X

y

(�1)y
rX

c=1

@x�
C,c

y
@t�

C,c

y

=
1

2⇡

X

y

(�1)yr@t�̃
C,⇢

y
@x�̃

C,⇢

y

+
1

2⇡

X

y

(�1)y
r�1X

I,J=1

KSU(r)
IJ

@t�̃
C,I

y
@x�̃

C,J

y
.

where the charged and neutral bosons �̃C,⇢ and �̃C,I are
defined similarly to (101) and (102), for C = A,B and
r = p, q respectively. As there are no cross terms in the
Lagrangian density, the A and B sectors are completely
decoupled from one another.
If the surface Dirac fermions are supported from a

mirror-symmetric topological bulk, the Dirac channels
are related by reflection

Mca
y
M�1 = (�1)yica�y

, M�a
y
M�1 = �a�y

+ (�1)y
⇡

2
.

(107)

The surface array also admits an emergent anti-
ferromagnetic time-reversal (AFTR) symmetry (c.f. (70)
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in section IV)

T ca
y
T �1 = (�1)yca

y+1, T �a
y
T �1 = ��a

y
+

1� (�1)y

2
⇡.

(108)

The symmetries obey the algebraic relationM2 = (�1)F ,
T 2 = (�1)F translationy!y+2 and TMT�1M�1 =
translationy!y+2, where (�1)F is the fermion parity
number operator. Mirror and AFTR symmetry preserv-
ing surface many-body gapping coupled wire models can
be found in Ref. 34 and 42. Unlike the D-series discus-
sion in section IV, in this section, we focus on symme-
try breaking many-body gapping potentials that support
to fractional quasiparticle excitations. For instance, the
wire partition (105) respects neither one of the symme-
tries.

B. Gapping terms for surface Dirac fermions

We now discuss symmetry breaking gapping interac-
tions to (99). The array of Dirac channels can acquire a
finite excitation energy gap by backscattering dimeriza-
tions between adjacent wires. The simplest ones are the
single-body dimerizations

H1�body = m
X

y0

"
pX

a=1

ca2y0�1
†ca2y0 + h.c.

+
qX

b=1

cp+b

2y0
†
cp+b

2y0+1 + h.c.

#
. (109)

It partitions the N Dirac channels in a given wire into
p+ q, and backscatters the two sectors in opposite direc-
tions. The backscatterings are therefore non-competing
and introduce a single-body mass gap. In this section, we
focus on many-body backscattering dimerizations based
on the decomposition (105). It partitions the N Dirac
fermions in any given wire into the U(1)p and U(1)q
charged sectors and the SU(p)1 and SU(q)1 neutral sec-
tors. By backscattering these decoupled sectors indepen-
dently, the potentials

H = HA

⇢
+HB

⇢
+HA

SU(p)1
+Hq

SU(q)1
, (110)

HA

⇢
= �vA

X

y0

cos
⇣
�A,⇢

2y0 � �A,⇢

2y0+1

⌘
,

HB

⇢
= �vB

X

y0

cos
⇣
�B,⇢

2y0�1 � �
B,⇢

2y0

⌘
,

HA

SU(p)1
= uA

X

y0

JSU(p)
2y0 · JSU(p)

2y0+1 ,

HB

SU(q)1
= uB

X

y0

JSU(q)
2y0�1 · JSU(q)

2y0 ,

introduce a finite excitation energy gap to the coupled
wire model. Here �A,⇢

y
= �1

y
+ . . . + �p

y
and �B,⇢

y
=

�p+1
y

+ . . . + �p+q
y

are the bosonized variables that gen-
erate the charged U(1) sectors, where N = p + q. The
neutral sectors are generated by the SU(r)1 Kac-Moody
currents9

J↵,SU(p)
y

=
pX

a,a0=1

ca
y

†t↵
aa0ca

0

y
,

J↵,SU(q)
y

=
qX

b,b0=1

cp+b

y

†
t↵
bb0c

p+b
0

y
, (111)

where the fundamental matrix representations t↵
cc0 of

SU(r), for r = p, q, are listed in Appendix B.
The SU(r)1 backscattering dimerizations can be ex-

pressed in terms of bosonized variables.

HA

SU(p)1
= uA

X

y0

2

4
pX

a,a0=1

V A

aa0@x�
a

2y0@x�
a
0

2y0+1

�
X

↵2�SU(p)

cos
⇣
↵ · 2⇥A

2y0+1/2

⌘
3

5 , (112)

HB

SU(q)1
= uB

X

y0

2

4
qX

b,b0=1

V B

bb0@x�
p+b

2y0�1@x�
p+b

0

2y0

�
X

↵2�SU(q)

cos
⇣
↵ · 2⇥B

2y0�1/2

⌘
3

5 , (113)

where 2⇥A

2y0+1/2 = (2⇥A,1
2y0+1/2, . . . , 2⇥

A,p

2y0+1/2) has en-

tries 2⇥A,a

2y0+1/2 = �a2y0 � �a2y0+1, and 2⇥B

2y0�1/2 =

(2⇥B,1
2y0�1/2, . . . , 2⇥

B,q

2y0�1/2) has entries 2⇥B,b

2y0�1/2 =

�p+b

2y0 � �p+b

2y0 . Here the velocity terms V C

cc0 originate

from the backscatterings of the Cartan generators HI ⇠
↵I ·@� of SU(r)1, where ↵I are the simple roots of SU(r)
presented below eq.(102). The sine-Gordon terms are re-
sponsible in introducing a finite excitation energy gaps in
the neutral sectors, and they originate from the backscat-
terings of the raising and lowering operator E↵ ⇠ ei↵·�,
where ↵ are the root vectors in �SU(r) defined in (103).
Similar to the D-series, the potentials (112) and (113)

consists of more sine-Gordon terms than necessary in or-
der to introduce a finite excitation gap. Instead of sum-
ming over all root vectors ↵ in �SU(r), it su�ces to
include only a set of linearly independent simple roots
↵1, . . . ,↵r�1, where we choose

RSU(r) =

0

B@
�� ↵1 ��
...

...
...

�� ↵r�1 ��

1

CA

(r�1)⇥r

=

0

BBB@

1 �1 0 . . . 0 0
0 1 �1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 �1

1

CCCA
(114)
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so that K = (KIJ)n⇥n = RSU(r)R
T

SU(r) is the Cartan

matrix of SU(r). All roots ↵ are integer combinations
of the simple ones, and given uA, uB are positive, the re-
dundant sine-Gordon gapping terms are non-competing.
Together with the gapping Hamiltonians H⇢ in (110) for
the charged sectors, they collectively pin the ground state
expectation values of the angle variables to live in the
dual lattice

L⇥ ⌘
⇢
2⇥ 2 Rr :

↵ · 2⇥,↵0 · 2⇥ 2 2⇡Z
↵ 2 �SU(r),↵

0 = (1, . . . , 1)

�

(115)

so that all sine-Gordon terms in (110), (112) and (113)
are simultaneously minimized (c.f. the discussion on U(4)
in section II).

The dual lattice decomposes into the orthogonal U(1)
and SU(r) sectors

L⇥ = LU(1)
⇥ � LSU(r)

⇥ , (116)

LU(1)
⇥ = spanZ{2⇡�0},

LSU(r)
⇥ = spanZ{2⇡�1, . . . , 2⇡�r�1},

where the primitive reciprocal vectors of LU(1)
⇥ and

LSU(r)
⇥ are

�I =
1

(r � 1)!
"IJ...K

↵J ^ . . . ^↵K

↵0 · (↵1 ^ . . . ^↵r�1)
, (117)

�0 =
1

r
(1, . . . , 1)

so that ↵µ · �⌫ = �µ
⌫
, for µ, ⌫ = 0, 1, . . . , r � 1. Here,

the entries of the reciprocal vectors �I = (�1
I
, . . . ,�r

I
) of

SU(r) take the explicit form

�a

I
=

⇢
(r � I)/r, if a  I
�I/r, if a > I

(118)

for I = 1, . . . , r � 1.

1. A Z2 twist

Contrary to the D-series, here there is an alternative
choice of gapping potentials, which involves the product
of the neutral and charged sectors

HZ2 = HA

Z2
+HB

Z2
, (119)

HA

Z2
= �uA

X

y0

cos
⇣
�A,⇢

2y0 � �A,⇢

2y0+1

⌘

⇥
p�1X

I=1

cos
⇣
↵I

SU(p) · 2⇥A

2y0+1/2

⌘
,

HB

Z2
= �uB

X

y0

cos
⇣
�B,⇢

2y0�1 � �
B,⇢

2y0

⌘

⇥
q�1X

I=1

cos
⇣
↵I

SU(q) · 2⇥B

2y0�1/2

⌘
,

where 2⇥A

2y0+1/2 = (2⇥A,1
2y0+1/2, . . . , 2⇥

A,p

2y0+1/2) has en-

tries 2⇥A,a

2y0+1/2 = �a2y0 � �a2y0+1, and 2⇥B

2y0�1/2 =

(2⇥B,1
2y0�1/2, . . . , 2⇥

B,q

2y0�1/2) has entries 2⇥B,b

2y0�1/2 =

�p+b

2y0 ��p+b

2y0 . Here, unlike the previous sine-Gordon terms

in HC

SU(r)1
in (112) and (113), the Z2 terms HC

Z2
in (119)

consist of sums of only the simple roots ↵I

SU(r) of SU(r)

(see (114)).
Eq.(119) introduces a finite excitation energy gap. To

see this, we notice each product of cosine terms generates
two sine-Gordon terms using the combine angle formula

cos
⇣
�C,⇢

y
� �C,⇢

y+1

⌘
cos
⇣
↵I

SU(r) · 2⇥C

y+1/2

⌘

= cos
⇣
↵0

U(1)r
· 2⇥C

y+1/2

⌘
cos
⇣
↵I

SU(r) · 2⇥C

y+1/2

⌘

=
1

2
cos
h⇣
↵0

U(1)r
+↵I

SU(r)

⌘
· 2⇥C

y+1/2

i

+
1

2
cos
h⇣
↵0

U(1)r
�↵I

SU(r)

⌘
· 2⇥C

y+1/2

i
, (120)

where ↵0
U(1)r

= (1, . . . , 1) is the r-dimensional charge

vector and ↵I

SU(r), for I = 1, . . . , r are the simple roots

of SU(r). The combined angle variables satisfy the “Hal-
dane nullity” gapping condition60

h⇣
↵0

U(1)r
+ s↵I

SU(r)

⌘
· 2⇥C

y+1/2,
⇣
↵0

U(1)r0
+ s0↵I

0

SU(r0)

⌘
· 2⇥C

0

y0+1/2

i
= 0 (121)

where C,C 0 = A (B) and r, r0 = p (q) for even (odd) y, y0

respectively, and s, s0 = ±. There are 2r�2 sine-Gordon
terms between adjacent wires at each y + 1/2. This pro-
vides more than enough sine-Gordon terms, when r � 2,
to introduce an energy gap for the r pairs of counter-
propagating channels. The redundant terms are non-
competing and they collectively pin the bosonized angle
variables 2⇥C

y+1/2 to the energy-minimizing ground state
expectation values in the dual lattice

LZ2
⇥ ⌘

n
2⇥ 2 Rr :

⇣
↵0

U(1)r
±↵I

SU(r)

⌘
· 2⇥ 2 2⇡Z

o
.

(122)

LZ2
⇥ contains twice as many lattice points as the origi-

nal dual lattice L⇥ in (115) for the previous coupled wire
model (110), and consequently, there are twice as many
ground states between each adjacent wires. The scalar
products ↵µ · 2⇥ can now either be all even or all odd
multiples of 2⇡, for µ = 0, 1, . . . , r � 1. Therefore, the
dual lattice admits a Z2 grading

LZ2
⇥ = L0

⇥ + L1
⇥. (123)

The even lattice L0
⇥ = L⇥ is identical to the dual lattice

defined in (115). The odd lattice L1
⇥ displaces from the

even one by half a lattice spacing

L1
⇥ = 2⇡�1/2 + L0

⇥. (124)
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Here �1/2 can be chosen to be any vector so that ↵0 ·�1/2

and ↵I · �1/2 are all half integers. For example, one can
take the entries of �1/2 = (�1

1/2, . . . ,�
r

1/2) to be �a

1/2 =

(2 + r � 2ar + r2)/(4r) so that ↵µ · �1/2 = 1/2 for µ =
0, 1, . . . , r � 1. The Hamiltonian HZ2 in (119), the half
dual vector �1/2 as well as the odd lattice L1

⇥ all depend
explicitly on the choice of simple roots ↵I

SU(r). They

therefore explicitly breaks the SU(r) symmetry. Distinct
choices of simple roots correspond to inequivalent ground
states with distinct odd angle expectation values L1

⇥.
At this point, one can also consider gapping potentials

that sum over all roots of SU(r).

Heven = HA

even +HB

even, (125)

HA

even = �uA

X

y0

cos
⇣
�A,⇢

2y0 � �A,⇢

2y0+1

⌘

⇥
X

↵2�SU(p)

cos
⇣
↵ · 2⇥A

2y0+1/2

⌘
,

HB

even = �uB

X

y0

cos
⇣
�B,⇢

2y0�1 � �
B,⇢

2y0

⌘

⇥
X

↵2�SU(q)

cos
⇣
↵ · 2⇥B

2y0�1/2

⌘
.

In this case, the Hamiltonian still introduces a finite ex-
citation energy gap. However, the additional non-simple
root terms put extra restrictions to the ground state ex-
pectation values of 2⇥C

y+1/2. The angle values minimize

energy only when
⇣
↵0

U(1)r
±↵SU(r)

⌘
· 2⇥ are all integer

multiples of 2⇡, for all roots ↵SU(r). This rules out the
odd solutions in L1

⇥ for r � 3. For instance, ↵1 + ↵2

is also a root vector, and the above restriction implies
↵0

U(1)r
· 2⇥ as well as ↵SU(r) · 2⇥ to be full integer mul-

tiples of 2⇡. The energy-minimizing angle variables to
Hamiltonian (125) therefore must be even and live exclu-
sively in L0

⇥. This is not unexpected since the exactly
solvable Hamiltonian (125) preserves the SU(r) symme-
try and so must its ground state. For instance, the angle
values that belong to the SU(r)-breaking odd lattice L1

⇥
in (124) correspond to confined excitations that cost lin-
early diverging energy.

On the other hand, one can also consider another set
of gapping potentials

Hodd = HA

odd +HB

odd, (126)

HA

odd = uA

X

y0

cos
⇣
�A,⇢

2y0 � �A,⇢

2y0+1

⌘

⇥
X

↵2�SU(p)

(�1)Tr(↵) cos
⇣
↵ · 2⇥A

2y0+1/2

⌘
,

HB

odd = uB

X

y0

cos
⇣
�B,⇢

2y0�1 � �
B,⇢

2y0

⌘

⇥
X

↵2�SU(q)

(�1)Tr(↵) cos
⇣
↵ · 2⇥B

2y0�1/2

⌘
,

where (�1)Tr(↵) is even (odd) if ↵ = a1↵1 + . . . +
ar�1↵r�1 is an even (resp. odd) combination of the sim-
ple roots, for Tr(↵) = a1 + . . . + ar�1. Contrary to the
even Hamiltonian (125), the odd Hamiltonian (126) here
has minimum energy when the angle variables live inside
the odd lattice L1

⇥ in (124) that breaks SU(r).
These gapping potentials can be continuously de-

formed into one another, for example, via linear inter-
polation

Ht = (1� t)Heven + tHodd. (127)

The ground states between an adjacent pair of wires are
specified by the even (odd) dual lattice L0

⇥ (L1
⇥) when

t < 1/2 (t > 1/2) respectively. At the transition at
t = 1/2, the Hamiltonian only carries sine-Gordon terms
from roots that are odd combinations of the simple ones.
Consequently, the ground states are identical to that of
HZ2 and corresponds to the same Z2 graded angle ex-
pectation value structure LZ2

⇥ in (122) and (123). This
transition is analogous to Zeeman transition across the
ordered phase of the Ising model

HIsing = �J
X

i

�z

i
�z

i+1 � h
X

i

�x

i
�B

X

i

�z

i
, (128)

where B is the magnetic field for the Zeeman coupling.
When J > h and B = 0, the ordered phase has two
degenerate ground states specified by h�z

i
i = ±1. The

Zeeman coupling B introduces a preference of up spins
versus down ones, and breaks the degeneracy. Here, the
parameter t � 1/2 in (127) takes a similar role as the
Zeeman field B.
In general, there is an intricate phase diagram when

the strengths and signs of the sine-Gordon terms
cos (↵ · 2⇥) can vary from one to another. There are
multiple distinct Z2 critical phases, where the ground
states between an adjacent pair of wires take a Z2 graded
structure. In the thermodynamic limit with an infinite
number of wires, this introduces a diverging ground state
degeneracy. This signifies a gap-closing critical transition
between distinct 2D gapped phases. On the other hand,
the diverging degeneracy could also be lifted if the the-
ory is coupled with a Z2 gauge theory (similar to the one
studied for the D-series in section IV). These discussions
are out of the scope of this article and we refer them to
future works.

2. Quasiparticle excitations

The deconfined quasiparticle excitations of the cou-
pled wire model (110) are kinks of the angle variables
h2⇥C

y+1/2i. Similar discussions were provided for U(4)
in section II. Here, we summarized the results for the
general U(N). The ground state expectation values
h2⇥C

y+1/2i belong in the dual lattice L⇥ defined in (115).

A quasiparticle excitation at (x0, y0) is a kink where the
angle variable h2⇥C

y0+1/2(x)i jumps discontinuously from
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one value to another in L⇥ when x passes across x0. A
quasiparticle excitation can be created by acting a ver-
tex operator V C,�

y0
(x0) = exp

⇥
i�a�C,a

y0
(x0)

⇤
on a ground

state, where C = A (B) and a = 1, . . . , r for r = p
(q). These vertex operators are classified according to
the primary fields of the U(1)r ⇥ SU(r)1 Kac-Moody
algebra. Each primary field is a super-selection sector
of vertex operators that form an irreducible represen-
tation of the U(1) ⇥ SU(r) (c.f. (22) for SO(6)1). For
example, the smallest primary field [1]⇢ for the U(1)r

charge sector is the single vertex operator ei�̃
C,⇢
y0

(x0),
where �̃C,⇢ = �C,⇢/r = (�C,1 + . . . + �C,r)/r. It creates
a fractional excitation with spin (equivalently, conformal
scaling dimension) 1/2r. General primay field excitations
[m]⇢ in the U(1)r sector are generated by higher order

copies eim�̃
C,⇢
y0

(x0). They carry spin m2/2r and follow the
fusion rule [m]⇢ ⇥ [m0]⇢ = [m+m0]⇢.

There are r primary fields in the SU(r)1 sector. Ex-
amples were presented for the SU(4)1 case in section II.
Here, we demonstrate the general case. We begin with
the smallest non-trivial primary field, denoted by E1,
that corresponds to the fundamental representation of
SU(r). The super-selection sector E1 consists of the col-
lection of vertex operators

EC,1
y0

(x0) ⇠ spanC
n
ei�·�

C
y0

(x0) : � = �(�1),� 2 Sr

o

(129)

where �1 is the primitive dual root (r� 1,�1, . . . ,�1)/r
(see (117) and (118)), and � permutes the entries of
the r-dimensional vector. The super-selection sector
irreducibly represents SU(r)1 in the sense that it is
closed under operator products with the SU(r)1 currents
(c.f. (22)). Since all entries of �1 is identical except one,
there are exactly r permutations �(�). Therefore E1 are
generated by r vertex operators, which form the funda-
mental representation of SU(r).

In general, the primary field Ec, for c = 1, . . . , r� 1, is
the super-selection sector

EC,c

y0
(x0) ⇠ spanC

n
ei�·�

C
y0

(x0) : � = �(�c),� 2 Sr

o
,

(130)

where the simple dual root �c was defined in (117) and
(118). There are exactly Cr

c
= r!/[c!(r � c)!] entry per-

mutations and therefore Ec forms a Cr
c
dimensional ir-

reducible representation of SU(r)1. Since �(�c) has c
entries being (r � c)/r and r � c entries being �c/r, the
primary field has spin (equivalently, conformal scaling di-
mension)

hEc =
c(r � c)2 + (r � c)c2

2r2
=

(r � c)c

2r
. (131)

Lastly, the trivial primary field is E0 = 1. The primary
fields obey the fusion rules

Ec ⇥ Ec
0
= E[c+c

0]mod r . (132)

C. Duality transformation

We generalize the duality properties of the coupled
wire model from that of the free Dirac fermion reviewed
in section III. Under the duality transformation

�̃a
y
=
X

y0

sgn(y � y0)(�1)y
0
�a
y0 , (133)

the angle variables in the sine-Gordon terms in (110),
(112) and (113) are self-dual up to a sign

2⇥̃A,a

2y0+1/2 ⌘ �̃a2y0 � �̃a2y0+1 = �2⇥A,a

2y0+1/2. (134)

Therefore, the sine-Gordon terms in (110), (112) and
(113) are also self-dual

H̃A

⇢
= �vA

X

y0

cos
⇣
↵0

U(1)p
· 2⇥̃2y0+1

⌘

= �vA
X

y0

cos
⇣
↵0

U(1)p
· 2⇥2y0+1

⌘
= HA

⇢
(135)

H̃A

SU(p)1
= �uA

X

y0

X

↵2�SU(p)

cos
⇣
↵ · 2⇥̃A

2y0+1/2

⌘

= �uA

X

y0

X

↵2�SU(p)

cos
⇣
↵ · 2⇥A

2y0+1/2

⌘

= HA

SU(p)1
(136)

Similarly, the sine-Gordon terms for the B sector are also
self-dual.
Lastly, we consider vertex operators that correspond to

primary fields and create quasiparticle excitations. The
duality transformation (133) can be re-expressed in terms
of the angle variables 2⇥a

y
(x) as

�̃a2y(x) = �a2y+1(x) +
X

y0

sgn(y � y0)2⇥A,a

2y0+1/2(x)

�̃a2y+1(x) = �a2y(x) +
X

y0

sgn(y � y0)2⇥A,a

2y0+1/2(x)
,

and similarly for the B sector. We see that the dual ver-
tex operators are dressed with non-local strings, similar
to (51) in section III. When acting on a ground state, the
angle variables 2⇥A,a

2y0+1/2 are pinned and can be replaced
by their ground state expectation values. The non-local
string therefore condenses into the ground state leaving
only complex phases behind.
Like D-series, if we extend the coupling constants of

the sine-Gordon terms uA/B to be complex valued, then
the ground state manifold change continuously as we
vary the phases ✓A/B of uA/B . The self-dual points are
✓A/B = 0,⇡ and duality transformation (133) on the com-
plex u plane is a reflection with respect to the real axis.
The ground state manifold can be visualized for SU(3) or
SU(4) cases and it should be true for the general SU(N)
theories.
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VI. E-SERIES: (E8,7,6)1 SURFACE THEORY

The exceptional Lie algebra E6, E7 and E8 are the
remaining simply-laced Lie algebra in the ADE classi-
fication. We first discuss the E8 algebra. In addition
to the conventional topological insulators that host pro-
tected Dirac surface states, topological paramagnets16,17

are alternative time reversal and charge U(1) symme-
try preserving topological states enabled by interactions.
These are short-ranged entangled SPT states in three di-
mensions that do not exhibit bulk quasiparticle fraction-
alization or topological order. However, they do carry
anomalous surface states that cannot be supported in
a pure two dimensional system. We are interested in
the efmf topological paramagnetic state. Like a con-
ventional topological insulator, its surface state is un-
stable against time reversal breaking perturbations. A
finite excitation energy gap can be introduced on the
surface by a magnetic order without requiring surface
topological order or fractionalization. The efmf topolog-
ical paramagnet is distinct from a conventional topolog-
ical insulator in that a magnetic surface domain wall –
a line interface that separates two time reversal break-
ing gapped surface domains with opposite magnetic ori-
entations – hosts quasi-one-dimensional low-energy elec-
tronic degrees of freedom that are chiral only in en-
ergy but has no electric charge transport. Electronic
quasiparticles are chiral in the sense that they propa-
gate in a single forward direction along the line inter-
face. They collectively account for a chiral heat current
Ieng = IReng � ILeng that obey the di↵erential thermal con-
ductance  = dIeng/dT = c(⇡2k2

B
/3h)T in low temper-

ature T , where the central charge is c = 8. However,
electric charge transport is non-chiral in that the chiral
electric current I = IR � IL does not response to change
of electric potential, � = dI/dV = 0. These low-energy
degrees of freedom can be e↵ectively described by a 1+1D
E8 Kac-Moody CFT at level 1. They can be described
by the bosonized Lagrangian density

L0 =
1

2⇡

8X

a=1

@t�
a@x�

a �
8X

a,b=1

Vab@x�
a@x�

b

=
1

2⇡

8X

I,J=1

(KE8)IJ@t�
0I@x�

0J �
8X

I,J=1

V 0
IJ
@x�

0I@x�
0J ,

(137)

where the “Cartan-Weyl” and “Chevalley” bosonized
variables � and �0 are related by the basis transformation

�0I = (K�1
E8

)IJ�J =
8X

a=1

(R�1
E8

)I
a
�a,

RE8 =

0

B@
�� ↵1 ��
...

...
...

�� ↵8 ��

1

CA

=

0

BBBBBBBBB@

1 �1 0 0 0 0 0 0
0 1 �1 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 1 �1 0 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 1 �1 0
0 0 0 0 0 0 1 �1
� 1

2 � 1
2 � 1

2 � 1
2 � 1

2
1
2

1
2

1
2

1

CCCCCCCCCA

, (138)

and the Cartan matrix of E8

KE8 = RE8R
T

E8
(139)

(see Eq. (B9) in Appendix B for an explicit expression)
has determinant 1 and is invertible.
Here, it is important to realize that the neutral

fermionic vertex operators ei�
a

are non-local and frac-
tional. They are not the primary field excitations of
the E8 CFT, which only supports local integral excita-
tions. Instead, the low-energy physical excitations are
generated by the local bosonic vertex operators ei�I =
eiKIJ�

0J
= eiR

I
a�

a

. Since KE8 has integral inverse,

ei�
0I

= ei(K
�1)IJ�J are also local and bosonic. These

are even integral combinations of electrons/holes, each
of which is assumed to carry net zero electric charge.
All odd combinations of electrons/holes correspond to
gapped fermionic excitations. They do not contribute to
the low-temperature chiral energy transport and are not
described by the low-energy e↵ective E8 CFT.
The E8 Kac-Moody currents consist of the 8 Cartan

generators @�I and the 240 roots E↵ = ei↵·�. The 240
roots can be decomposed into the 112 SO(16) roots and
128 spinor representations of SO(16).

�E8 = �SO(16) [�s� (140)

The 112 root vectors in �SO(16) were defined in (86) in
section IV, and they take the form ↵ = ±ea ± eb, where
a 6= b. In this paper, we adopt the convention where the
E8 roots extends from that of SO(16) by its odd spinors
s�. The 128 odd spinor vectors in�s� take the form ↵ =
("1, . . . , "8)/2 where "a = ±1 and "1 . . . "8 = �1. All 240
roots of E8 are integral combinations of the simple ones
defined by the row vectors of RE8 in (138). Since eiR

I
a�

a

are bosonic integral combinations of local electrons, so
are all the E8 current operators.
We consider time reversal breaking stripes with alter-

nating magnetic orientation on the surface of the efmf
topological paramagnet (c.f. figure 1). This reduces the
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low-energy electronic degrees of freedom to an array of E8

wires with alternating propagating directions. Similar to
the D-series coupled wire model discussed in section IV,
the E8 array exhibits an emergent antiferromagnetic time
reversal symmetry, which composes of a time reversal and
a half-translation y ! y + 1. AFTR preserving fraction-
alization E8 ⇠ SO(8) ⇥ SO(8) and gapping interactions
were studied in ref. 45. Instead, in this section, we focus
on AFTR symmetry breaking gapping interactions based
on asymmetric partitions of the E8 current algebra. In
particular, we concentrate on the conformal embeddings

E8 ◆ E7 ⇥ SU(2), E8 ◆ E6 ⇥ SU(3) (141)

that involve the other two exceptional simply-laced Lie
algebras. The coupled wire model is constructed by
backscattering the two decoupled components E7 and
SU(2) (or E6 and SU(3)) on each wire to adjacent wires
in opposite directions.

Before discussing these surface models, we first con-
sider a set of simple gapping potentials that fully dimer-
izes the E8 wires.

Hdimer = u
X

y0

JE8
2y0�1 · J

E8
2y0

= u
X

y0

8X

a=1

@x�
a

2y0�1@x�
a

2y0

� u
X

y0

X

↵2�E8

cos
�
↵ · 2⇥2y0�1/2

�
, (142)

where the sine-Gordon angle parameter is ⇥a

2y0�1/2 =
�a2y0�1 � �a2y0 . Similar to the coupled wire models in the
previous sections, to simultaneously minimize the sine-
Gordon terms in (142), the angle parameters take ground
state expectation values inside the dual lattice (c.f. (89))

LE8
⇥ ⌘ {2⇥ : ↵ · 2⇥ 2 2⇡Z, ↵ 2 �E8},

= spanZ{2⇡�1, . . . , 2⇡�8}, (143)

�I =
1

8!
"IJ1...J7

↵J1 ^ . . . ^↵J7

↵1 · (↵2 ^ . . . ^↵8)
,

where↵1, . . . ,↵8 are the simple roots in (138). The prim-
itive dual root vectors satisfy �I ·↵J = �J

I
, i.e. R_

E8
RT

E8
=

118⇥8, and they take the explicit form

R_
E8

=

0
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1

CCCCCCCCCA

. (144)

The dual lattice is self-dual up to a 2⇡ multiplica-
tive factor in the sense that spanZ{↵1, . . . ,↵8} =
spanZ{�1, . . . ,�8} because

R_
E8

= RT

E8

�1
= K�1

E8
RE8 (145)

and KE8 has integral inverse. This is consistent with
the fact that the root lattice of E8 is unimodular. Con-
sequently, all deconfined excitations of the coupled wire
model (142) that correspond to kinks of h2⇥2y0�1/2i 2
LE8
⇥ are local and can be created by integral combination

of electron/hole operators.

A. E7 ⇥ SU(2)

We now construct the coupled wire model that utilizes
the partition E8 � E7 ⇥ SU(2) and describes a gapped
symmetry breaking surface of a topological paramagnet.
Each E8 wire on the 2D surface array (c.f. figure 1(c))
is decomposed into a E7 and a SU(2) Kac-Moody CFT
at level 1. These two sectors decouple from each other
and act on orthogonal Hilbert spaces. This motivates the
gapping Hamiltonian

H = u
X

y0

JE7
2y0�1 · J

E7
2y0 + JSU(2)

2y0 · JSU(2)
2y0+1 (146)

that backscatters the two decoupled currents from a wire
into adjacent wires in opposite directions. In the follow-
ing, we define the current embeddings of JE7 and JSU(2)

into E8.
We begin with the new set of simple root vectors of

E7 ⇥ SU(2)

↵I = eI+1 � eI+2, i = 1, . . . , 6,

↵7 =
1

2
(�1,�1,�1,�1,�1, 1, 1, 1),

↵8 =
1

2
(�1, 1, 1, 1, 1, 1, 1, 1), (147)

where ↵1, . . . ,↵7 are the simple root vectors of E7 and
↵8 generates SU(2). It is easy to see that the Cartan
K-matrix splits

KE7⇥SU(2) =
�
↵I ·↵J

�
8⇥8

=

✓
KE7 0
0 KSU(2)

◆
, (148)

where the explicit form of KE7 can be found in Eq. (B9)
in Appendix B and KSU(2) = 2. The E7 root system can
be embedded in E8 by taking the subset

�E7 =
�
↵ 2 �E8 : ↵ ·↵8 = 0

 
✓ �E8 . (149)

The 126 roots in �E7 is an extension of the 42 roots of
SU(7) – a subgroup of E7 – by the weight vectors of the
irreducible representations 7, 7, 35, and 35.

�E7 = ◆�SU(7) + 7+ 7+ 35+ 35. (150)
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To illustrate this, we embed the root system of SU(7)
(see (103)) in that of SO(16) ✓ E8 by putting the 7
dimensional root vectors ↵ 2 �SU(7) in the 8 dimensional
space,

◆ : ↵ = (↵1, . . . ,↵7) 7! ◆↵ = (0,↵1, . . . ,↵7),

◆�SU(7) =
�
◆↵ : ↵ 2 �SU(7)

 
.

(151)

Next, we observe that certain sub-collections of the E8

roots form the weight vectors of the representations 7, 7,
35, and 35. They are given by

7 = {e1 + ej : j = 2, . . . , 8} ,
7 = {�e1 � ej : j = 2, . . . , 8} ,

35 =

8
<

:
1

2
(1, s2, . . . , s8) : s2, . . . , s8 = ±1,

8X

j=2

sj = 1

9
=

; ,

35 =

8
<

:
1

2
(�1, s2, . . . , s8) : s2, . . . , s8 = ±1,

8X

j=2

sj = �1

9
=

; .

Each of these weight vectors is orthogonal to ↵8 and
therefore decouples from the SU(2). While 7 and 7 can
be embedded in the root system of SO(16), 35 and 35
can only be embedded in E8 as they consists of half-
integral vectors. Each of these collections of weight vec-
tors �a corresponds to a super-selection sector of vertex
operators span{ei�a·�} that transforms closely and irre-
ducibly under the SU(7)1 Kac-Moody algebra (c.f. (22)).
Each sector splits into ⌘ ⌦ Ec, where Ec is a primary
field of SU(7)1 and ⌘ is a primary field of the coset
(E7)1/SU(7)1, so that the combined spin (conformal
scaling dimension) is 1.

The coupled wire model (146) can be expressed as a
sum of sine-Gordon gapping interactions

H = �u
X

y0

X

↵2�E7

cos
�
↵ · 2⇥2y0�1/2

�

� u
X

y0

cos
�
↵8 · 2⇥2y0+1/2

�
, (152)

where ↵8 is the root vector of SU(2) when embedded
in E8 and we have suppressed the non-gapping Cartan
generator terms that renormalize velocities. Here, 2⇥ =
(2⇥1, . . . , 2⇥8) and 2⇥a

y+1/2 = �a
y
� �a

y+1. The sine-

Gordon terms in the first line in (152) dimerize the E7

currents between wire 2y0 � 1 and 2y0 while terms in
the second line dimerize the remaining SU(2) currents
between wire 2y0 and 2y0 + 1. Together, they introduce
a finite excitation energy gap.

Quasiparticle excitation can be created by primary
fields of the E7 or the SU(2) sector. The semionic
primary field of SU(2) at wire y is the super-selection
sector of vertex operators s ⇠ span{ei�8·�y , e�i�8·�y}.
Here, the weight vector �8 = (�1, 1, . . . , 1)/4 = ↵8/2
is orthogonal to all E7 roots and has length square
|�8|2 = 1/2. Consequently, the primary field decouples

from the E7 sector and carries conformal scaling dimen-
sion hs = |�8|2/2 = 1/4. Each of the vertex operators
creates a bulk quasiparticle excitation in the form of a
kink of the sine-Gordon angle parameter between wire y
and y+1 (y�1) if y is even (resp. odd). The anti-semionic
primary field of E7 at wire y is the super-selection sector
of vertex operators

s̄ ⇠ span{ei�·�y : � 2 SE7}, (153)

where SE7 is the collection of dual vectors

SE7 = {�8 � eI � eJ : 2  I < J  8}
[ {��8 + eI + eJ : 2  I < J  8}
[ {�8 + e1 � eI : 2  I  8}
[ {��8 � e1 + eI : 2  I  8}. (154)

This collection of 56 vertex operators form the 56 dimen-
sional irreducible representation of E7 and corresponds
to the only non-trivial primary field of E7 at level 1. All
weight vectors in SE7 are orthogonal to ↵8 and they all
have length square |�|2 = 3/2. Therefore the primary
field s̄ decouples from SU(2) and carries conformal scal-
ing dimension hs̄ = 3/4. It creates a kink of the sine-
Gordon angle parameter between wire y and y�1 (y+1)
if y is even (resp. odd).

B. E6 ⇥ SU(3)

The discussion of E6 ⇥ SU(3) resembles that of E7 ⇥
SU(2). The gapping Hamiltonian takes the current
backscattering form

H = u
X

y0

JE6
2y0�1 · J

E6
2y0 + JSU(3)

2y0 · JSU(3)
2y0+1 . (155)

E6 and SU(3) are embedded in the E8 by setting the
simple roots

↵I = eI+2 � eI+3, I = 1, . . . , 5,

↵6 =
1

2
(�1,�1,�1,�1,�1, 1, 1, 1),

↵7 = (1,�1, 0, 0, 0, 0, 0, 0),

↵8 =
1

2
(�1, 1, 1, 1, 1, 1, 1, 1). (156)

The Cartan K-matrix

KE6⇥SU(3) =
�
↵I ·↵J

�
8⇥8

=

✓
KE6 0
0 KSU(3)

◆
(157)

splits, and therefore the E7 and SU(2) sectors decouple.
The explicit form of the Cartan matrices of E6 and A2 =
SU(3) can be found in Eq. (B9) Appendix B. The SU(3)
root system, as embedded in E8, consists of vectors in

�SU(3) = {±↵7,±↵8,±(↵7 +↵8)} ✓ �E8 . (158)
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Like the roots of E7, the roots of E6 are the orthogonal
complement of SU(3) in E8,

�E6 = {↵ 2 �E8 : ↵ ·↵7 = ↵ ·↵8 = 0} ✓ �E8 . (159)

The 72 roots of E6 extend the 30 roots of SU(6) by in-
cluding weight vectors of the irreducible representations
1, 1, 20, and 20.

�E6 = ◆�SU(6) + 1+ 1+ 20+ 20. (160)

Here, ◆ embeds the SU(6) roots into E8 (c.f. (151) for
the E7 case) so that the embedded simple SU(6) roots
are ↵1, . . . ,↵5. The four irreducible representations of
SU(6) involved in the extension have weight vectors

1 = {e1 + e2}, 1 = {�e1 � e2},

20 =

8
<

:
1

2
(1, 1, s3, . . . , s8) : s3, . . . , s8 = ±1,

8X

j=3

sj = 0

9
=

; ,

20 =

8
<

:
�1

2
(1, 1, s3, . . . , s8) : s3, . . . , s8 = ±1,

8X

j=3

sj = 0

9
=

; .

Up to non-gapping boson velocity terms, the coupled
wire model (155) can be expressed as a sum of sine-
Gordon potentials

H = �u
X

y0

X

↵2�E6

cos
�
↵ · 2⇥2y0�1/2

�

� u
X

y0

X

↵2�SU(3)

cos
�
↵ · 2⇥2y0+1/2

�
, (161)

where 2⇥ = (2⇥1, . . . , 2⇥8) and 2⇥a

y+1/2 = �a
y
� �a

y+1.

The sine-Gordon terms in the first line in (161) dimerize
the E6 currents between wire 2y0�1 and 2y0 while terms
in the second line dimerize the remaining SU(3) currents
between wire 2y0 and 2y0 + 1. They can be shown to
introduce a finite excitation energy gap. The proof is
similar to the previous cases for the A and D-series and
will be omitted.

Quasiparticle excitations, in the form of kinks of an-
gle parameters in (161), can be created by primary
fields ei�·� in the E6 and SU(3) Kac-Moody CFT at
level 1. We begin with the SU(3) sector. The funda-
mental representation corresponds to the primary field
e+ ⇠ span{ei�·� : � 2 SSU(3)}, where the weight vectors
are

SSU(3) = {��7,�8,�7 � �8}, (162)

�8 =
1

3
(0, 0, 1, . . . , 1), �7 = ↵7 +↵8 � �8.

The anti-fundamental representation corresponds to the
hermitian conjugation e� = (e+)†. Both primary fields
carry conformal scaling dimension he± = 1/3.

The fundamental 27-dimensional representation of E6

corresponds to the primary field e+ ⇠ span{ei�·� : � 2

SE6}, where the weight vectors are

SE6 = {��8 + eI + eJ : 3  I < J  8}
[ {�6 � eI + e8 : I = 3, . . . , 8}
[ {��1 � eI + e8 : I = 3, . . . , 8}, (163)

�6 =
1

6
(�3,�3, 1, 1, 1, 1, 1,�5),

�1 =
1

6
(�3,�3, 5,�1,�1,�1,�1,�1).

The anti-fundamental representation corresponds to the
primary field e� ⇠ span{e�i�·� : � 2 SE6} = (e+)†. The
two primary fields both share the same conformal scaling
dimension h

e±
= 2/3.

DUALITY PROPERTIES FOR E-SERIES

The ground state structure of E-series has similar be-
haviors like A- and D-series, namely, if we extend the
coupling constant of the sine-Gordon terms to complex
regime, duality transformation acts as a reflection with
respect to the real axis of the complex plane of the cou-
pling constant. Although we can’t visualize it due to
the high dimensionality of the root systems, it is rea-
sonable to conclude that all the points on the complex
plane describe a gapped surface except those points on
the negative real axis.

VII. CONCLUSIONS AND DISCUSSIONS

We systematically studied Abelian surface topolog-
ical orders that fall under the ADE classification of
simply-laced Lie algebras, as well as their symmetries
and dualities properties via coupled wire models. A
summary was given in section IA in the introduction.
Here, we further elaborate on particular results that were
not covered in section IA. The SPT/SET surface de-
grees of freedom were first projected onto an array of
wires with alternating propagating directions by a generic
symmetry-breaking surface stripe order. These chiral
wires were then decomposed and backscattered to neigh-
boring wires, thereby obtaining a finite excitation energy
gap. We derived the exactly solvable ground state struc-
tures as well as the properties quasiparticle excitations
by studying the inter-wire sine-Gordon Hamiltonians of
the bosonized variables. Specifically, for the D-series,
the antiferromagnetic time-reversal symmetry defined in
Ref. 45 was dualized to a particle-hole-like symmetry. For
the A-series, the mixing between the U(1) charge and the
neutral SU(N) sectors allowed us to construct a theory
that supports ⇡-fluxes that mimics a Z2 orbifold/gauge
theory. Throughout the ADE discussions, we noticed
that all the current backscattering interactions were self-
dual in the sense that their dualized gapping terms had
the same form as their original ones, except for the spe-
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cial D-series case of SO(4) which required alternative
treatment and was out of the scope of this paper.

This paper provides several future directions. (1)
Based on the ADE classifications that are explored here
as parent states, it is interesting to study the descendant
topological states, for instance, E8 quantum Hall state.59

(2) Our analysis can be systematically generalized to non-
simply-laced a�ne Lie algebras. There has already been
some specific progress in this direction45,73. (3) The gen-
eral ground state degeneracy (GSD) and modular prop-
erties when the model is compactified on a closed surface
need to be carefully addressed in future works. This is
especially the case for the non-Abelian theories. GSD of
orbifold structures that support ⇡-fluxes, similar to those
appeared in the A series, should also be explicitly anal-
ysed. (4) The duality analysis suggests the coupled wire
models are particular exact solvable points that belong
in a moduli space of surface states that bridges between
di↵erent dual phases through phase transitions. It would
be interesting to explore these moduli spaces of surface
states in a controlled but perhaps non-exactly solvable
coupled wire manner. Moreover, it would be interest-
ing to utilize the coupled wire constructions to establish
the dualities between non-Abelian gauge theories pro-
posed recently55,56. (5) Topological phases and dualities
in 3 + 1D systems can also be studied using the cou-
pled wire construction. There have already been several
attempts38–40 in particular situations, and it would be
interesting to perform a systematically exploration that
encompasses and classifies phases with similar properties.
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Appendix A: Gapping conditions for K-matrix
formalism

1. Gapping terms for the general K-matrix theory

We briefly review the gapping condition and the gap-
ping term for the general K-matrix theory. Assume we
have two e↵ective Lagrangians on the boundary of a
(2+1)d system:

LL = � 1

4⇡
KL

IJ
@t�

L

I
@x�

L

J
+ V L

IJ
@x�

L

I
@x�

L

J
,

LR =
1

4⇡
KR

IJ
@t�

R

I
@x�

R

J
+ V R

IJ
@x�

R

I
@x�

R

J
, (A1)

whereKR andKL have the same dimensionN and signa-
ture, and V R and V L are some symmetric non-universal

potentials. Define K ⌘ KR � (�KL). The completely
gapping condition or Haldane’s nullity condition60 is that
there exists N 2N-component linearly independent inte-
ger vectors `i = (`R

i
, `L

i
)T , called null vectors, satisfying

`T
i
K`j = 0, i, j = 1, . . . , N. (A2)

Then the whole gapping term is written as

Hgapping =
NX

i=1

Ci cos
�
`T
i
K�+ ↵i

�
, (A3)

where � = (�R,�L)T and ↵i are some undetermined
variables, which can be fixed by the specific theory.
Actually if we only impose that we can pin the gap-

ping terms simultaneously to their minima, we only need
nT

i
K�1nj = 0 for i, j = 1, . . . , N , where ni are integer

vectors. However, if we further require that the gapping
terms are composed of local operators, we need ni = K`i,
which gives Eq.(A2).
One corollary is that when KR = KL, then we can al-

ways choose lR
i
= lL

i
to gap out the whole system, as long

as there are enough linearly independent N -component
integer vectors lR

i
.

2. Gapping conditions in di↵erent basis

For a general K-matrix theory with simply-laced al-
gebra, we can write the kinetic term in two equivalent
ways

L0 =
1

4⇡

ˆ
dxdt KIJ@x�

0I@t�
0J , (A4)

with the canonical quantization

[�0I(x), @x0�0J(x0)] = 2⇡iK�1
IJ
�(x� x0). (A5)

We can choose simple roots for the current algebra ↵I

such that ↵I · ↵J = KIJ . We denote

R =

0

B@
���� ↵1 ����

...
���� ↵r ����

1

CA (A6)

as the matrix formed by these simple roots, where r is
the rank of the Lie algebra. Then we have RRT = K.
Now we make a basis transformation

�I =
X

J

RJI�
0J . (A7)

Then we can check that Eq. (A5) becomes

[�I(x), @x0�J(x0)] = 2⇡i�IJ�(x� x0), (A8)

where we have used RTK�1R = 1, which is obvious.
If `i = (`i

R
, `i

L
) is a set of 2r-component Haldane null

vectors, they should satisfy the nullity condition

(`i)TK`j = 0, 8i, j = 1, . . . , r, (A9)
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in the �0I basis, where K = K � (�K), or

`i
R
· `j

R
� `i

L
· `j

L
= 0, 8i, j = 1, . . . , r, (A10)

in the �I basis.

Appendix B: Simply-laced Lie algebras and their
representations

We review the simpled-laced Lie algebras, namely,
ADE classifications, and their representations here.9

“Simply-laced” means that all roots ↵ of the correspond-
ing algebras have identical length, which are usually nor-
malized to be |↵| =

p
2. Let r be the rank of an algebra

G, namely, the maximal number of mutually commuting
generators of G. Then in Cartan-Weyl basis, we have

⇥
Hi, E↵

⇤
= ↵iE↵,

⇥
E↵, E�↵

⇤
=

2

|↵|2
rX

i=1

↵iHi =
rX

i=1

↵iHi,

⇥
E↵, E�

⇤
/
(
E↵+� if ↵+ � 2 �,

0 otherwise
for ↵ 6= �.

(B1)

All roots of G can be obtained from r simple roots
↵1, . . . ,↵r by linear combinations. The choice of sim-
ple roots is not unique. For SU(r + 1) algebras, it can
be chosen as

↵I = eI � eI+1, I = 1, . . . , r, (B2)

where eI are unit basis vectors of Rr+1. For SO(2r)
algebras, it can be chosen as

↵ =

(
eI � eI+1 for I = 1, . . . , r � 1,

er�1 + er for I = r,
(B3)

where eI are unit basis vectors of Rr. For E-series, simple
roots are usually taken at one’s convenience. We have
shown some particular choices in the main text.

The fundamental representation ta of SU(r+1) algebra
have properties

Tr(tatb) = �ab,
X

a

ta
ij
ta
kl

= �il�jk � 1

r + 1
�ij�kl, (B4)

X

a,b

fabcfabd = 2(r + 1)�cd,

where fabc are the structure constants of the SU(r + 1)
algebra. The vector representation of SO(2r) Lie algebra
has an explicit matrix representation

ta
ij
⌘ trs

ij
= i(�r

i
�s
j
� �r

j
�s
i
), 1  r < s  2r,

Tr(tatb) = 2�ab, (B5)
X

a

ta
ij
ta
kl

= 2(��ik�jl + �il�jk), (B6)

and the structure constant can be written as

fabc ⌘ f(rs)(pq)(mn) = (�rm�nq�sp � �ms�nq�rp)

+ (�mp�sq�nr � �np�sq�rm)

+ (�pr�ns�mq � �rq�ns�mp). (B7)

The Cartan matrix K of the algebra G is an r ⇥ r
matrix defined by

KIJ =
2↵T

I
↵J

|↵J |2
=

rX

i=1

2↵i

I
↵i

J

|↵J |2
=

rX

i=1

↵i

I
↵i

J
. (B8)

It is easy to see that the Cartan matrix for simply-laced
algebras are symmetric. Cartan matrices for simply-laced
algebras are listed below.
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KSU(r+1) =

0

BBBBBB@

2 �1 0 · · · 0 0
�1 2 �1 · · · 0 0
0 �1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 �1
0 0 0 · · · �1 2

1

CCCCCCA
,

KSO(2r) =

0

BBBBBBBB@

2 �1 0 · · · 0 0 0
�1 2 �1 · · · 0 0 0
0 �1 2 · · · 0 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 �1 �1
0 0 0 · · ·� 1 2 0
0 0 0 · · ·� 1 0 2

1

CCCCCCCCA

, (r � 4),

KE8 =

0

BBBBBBBBB@

2 �1 0 0 0 0 0 0
�1 2 �1 0 0 0 0 0
0 �1 2 �1 0 0 0 0
0 0 �1 2 �1 0 0 0
0 0 0 �1 2 �1 0 �1
0 0 0 0 �1 2 �1 0
0 0 0 0 0 �1 2 0
0 0 0 0 �1 0 0 2

1

CCCCCCCCCA

,

KE7 =

0

BBBBBBB@

2 �1 0 0 0 0 0
�1 2 �1 0 0 0 0
0 �1 2 �1 0 0 0
0 0 �1 2 �1 0 �1
0 0 0 �1 2 �1 0
0 0 0 0 �1 2 0
0 0 0 �1 0 0 2

1

CCCCCCCA

,

KE6 =

0

BBBBB@

2 �1 0 0 0 0
�1 2 �1 0 0 0
0 �1 2 �1 0 �1
0 0 �1 2 �1 0
0 0 0 �1 2 0
0 0 �1 0 0 2

1

CCCCCA
. (B9)

Sometimes it is convenient to use Chevalley basis as it is
directly related to the Cartan matrix:

hI =
2

|↵I |2
rX

i=1

↵i

I
Hi =

rX

i=1

↵i

I
Hi, (B10)

with the commutation relations

⇥
hI , E±↵J

⇤
= ±KIJE

±↵J ,
⇥
E↵J , E�↵J

⇤
= �IJhJ .

(B11)

In this paper, we are focused on the level-1 algebras of
ADE classifications, in which there exist free field repre-
sentations. To be specific, SO(2r)1 algebras (D-series),
can be constructed by 2r independent Majorana fermions
 i with operator product expansions (OPEs)

 i(z) j(w) ⇠
�ij

z � w
, i, j = 1, . . . , 2r. (B12)

The current operators can be constructed with these free
Majorana fermions as

Ja(z) =
1

2

X

i,j

( it
a

ij
 j)(z), (B13)

where normal ordering is assumed. One can check that
these currents satisfy the current algebra

Ja(z)Jb(w) ⇠ k�ab
(z � w)w

+
X

c

ifabcJc(w)

(z � w)
, (B14)

where fabc are called structure constants.
For SU(r+ 1)1 algebras (A-series), we can use r inde-

pendent free bosons �i with OPEs

�i(z)�j(w) ⇠ ��ij ln (z � w), i, j = 1, . . . , r. (B15)

The currents in Cartan-Weyl basis can be constructed as

Hj(z) = i@�j(z),

E↵(z) = c↵e
i↵·�(z), (B16)

where c↵ is a correction factor ensuring the correct OPEs.
This bosonic construction also works for D-series if we
pair up Majorana fermions and then bosonize them. For
(E8)1 algebras (E-series), we can follow the same con-
struction as in A-series with 8 independent free bosons
to construct the currents, with the vector and spinor rep-
resentations of SO(16) algebra introduced in the main
text. E7 and E6 algebras can be constructed from the
corresponding conformal embeddings, respectively.
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