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Using a tight-binding two-orbital (dx2−y2 , d3z2−r2) model and a random phase approximation
treatment of the spin-fluctuation pairing vertex, we calculate the pairing strengths for a cuprate
model in which the hole doping varies from Cu2+ to Cu3+. We find two domes of pairing strength,
one corresponding to the traditional low hole doping regime and the other to the extremely overdoped
regime discussed by Geballe and Marezio [1]. In the overdoped regime we find that there is significant
pairing strength in both the d-wave and s± channels.

In 2009, Geballe and Marezio [1] published a review
of superconductivity in Sr2CuO4−δ [2, 3] in which they
noted that, while it was isostructured to the familiar 214
La2CuO4 system, it was extremely overdoped and had a
superconducting transition temperature of Tc = 95 K,
which was more than twice that of optimally doped
La1.84Sr0.16CuO4. Since that time bulk superconductiv-
ity at Tc = 84 K in Cu0.75Mo0.25Sr2YCu2O7.54 [4] and
exceeding 70 K in Ba2CuO4−δ [5] have been reported. In
addition, monolayer CuO2 films grown on Bi2212 sub-
strates exhibit tunneling gap features suggesting super-
conductivity up to 100K [6]. All of these materials are
characterized as highly overdoped, and the Ba2CuO4−δ
and Sr2CuO4−δ systems have a reduced Cu apical O
spacing compared to typical cuprate superconductors.
Here, using a two-orbital (dx2−y2 ,d3z2−r2) tight-binding
model and a multi-orbital random phase approximation
(RPA) calculation [7, 8] of the pairing vertex, we will
study the pairing strength as the hole doping 0 < x < 1
varies from underdoped to highly overdoped and the oc-
tahedron CuO6 structure is compressed.

In the high-pressure oxidized synthesis as the doping x
increases and the Cu apical O distance decreases, the en-
ergy splitting between the 3dx2−y2 and 3d3z2−r2 orbitals
decreases. The phenomenological tight-binding model
we will use is derived from a Wannier function based
Hamiltonian obtained from a density functional theory
(DFT) calculation of a compressed Ba2CuO4 compound
for x = 1 [9–14]. It describes two bands formed from the
Cu 3dx2−y2 and 3d3z2−r2 orbitals. As the doping x de-
creases to zero, the energy splitting ∆E(x) between the
3dx2−y2 and 3d3z2−r2 orbitals in our model is increased.
As illustrated in Fig. 1a at low doping, x = 0.15, a single
band crosses the Fermi energy. In this case, the Fermi
surface in Fig. 3a has a hole-like sheet with majority
dx2−y2 orbital weight around the (π, π) point of the 2D
Brillouin zone. For the strongly overdoped high-pressure
synthesized material with x = 0.85, the bandstructure
shown in Fig. 1b has two bands crossing the Fermi en-
ergy. In this case, there is an electron-like sheet with
dx2−y2 and d3z2−r2 orbital weights around the zone cen-
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FIG. 1: The two-orbital tight binding bandstructure for
Cu2+x dopings of x = 0.15 and 0.85. For the underdoped
case (a), a single band with dominant dx2−y2 orbital char-
acter crosses the Fermi energy. In the extremely overdoped
system (b) with a reduced Cu apical O spacing, two bands
with dx2−y2 and d3z2−r2 orbital weights cross the Fermi en-
ergy. The orbital weights for dx2−y2 and d3z2−r2 are indicated
by orange and blue, respectively.

ter Γ as shown in Fig. 3a and a hole-like sheet around
the (π, π) point with dominantly d3z2−r2 orbital weight
as shown in Fig. 4a.

The two orbital Hamiltonian we will study has a band
structure given by

H0(x) =
∑
kσ

∑
``′

(ξ``′ (k) + (ε`(x)− µ) δ``′) d
†
`σ(k)d`′σ(k)

(1)
Here ` = 1 denotes the dx2−y2 orbital, ` = 2 the d3z2−r2
orbital and its energy ε2(x) = ε1−∆E(x), where ∆E(x)
is a linearly decreasing function of x, given in the Sup-
plementary Material [9] together with the other tight-
binding parameters. For the Fermi surfaces shown in
Figs. 3a and 4a, the chemical potential µ has been ad-
justed to give dopings of x = 0.15 and 0.85, respectively,
corresponding to a filling 〈n〉 = 3 − x. The onsite in-
teraction part of the Hamiltonian has the usual on-site



2

form

H1 = U
∑
i,`

ni`↑ni`↓ + U ′
∑
i,`′<`

ni`ni`′ (2)

+ J
∑

i,`′<`σ,σ′

∑
d†i`σd

†
i`′σ′di`σ′di`′σ

+ J ′
∑
i,`′ 6=`

d†i`d
†
i`↓di`′↓di`′↑.

Here, U and U ′ are the local intra- and inter-orbital
Coulomb repulsions, respectively, J is the Hund’s rule
exchange and J ′ the pair hopping term. In the following
we will use interaction parameters U = 1.3, U ′ = 1.05,
J = J ′ = 0.125 in units of eV. These parameters satisfy
rotational invariance and are chosen so that the maxi-
mum pairing strength λα ∼ 0.5 in the RPA treatment.
There is of course a change in the Coulomb interaction
parameters which would be expected to decrease as the
doping increases. Here we have chosen to keep them con-
stant in order to compare the effects of the change in
the orbital occupation and Fermi surface structure on
the size of the pairing strength λα. A similar 2-orbital
(dx2−y2 , d3z2−r2) Hamiltonian has been used by Jiang
et al. [15] to model a CuO2 monolayer on Bi2212 [6].
Treating this model using a Gutzwiller approximation,
they derived a spin-orbit superexchange pairing interac-
tion of the Kugel-Kohmskii form and find nodeless A1g

s± pairing.
In the multi-orbital RPA theory the pairing vertex

Γ`1`2`3`4(k, k′) for scattering a singlet pair (k ↑ `1,−k ↓
`4) in orbitals `1 and `4 to (k′ ↑ `2,−k′ ↓ `3) in orbitals
`2 and `3 illustrated in Fig. 2 is given by

FIG. 2: The vertex for scattering a (k ↑ `1,−k ↓ `4) pair to
a (k′ ↑ `2,−k′ ↓ `3) pair with ` = 1 for the dx2−y2 orbit and
` = 2 for the d3z2−r2 orbit.

Γ`1`2`3`4(k, k′) =

[
3

2
UsχRPA

S (k − k′)Us (3)

− 1

2
U cχRPA

O (k − k′)U c

+
1

2
(Us + U c)

]
`1`2`3`4

.

Here Us and U c represent 4 × 4 matrices in orbital
space which depend on the interaction parameters and

χRPA
S and χRPA

O are orbital matrix RPA spin and orbital
(charge) susceptibilities given in the Supplementary Ma-
terial [9].

The dominant orbital scattering vertices for a doping
of x = 0.15 are shown in Fig. 3.

Here k is fixed at the bottom of the hole Fermi surface
(the point labeled 60) that surrounds the M point and
k′ varies over the Fermi surface points 0–79 as indicated
in Fig. 3a. The dominant contribution to the pairing
is associated with the orbital vertex Γ1111 in which the
electrons are in the dx2−y2 orbital. The strength of this
vertex peaks at momentum transfers k′ − k equal to Q1

and Q2 shown in Fig. 3a.
As we have seen, for the compressed heavily overdoped

material, both the dx2−y2 and the d3z2−r2 orbitals are
present near the Fermi surfaces with considerable weight
associated with the d3z2−r2 orbital. In this case, as shown
in Fig. 4 for a doping x = 0.85, the dominant contribution
to the pairing is associated with the orbital vertices Γ2222,
Γ1122, Γ2211 and Γ1111. The Γ2222 vertex involves scat-
tering between pairs with d3z2−r2 orbital weight while
the latter Γ1111 vertex involves pairs with dx2−y2 orbital
weight. As seen in Fig. 4a, for the shortened Cu apical O
distance and x = 0.85 doping, the d3z2−r2 orbital weight
is larger than the dx2−y2 orbital weight over most parts
of the Fermi surfaces. The Γ1122 and Γ2211 vertices in-
volve both the d3z2−r2 and dx2−y2 orbitals and have an
intermediate strength. The momentum dependence of
the vertices reflect the k′ − k momentum transfers Q1,
Q2 and Q3 indicated in Fig. 4a.

In terms of the scattering vertices, the pairing strength
is given by the eigenvalue of

−
∑
j

∮ dk′‖

2πvFj (k′‖)
Γij(k, k

′)gαj (k′) = λαg
α
i (k) (4)

with

Γij(k, k
′) =

∑
`1`2`3`4

a`1νi(k)a`4νi(−k)Γ`1`2`3`4(k, k′) (5)

× a`2∗νj (k′)a`3∗νj (−k′)

Here j sums over the Fermi surfaces, vFj
(k′‖) is the Fermi

velocity |∇kEνj (k)| and the integral runs over the Fermi
surface or surfaces. We have calculated the leading B1g

(d-wave) and A1g (s±-wave) pairing strength eigenvalues
as a function of the doping x. The results plotted in
Fig. 5a show that for the traditional “low-doping” region
(x ∼ 0.15) the pairing strength is in the B1g (d-wave)
channel as expected. However, in the strongly overdoped
(x ∼ 0.85) regime both the B1g (d-wave) and A1g (s±-
wave) pairing strengths are significant and quite close to
each other.

As seen in Fig. 4, the dominant pair scattering process
with momentum transfer Q2 contributes to the pairing
strength in both the d-wave and the s± channels. Sim-
ilarly the scattering Q1 contributes to both, while the



3

60

20

0 40

20

60

4080

Q1

Q2

k y

-π

0

π

kx

-π 0 π

Γ1111 Γ2222 Γ1212 Γ1221 Γ1122

Q1 Q2Γ ℓ
1,
ℓ 2
,ℓ
3,
ℓ 4
(k
,k
')

0

2

4

6

k'

0 10 20 30 40 50 60 70 80

(a) (b)

FIG. 3: (a) The Fermi surface for x = 0.15 and (b) selected orbital dependent vertices versus k′ with k fixed at 60. The
dominant orbital weight on the Fermi surface for x = 0.15 is dx2−y2 and the peaks in Γ1111 seen in (b) arise from the k′1 − k1
scattering processes labeled Q1 and Q2 in (a).
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FIG. 4: (a) The Fermi surface for x = 0.85 and (b) selected orbital dependent vertices versus k′ with k fixed at 140. In this
case, there is significant d3z2−r2 orbital weight on the Fermi surface. The structure in the vertices arises from the scattering
processes indicated in (a).

scattering at Q3 contributes negatively. These same mo-
mentum transfers are effective in scattering electron pairs
between the corners of the electron and of the hole Fermi
surfaces. These processes lead to the ”accidental” nodes
of the s± gap function.

To conclude, for the two-orbital (dx2−y2 , d3z2−r2) RPA
model we have studied we find two Tc domes, one in the
underdoped and one in the highly overdoped regime. As
expected, in the low doping region there is B1g (d-wave)
pairing. In the extremely overdoped x ≈ 0.85 region we
find pairing strength in both the B1g (d-wave) and A1g

(s±-wave) channels. The pairing strength in this second
region is larger relative to that found in the small doping
region and that for an optimally doped single-band Hub-
bard model. This is in spite of the two orbitals dx2−y2

and d3z2−r2 each having significant orbital weight at the
Fermi energy. This appears counter to previous calcu-
lations which concluded that Tc is optimized when the
orbital weight is concentrated in a single dx2−y2 orbital
[16, 17]. However, similar spin-fluctuation based pair-
ing calculations [18] have found that Tc is enhanced in

systems which have both electron- and hole-Fermi sur-
faces. This enhancement has also been seen in DCA cal-
culations for a 2-layer Hubbard model with electron and
hole bands [19]. We believe that having both electron-
and hole-Fermi surfaces is sufficiently advantageous that
it overcomes the orbital weight effect and is responsible
for the second superconducting dome in the highly over-
doped region of the cuprate phase diagram proposed by
Geballe and Marezio [1]. The occurance of two pairing
channels in this overdoped cuprate regime is reminiscent
of Ba0.6K0.4Fe2As2. In that case, below Tc an emergent
B1g (d-wave) mode is observed in Raman scattering [20].
This has been interpreted as arising from a Bardasis-
Schrieffer mode associated with a subdominant dx2−y2

pairing channel in an s± superconductor. In the present
case, in the second dome one could have a d-wave su-
perconductor with a close lying subdominant s± mode.
The Raman observation of such behavior would provide
an interesting link between the cuprate and Fe-based su-
perconductors.
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FIG. 5: (a) The pairing strength eigenvalue λα(x) versus dop-
ing for s± and dx2−y2 pairing shows two domes, one in the
underdoped and another in the highly over doped regime.
(b) The gap function for the leading dx2−y2 eigenvalue for
x = 0.15. (c) The dx2−y2 gap function for x = 0.80 and (d)

the s± gap function for x = 0.85.
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