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Recent advances in the physics of current-driven antiferromagnetic skyrmions have observed the
absence of a Magnus force. We outline the symmetry reasons for this phenomenon, and show
that this cancellation will fail in the case of spin polarized currents. Pairing micromagnetic sim-
ulations with semiclassical spin wave transport theory, we demonstrate that skyrmions produce a
spin-polarized transverse magnon current, and that spin-polarized magnon currents can in turn
produce transverse motion of antiferromagnetic skyrmions. We examine qualitative differences in
the frequency dependence of the skyrmion Hall angle between ferromagnetic and antiferromagnetic
cases, and close by proposing a simple skyrmion-based magnonic device for demultiplexing of spin
channels.

I. INTRODUCTION

Skyrmions have long been appreciated in the mag-
netism community for their topological stability1 and
soiltonic dynamics.2 In metallic ferromagnets, skyrmions
cause a transverse deflection of itinerant electrons known
as the topological Hall effect.3 When the current is
strong enough to drive ferromagnetic skyrmions, the
skyrmion itself undergoes motion transverse to the cur-
rent; this reciprocal process is the skyrmion Hall effect.
These two effects are related through conservation of
momentum.4 Similar effects exist in insulating magnets,
where magnons, rather than electrons, represent the low-
lying excitations of the system.5–7

Recently, skyrmions in metallic antiferromagnets have
garnered attention as an attractive alternative to
their ferromagnetic counterparts. Unlike ferromagnetic
skyrmions, antiferromagnetic skyrmions do not undergo
transverse motion in response to electronic current.8–10
The crucial difference is the two-sublattice structure of
the antiferromagnet: though each ferromagnetic sublat-
tice nominally experiences a Magnus force, there is a
perfect cancellation between the two, and the skyrmion
moves only longitudinally with the current. This absence
of the skyrmion Hall effect in antiferromagnets has been
lauded for the resulting simplicity of the skyrmion dy-
namics. It may represent a significant technological ad-
vantage in the quest for spin texture based applications
such as racetrack memory11 or skyrmion computing.

To date, less has been said about antiferromagnetic
skyrmions in insulating systems, and whether or not
skyrmion Hall effects arise therein. In this paper, we ex-
plore how a magnon/skyrmion spin Hall effect appears in
antiferromagnetic magnon-skyrmion interactions. A cru-
cial feature of spin waves in easy axis antiferromagnets is
that they are spin-polarized in general. This is expected
theoretically,12,13 and such magnon-mediated spin cur-

rents have recently been observed experimentally in ma-
terials such as Cr2O3 and MnPS3.14,15 A consequence of
these spin polarized currents, and the topic of the present
article, is that the perfect cancellation of Magnus forces
discussed in previous works8,9,16,17 does not always hold
in magnonics. We present theory and simulation demon-
strating how one can generate magnonic forces on antifer-
romagnetic skyrmions, and how, conversely, one can use
skyrmions as spin-splitters in antiferromagnetic magnon
devices.

In Sec. II, we justify these claims by presenting gen-
eral symmetry arguments. In Sec. III, we discuss the
theoretical framework underlying the rest of the pa-
per. Sec. IV presents semiclassical transport results, sup-
ported by simulation, to describe the magnonic topo-
logical spin Hall effect generated by antiferromagnetic
skyrmions. Sec. V derives the equations of motion of the
skyrmion texture in this coupled system, demonstrating
in simulation an angle-tunable skyrmion Hall effect. We
conclude in Sec. VI by describing some possible applica-
tions of these effects in magnonic logic.

II. SYMMETRY CONSIDERATIONS AND
SUMMARY OF RESULTS

We wish to study in antiferromagnets how spin waves
interact with skyrmion configurations of the antifer-
romagnetic order parameter. A skyrmion in a 3-
dimensional18 field n(r) over a 2-dimensional plane is
characterized by two criteria: it has a finite and nonzero
characteristic length scale;19 and it has nonzero topolog-
ical charge,

Q =
1

4π

∫
R2

n̂ ·
(
∂n̂

∂x
× ∂n̂

∂y

)
dxdy . (1)
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FIG. 1. This diagram shows a skyrmion, far right, subject to
spin unpolarized magnon current entering from the far left.
The blue and red arrows representing left- and right-handed
spin wave channels have equal amplitude. Mirror symmetry
about the major axis of the strip is preserved, since the mz

carried by each spin wave channel changes sign under the mir-
ror operation. The presence of this mirror symmetry protects
the skyrmion from any forces transverse to the mirror sym-
metry axis. If the spin accumulation becomes asymmetric
across this axis (as in the left and right panels of Fig. 2), then
a transverse skyrmion Hall will necessarily manifest.

Under the assumption that n̂ has a uniform boundary
condition at infinity, it is straightforward to show that Q
is quantized and that it labels topologically protected
configurations of n̂.1 In ferromagnetic spintronics, the
unit vector n̂ in Eq. (1) is taken to be the local mag-
netization vector.20 In antiferromagnets, we instead take
n̂ = n/‖n‖ to be the normalized staggered order vector
n = (mA − mB)/2, defined as the local difference be-
tween sublattice magnetizations.21 Though skyrmion-like
bubble states can be stabilized by dipolar interactions in
ferromagnets, we obviously lack this mechanism in anti-
ferromagnets. Here, and in many ferromagnets of inter-
est as well, our skyrmions are stabilized entirely by the
competition between magnetocrystalline anisotropy and
the Dzyaloshinskii-Moriya interaction in the presence of
the exchange interaction. The Dzyaloshinskii-Moriya in-
teraction arises due to inversion symmetry breaking,22
either in the crystal lattice itself or due to interfaces be-
tween the magnet and another material. Because the
antiferromagnetic free energy in terms of n has a simi-
lar form at leading order to the ferromagnetic free en-
ergy in m, many results on the stationary stabilization
of ferromagnetic skyrmions23,24 are expected to translate
qualitatively to the antiferromagnetic case.

In ferromagnets, it is known that the emergent mag-
netic field of a skyrmion produces a transverse force on
electronic current. In recent literature on antiferromag-
netic skyrmions, the absence of an observed skyrmion
Hall effect has often been explained by a simple model
treating a ferromagnetic skyrmion per sublattice.8,9,17 In
this picture, the two ferromagnetic skyrmions have oppo-
site skyrmion numbers and opposite emergent magnetic
fields. Each ferromagnetic skyrmion thereby feels an op-
positely signed Magnus force, and as the two are bound
together by exchange coupling, the full antiferromagnetic
skyrmion feels no net transverse force at all.

Despite this cancellation of transverse forces acting on
the skyrmion, there is no reason to believe that individual

electrons feel no transverse force. A force perpendicular
to a particle’s trajectory represents the breaking of mirror
symmetry across the plane normal to that force. A parti-
cle that couples to a spin texture will see this mirror sym-
metry broken in the presence of a skyrmion, and so we
expect a transverse force to appear in general. Semiclas-
sical transport theory predicts25 just such an emergent
Lorentz force on electrons due to the emergent magnetic
field n̂·(∂xn̂×∂yn̂) of an antiferromagnetic skyrmion, and
recent first principles calculations have suggested the ex-
istence of a spin Hall effect for electrons flowing through
metallic antiferromagnetic skyrmions.26 Similar sugges-
tions are also starting to be understood in ferrimagnetic
systems near compensation.27

Yet so long as an equal number of spin up and spin
down carriers participate in such a spin Hall effect, mir-
ror symmetry of the spin accumulation across the direc-
tion of current flow is preserved. This also corresponds
to a mirror symmetry of the spin current channels, as
in Fig. 1. As such, the skyrmion itself is protected by
symmetry from experiencing transverse forces; any such
force would break the mirror symmetry. This explains
the absence of a skyrmion Hall effect as observed in anti-
ferromagnetic simulations,17 but we emphasize that the
symmetry protection holds only when the incoming cur-
rent is spin unpolarized.28 We also note that a proper
analysis of the spin current or spin accumulation distri-
bution has both a vector nature (in the current or posi-
tion component) and pseudovector or axial nature (in the
spin component).29 Symmetry analysis that attempts to
use the “mean” spin current in one direction or another
will give incorrect results in the general case.

Magnonic excitations are also subject to these symme-
try arguments; since a skyrmion breaks the mirror sym-
metry of the spin texture, magnons passing through one
undergo a topological spin Hall effect. We have predicted
the form of this force in semiclassical transport in Ref. 30;
the result is qualitatively similar to the electron case, and
involves coupling to the emergent magnetic field of the
skyrmion.

Like electrons’ spin degree of freedom, antiferromag-
netic spin waves carry a spinor-valued internal degree
of freedom called the magnon isospin.30 It arises due
to the two-fold sublattice structure, and characterizes
the polarization and handedness of the staggered or-
der precession.12 Its z-component on the Bloch sphere
is referred to alternatively as the spin wave chirality or
the isospin charge, and has shown to be explicitly con-
nected with the breaking of mirror symmetry.31 This
chirality can be associated with magnonic spin currents
in easy axis antiferromagnets,13,30 and tunably gener-
ated through spin-transfer torques,32 circularly polarized
light,33 or oscillating applied magnetic fields.34

For antiferromagnetic skyrmions driven by isospin-
charged spin waves—that is, those with a circular or
elliptical polarization—we expect the mirror symmetry
restricting transverse forces to be broken. The conse-
quence, which we show explicitly in the remainder of the
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paper, is that the skyrmion experiences transverse forces
proportional to the degree of mirror symmetry breaking.
And though the anisotropy that associates isospin charge
to spin current is necessary to stabilize the skyrmion
ground state, we note that the net spin carried by spin
waves is immaterial to the skyrmion Hall effect from a
symmetry perspective—the handedness of spin wave pre-
cession alone is enough to break mirror symmetry across
the skyrmion trajectory and induce transverse forces.

Finally, though we are not aware of any prior demon-
strations of the effect in the literature, this symmetry
argument also suggests that a spin-polarized electron
current in an antiferromagnetic metal should produce a
skyrmion Hall effect similar to the magnon-driven one we
explore in the remainder of this paper. Detailed analysis
of this prediction for electronic systems is left to future
research.

III. FORMULATION

In this paper, we work with 2D collinear antiferromag-
nets with uniaxial anisotropy and broken inversion sym-
metry. The latter leads to a Dzyaloshinskii-Moriya inter-
action. In the case of a bipartite, g-type antiferromagnet,
these terms lead collectively to a free energy

F =

∫
[FJ + FD + FK ] d2x. (2)

Each free energy density is given by

FJ =
Z

2
mA ·mB −

J

2
∇mA · ∇mB , (3a)

FD =
D

2
[mA · (∇×mB) + mB · (∇×mA)] , (3b)

FK = −K
2

[
(mA · ẑ)2 + (mB · ẑ)2

]
, (3c)

where mA(r, t) and mB(r, t) are the continuum represen-
tation of the A- and B-sublattice magnetic orders. These
are normalized vectors, with the saturation magnetiza-
tion Ms on each sublattice absorbed into the interaction
coefficients. The antiferromagnetic exchange energy J is
that of the underlying lattice Hamiltonian

∑
〈ij〉 Jmi·mj ,

while Z is the exchange energy density. K gives the
strength of the uniaxial magnetocrystalline anisotropy.
We have expressed the Dzyaloshinskii-Moriya interaction
with strength D in the form that arises from bulk inver-
sion symmetry breaking; substituting ∇ 7→ ẑ ×∇ in this
term recovers the interfacial version of the interaction
with no qualitative change in the dynamics.30

We will assume that the ground state of the system
is collinear and antiferromagnetic, with the ground state
m0
A = ẑ and m0

B = −ẑ for concreteness. This constrains
the value of D to lie below the critical value that would
lead to a spiral state.24 We present this model for con-
sistency with other theoretical literature, but our simu-
lation results and many important applications for anti-

ferromagnetic skyrmions take place in synthetic antifer-
romagnets. Our model also captures these systems with
only small quantitative adjustments.35

To treat magnon-skyrmion interactions, we implement
the formalism laid out in Ref. 30. The magnetization
fields mA and mB are decomposed into their fast and
slow modes, which represent magnon and skyrmion dy-
namics, respectively.5 This separation is valid so long as
the spin texture can be modeled as passing through qua-
sistatic equilibria of the magnetic free energy, though
at high speeds emergent relativistic effects can be-
come important,36 which we do not model here. The
magnon modes are collected into a 4D vector and obey
a Schrödinger-like equation of motion. The spin texture
information of the staggered order n(r) = (θ(r), φ(r))
is represented by an emergent magnetic field B =
Bẑ = ẑ sin θ(∇θ × ∇φ) corresponding to the integrand
of Eq. (1).20 Unlike in Ref. 30, we preserve Lagrangian
terms at zeroth order in the spin wave fields, which will
give the inertial response of the spin texture. The de-
tails of this sector of our Lagrangian are equivalent to
the Lagrangian underlying Ref. 37.

IV. SKYRMION-INDUCED MAGNON HALL
EFFECT

In Ref. 30, we have recently worked out the general
semiclassical transport theory for antiferromagnetic spin
waves in a system such as that defined by Eq. (2). Here
we specialize that result to the skyrmion case. Recall
that there are two degenerate spin wave modes in the
uniform easy-axis antiferromagnet, which correspond to
right- and left-handed precessions of the staggered or-
der. A coherent magnonic excitation can be indexed by
a spinor quantity η quantifying the linear combination
of right- [η = (1, 0)] and left-handed [η = (0, 1)] com-
ponents. We take η, the magnon isospin, to be normal-
ized for a single magnon wave-packet. When the right-
and left-handed magnon frequency bands are degener-
ate, η indexes that degenerate subspace and can explore
the Bloch sphere with no energy cost. The addition of
the Dzyaloshinskii-Moriya interaction breaks this degen-
eracy, but only weakly, so certain rotations of η incur
small energy costs.38,39

We will assume that the skyrmion in our problem is
rigid—that is, its shape is fixed but its position may vary.
This assumption implies that time dependence of the spin
texture can be factored through the rigid skyrmion’s po-
sition coordinate R = (X(t), Y (t)). The semiclassical
Lagrangian for a single magnon wave-packet is given by

LWP = −η†
[
σz(Ȧ · r− V )− k̇ · r−H

]
η, (4)

with r and k the wave-packet’s phase space variables, σz
the usual Pauli matrix, and A(r, t) and V (r, t) vector
and scalar potential functions underlying the emergent
electromagnetic fields.20,40,41 The vector potential is re-
lated to the skyrmion’s emergent magnetic field through
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FIG. 2. Micromagnetic simulations of the magnonic topological spin Hall effect in antiferromagnetic skyrmions. Blue and red
represent left and right handed spin wave precession of the local Néel order about equilbrium, plotted as the square of the spin
wave amplitude integrated over the entire simulation time. In all cases, a fluctuating magnetic field injects coherent spin waves
(ω/2π = 30 GHz) at the bottom of the frame. Left: left-handed spin waves are deflected to the left. Right: right-handed spin
waves are deflected to the right. Center: linearly polarized spin waves, an equal superposition of the left- and right-handed
magnon bands, are decomposed by the skyrmion into its spin polarized eigenmodes. The sample size is 800 nm× 800 nm.

B = ∇×A. The 2×2 isospin Hamiltonian H is derived
by projecting out the negative frequency subspace of the
4× 4 spin wave Hamiltonian governing the θ̂ and φ̂ com-
ponents of mA and mB .30 With the time dependence of
the electromagnetic potentials replaced with the collec-
tive coordinate dynamics of R, the equations of motion
for the magnon wavepackets become

k̇ = χ(ṙ− Ṙ) ×B− ∂ω

∂r
, (5a)

ṙ =
∂ω

∂k
, (5b)

and iη̇ = H η, (5c)

at second order in derivatives of the spin texture.42 Here
ω = ω(r) is the spin wave frequency of the local magnon
band structure and χ = η†σzη is the emergent charge.

The isospin charge χ corresponds to the handedness of
the spin wave: it is ±1 for right- and left-handed waves,
and vanishes for linearly polarized waves. That it acts
as the coupling constant between magnon and skyrmion
reflects our symmetry arguments from Sec. II: the de-
gree and sign of mirror symmetry breaking controls the
transverse force on the magnon. We expect from Eq. (5a)
that right- and left-handed waves experience oppositely
signed Lorentz forces in the presence of a skyrmion spin
texture.

To verify this prediction, we carried out micromagnetic
simulations of a skyrmion in a synthetic antiferromag-
net. We numerically solved the Landau-Lifshitz-Gilbert
equation using finite elements methods code.43–46 The
parameters are chosen following Refs. 44 and 47: gy-
romagnetic ratio γ = 2.21 × 105 Hz/(A/m), exchange
stiffness J = 4.00 × 10−12 J/m, Dzyaloshinskii-Moriya
energy D = 1.23 × 10−4 J/m2, anisotropy energy K =
4.73×103 J/m3, and interlayer antiferromagnetic energy

Z = 6.09 × 104 J/m3. We set the Gilbert damping to
α = 10−4. In these simulations, we generated either cir-
cularly polarized spin waves, by applying a rotating mag-
netic field hRH/LH = h0 [sin(ωt)x̂∓ cos(ωt)ŷ], or linearly
polarized spin waves, by applying hX = h0 sinωtŷ or
hY = h0 sinωtx̂ for X- or Y-polarizations.

The results are displayed in Fig. 2. We find that scat-
tering right-handed (χ = +1) and left-handed (χ = −1)
spin waves from the skyrmion results in right-ward and
left-ward deflection, respectively. Leftward deflection of
right-handed magnons from a skyrmion is consistent with
the ferromagnetic skyrmion Hall effect;6,7 as left-handed
magnons do not exist in ferromagnets,48 we find that this
latter effect is a uniquely antiferromagnetic phenomenon.
When linearly polarized spin waves (χ = 0) are injected
upon the skyrmion texture, the skyrmion splits the signal
into its two spin polarized channels, producing a trans-
verse spin current with no net transverse magnon num-
ber current. This result for linearly polarized waves is
analogous from a symmetry perspective to the electronic
topological spin Hall effect predicted in Ref. 26.

While the spin waves are strongly defected by the
Lorentz force in Eq. (5a), their isospin degree of freedom
does not remain static throughout this process. Accord-
ing to Eq. (5c), the isospin vector itself undergoes dynam-
ics in the presence of a nontrivial H , such as arises within
the skyrmion texture. This in turn affects the isospin
charge χ. Even supposing that a purely right-handed
spin wave signal enters the skyrmion, it will constantly
undergo some isospin dynamics, resulting in the produc-
tion of some signal in the left-handed channel. Conse-
quently, the nearly right-hand polarized signal exiting
the skyrmion picks up some ellipticity in Fig. 2. Though
our simulations show signs of this behavior, the effect is
small; it is also difficult to isolate, occurring mainly near
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the skyrmion core. Attempting to incorporate these dy-
namics into the equation for the Lorentz force indicates
an angular momentum transfer between magnon isospin
and mechanical angular momentum of the skyrmion, but
only at higher orders in perturbation theory than Eqs. (5)
can express. We expect that any effect on the dynamics
of magnon and skyrmion trajectories is negligible.

Since antiferromagnetic skyrmions present a real-space
Berry curvature, magnons act as charged particles in the
presence of a perpendicular magnetic field. In a finite ge-
ometry, one might therefore expect chiral edge modes in
an antiferromagnetic skyrmion crystal. Using mircomag-
netic simulations, we injected right- and left-handed spin
waves into a nanodisk with an artificially constructed an-
tiferromagnetic skyrmion lattice. The results are shown
in Fig. 3. Modes propagate away from the antenna in the
direction according to their handedness, decaying natu-
rally via Gilbert damping. A more quantiative analysis of
this result has recently been developed from lattice-level
transport theory.49

V. SKYRMION COLLECTIVE COORDINATE
THEORY

The spin wave dynamics and magnon-skyrmion inter-
actions summarized in the previous section are captured
at the semiclassical level by a wave-packet Lagrangian
LWP that leads to Eqs. (5).30 A Lagrangian for the full
system can be obtained by adding to LWP a sector de-
tailing the inertial properties of the skyrmion.

Write the density of magnons at (r,k) in phase space,
with isospin η, as ρr,k,η. Accepting an uncertainty
∆r∆k ≥ 2π, we can expand the global wavefunction
of magnons into a linear combination of wavepackets.
The total Lagrangian for all the wavepackets together
is merely their weighted sum

LSWs[ρ;B] =

∫
d2r d2k d2η ρr,k,ηLWP[r,k,η,B]. (6)

The uncertainty principle constraining this expansion
means that the following predictions will hold best for
skyrmions large and smooth compared to magnon wave-
length. From Eq. (6) we can immediately take a func-
tional derivative with respect to R(t) to obtain the
magnonic force density over phase space. The result is

δLWP

δR
= −ρr,k,χχ(ṙ− Ṙ)×B0(r−R) (7)

where B0(r −R) = B(r). The total magnonic force on
the skyrmion is therefore

F = −
∫
d2r d2k d2η χρr,k,χ

[
(ṙ− Ẋ)×B0(r−R)

]
,

(8)
an isospin-charge-weighted sum of the reciprocal Lorentz
forces by each magnon. Since B0 is radially symmetric,
the component of F perpendicular to the current flow

FIG. 3. Edge modes of the antiferromagnetic skyrmion crys-
tal. The color scale gives the squared spin wave amplitude
integrated over the full simulation time. A simulated mi-
crowave antenna sits above the nanodisk on left side of the
sample, indicated by a horizontal line. Left and right-handed
spin waves are injected at 20 GHz in figures left and right, re-
spectively. As in the common toy model of the quantum spin
Hall effect, cyclotron orbits of the magnons combined with an
effective confining potential at the edge restrict the magnon
trajectories to chiral directions corresponding to their isospin.
The sample diameter is 1300 nm, and the snapshot was taken
2.1 ns into the simulation. Gilbert damping causes the spin
wave intensity to decay away from the antenna.

j ∝ 〈ṙ〉 will vanish only if the isospin charge distribution
χρx,k,η happens to be asymmetric across j. A special
case of this condition occurs when the incoming current
is entirely unpolarized, as in the center panel of Fig. 2,
analogous to the electronic case discussed widely in the
literature and noted in Sec. II.

Outside of this special case, the transverse force com-
ponent has considerable freedom. In Fig. 4 we show
micromagnetic simulation results of antiferromagnetic
skyrmion trajectories driven by right, left, and linearly
polarized spin waves. There are two crucial differences
from the ferromagnetic case. First, the angle at which
the skyrmion propagates can be tuned by tuning the chi-
rality of the driving magnon current. Second, because
the Lorentz force is the only force term present, and
because antiferromagnetic skyrmions have primarily di-
agonal mass tensors, antiferromagnetic skyrmions move
along, rather than against, the magnon current driving
them. The opposite is known to happen in ferromag-
netic skyrmion systems,5 which we replicate in Fig. 4 by
turning off the interlayer coupling of our synthetic anti-
ferromagnetic and allowing the two sublattice skyrmions
to behave as ferromagnetic skyrmions would. Their re-
versed solutions are indicated in the figure by black tra-
jectories.

A. Magnon-mediated reduction in effective mass

The qualitative inertial behavior of antiferromagnetic
skyrmions is well-studied in the literature,37 so we do
not dwell on a detailed derivation here. As a rule and
in the rigid skyrmion approximation, antiferromagnetic
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FIG. 4. Overlaid skyrmion trajectories of multiple simula-
tions in a 1200nm × 800 nm system. In all cases, a spin
wave current with wavenumber k = 0.063 nm−1 flows from
left to right. The three trajectories on the right correspond
to nonzero interlayer coupling JAF 6= 0, that is, a synthetic
antiferromagnet. These trajectories are plotted at a snapshot
time of 2.3ns, and here ω(k) = 15.7GHz. Yellow: an anti-
ferromagnetic skyrmion is driven longitudinally, with no net
Magnus force, by linearly polarized spin waves. Blue: an an-
tiferromagnet skyrmion is driven to the right by left-handed
spin waves. Red: an antiferromagnetic skyrmion is driven to
the left by right-handed spin waves. The two black trajectores
on the left correspond to JAF = 0, giving two decoupled fer-
romagets. Here, the sublattice skyrmions move transversely
and counter-longitudinally to the magnon current, and the
simulation required 100 ns to reach this snapshot. In the fer-
romagnetic system, ω(k) = 6GHz.

skyrmions behave as classical Newtonian point particles,
complete with a mass term with its origins in the sub-
lattice interaction and the small magnetic moment car-
ried by the skyrmion. The non-interacting part of the
skyrmion Lagrangian is just

L[R](r,k) =
1

2
m̃ijṘiṘj −

S

2
ωρnε

2 (9)

with the magnon number density ρn =
∫
d2η ρr,k,η,

the emergent skyrmion mass density tensor m̃ij(r,k) =

(S/Ω)[2−1/2 − ρn(r,k)ω(r,k)/Ω]gij(r), with the charac-
teristic frequency of the exchange interaction Ω = Zε2/S,
and ε the lattice constant. We presume a square lattice
for concreteness. The induced metric tensor gij on spin
space is defined as gij = ∂iθ∂jθ + sin2 θ∂iφ∂jφ.

The second term on the right-hand side of Eq. (9) is
a potential energy landscape presented to the skyrmion
by the global magnon wavefunction. Though we have
claimed that this is the “non-interacting” part of the La-
grangian, the presence of spin waves in the system softens
the order parameter of the skyrmion. This suggests that
a skyrmion left to its own devices would flow toward re-
gions of high magnon density; this matches with recent
results indicating that antiferromagnetic skyrmions will
flow along the direction of a thermal gradient,27,50 though

FIG. 5. Simulation and theory results for the skyrmion Hall
angle driven by chirally polarized spin waves. Dashed lines
connect the data from micromagnetic simulation; the solid
line gives the theoretical prediction according to Eq. (10).
Skyrmion position was tracked by a position-weighted expec-
tation value of the skyrmion charge density, that is, Eq. (1)
taken with a factor of x in the integrand.

this could also be attributed to the direct magnon forces
in the interacting Lagrangian.

The first term on the right-hand side of Eq. (9) is the
skyrmion’s kinetic energy term. The mass tensor of anti-
ferromagnetic textures in the absence of spin wave exci-
tations has been derived previously by Tveten et al. in
Ref. 37. Our solution agrees51 with theirs when the
magnon number density vanishes, ρn = 0. When ρn 6= 0,
the form of the mass tensor in Eq. (9) indicates that
the presence of spin waves in a skyrmion (or any other
spin texture described by rigid coordinates) will lower the
skyrmion’s effective mass.

This mass reduction scales with the number and fre-
quency of spin waves, that is, with the total spin wave
energy present in the skyrmion. We predict that this re-
duction should occur in any antiferromagnetic skyrmion
system, including those driven by electric current, as
skyrmion motion itself produces spin waves. This mass
reduction suggests skyrmion mobility should be increased
in higher temperature systems, where thermal magnon
populations exist throughout the system. This is con-
sistent with findings in the literature8,50 that the diffu-
sion constant for an antiferromagnetic skyrmion increases
with temperature, though any precise discussion of the
relationship between magnon-driven mass reduction and
diffusive behavior, along with the relative contributions
of the mass reduction and the static potential term on
the far right of Eq. (9) is left to future research.

B. Frequency-dependent kinematics

We have seen that the sign and amplitude of the
skyrmion Hall angle is tunable by changing the chirality
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of the driving magnon current. Although ferromagnetic
skyrmion systems cannot change the sign of this angle,
the amplitude is known to depend on the frequency of the
driving spin waves.6,7 In these systems, the Hall angle
increases monotonically with spin wave frequency until
reaching a critical frequency, past which the Hall angle
decays to zero as frequency continues to increase. We
have indicated this ferromagnetic behavior schematically
with the dashed line in Fig. 5.

We investigated the frequency dependence of the
skyrmion Hall angle in simulation, and present our results
in Fig. 5. These results (solid line and points) indicate a
strong dissimilarity to the ferromagnetic behavior at high
frequencies. The lack of a critical frequency for optimal
Hall deflection is an attractive property for skyrmionic
devices, as one can achieve uniform angular propulsion
without the need to fine tune the driving frequencies.

The origin of this divergence from the ferromagnetic
physics lies, essentially, in the magnon dispersion rela-
tion. As the frequency of a ferromagnetic spin wave in-
creases, so does its group velocity. Modeling its inter-
action with the skyrmion as that of a charged particle
passing through a region of magnetic flux, we can un-
derstand the high frequency decay of the ferromagnetic
skyrmion Hall angle as an explosion of the magnon cy-
clotron radius at high velocity.6

In antiferromagnetic systems, the well-known linear
dispersion52 at high wavenumber ensures that, away from
the band bottom, group velocity does not increase with
increasing frequency. As we move away from the band
bottom where anisotropy induces a locally parabolic dis-
persion, the group velocity of the magnon saturates,
and so the magnon cyclotron radius and corresponding
skyrmion Hall angle do as well.

C. Flux disk model

To model the frequency dependence using our theo-
retical framework, we adopt the simplifying assumption
that the skyrmion can be modeled as a disk of uni-
form flux. The 4πQ emergent magnetic flux that a real
skyrmion would distribute according to the profile ofB is
instead distributed uniformly over a disk of radius R, the
skyrmion radius. This approximation has been used in
past analyses of magnon-skyrmion scattering with great
success.6

Further assuming that the magnitude of the group ve-
locity does not change over the course of its passage
through the skyrmion, the magnon scattering problem
reduces to understanding the intersection of two circles:
the skyrmion circumference and the cyclotron orbit of
the magnon wavepacket, which we define to have radius
r. We then wish to analyze the change in direction ac-
cumulated by a magnon entering the skyrmion from the
−ŷ direction. The problem enjoys a helpful constraint:
the center of the cyclotron orbit has the same y coor-
dinate as the point of entry (x, y) to the flux disk. It

is an exercise in planar geometry to then show that the
angle subtended by the cyclotron orbit restricted to the
flux disk is given by sin(θ/2) =

√
1− ξ2/

√
1 + ρ2 + 2ρξ,

where ρ = r/R and ξ = x/R. The angle between the ∆ẋ
induced by this cyclotron motion and the ŷ axis is just
ΘSH = (π − θ)/2, which will also be the skyrmion Hall
angle by momentum conservation.

The problem of determining a closed expression for
the skyrmion Hall angle therefore reduces to finding the
normalized cyclotron radius ρ(ξ). Choosing the Lorentz
force as our lone centripetal force, we have ρ = mvR/4χQ
where we have set the magnetic flux density to B =
4πQ/R2. Now, supposing that the incoming magnon
current is distributed uniformly along the x̂ direction,
the mean outgoing angle is

〈θ〉 =
1

2

∫ 1

−1
θ(ξ) dξ =

π

2ρ
=

2πχQ

mvR
, (10)

which formally converges only in the case ρ > 1. Finally,
from Eqs. (5), extract speed v = |∂ω/∂k| and effective
mass m = 1/|∂2ω/∂k2|. Using the spin wave dispersion
outside the skyrmion,

ω =
√

(Jk2 +Dk +K) (Jk2 +Dk +K + Z), (11)

we plot the Hall angle prediction given by Eq. (10) in
Fig. 5.

The remarkable agreement between this simple model
and micromagnetic simulation suggests that the purely
electrodynamical modeling of the magnon-skyrmion in-
teraction caputres most of the important Hall effect
physics. The magnon wavelength ranges from roughly
200 nm at the lowest frequency to roughly 30 nm at the
highest frequency, which is on the order of the skyrmion
radius.

In Fig. 6, we plot the skyrmion speed as a function
of driving frequency. At reasonable frequencies, the
skyrmion reaches speeds on the order of 100m/s, compa-
rable with fast electron-driven ferromagnetic skyrmions.
These speeds are also comparable to those predicted
for antiferromagnetic skyrmions driven by a thermal
gradient.53 In the same system with the same parame-
ters, driving our skyrmion with a current-induced spin-
transfer torque gave speeds on the order of 1000m/s, con-
sistent with the literature.17 Though the magnonic drive
cannot reach the speeds of an electronic drive in anti-
ferromagnets, it readily competes with high speed ferro-
magnetic systems and could provide a feasible low-energy
route to antiferromagnetic skyrmionics.

That the linearly polarized modes produce a slower
speed can be partially attributed to the competition
between right- and left-handed waves. In the circular
spin wave case, the change of momentum for each spin
wave component is unimodal and strongly concentrated
around that mode, as in the left and right panes of Fig. 2.
The momentum transferred to the skyrmion will be pro-
portional to the total ∆k vector lost by these spin waves,
which will be proportional to 2ΘSH − π.
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FIG. 6. Skyrmion velocity as driven by coherent spin wave
signals, of either circular or linear polarization, driven by cir-
cularly or linearly polarized magnetic fields of equal ampli-
tude. The plotted frequency range corresponds to the same
dynamical range above the resonant frequency as in Fig. 5.
Skyrmion position was tracked by a position-weighted expec-
tation value of the skyrmion charge density, that is, Eq. (1)
taken with a factor of x in the integrand.

In the linearly polarized case, depicted in the central
pane of Fig. 2, horizontal components of the magnonic
force on the skyrmion cancel each other. As we discussed
at length in the beginning of the manuscript, this can-
cellation provides for the observed absence of a skyrmion
Hall effect in many previous investigations of antiferro-
magnetic skyrmion dynamics. This is a preferable quality
of many skyrmion based devices, but we see here that it
comes at a cost. The cancellation of these opposite spin
Hall channels also wastes some of the momentum transfer
from magnon to skyrmion.

If this Lorentz force were the lone mechanism respon-
sible for this behavior, then we would expect vL =
vC cos(2ΘSH), where vL and vC are the velocities under
linear or circular spin wave drive. That is to say, we ex-
pect the tranverse component to be the same in each case,
with the linear drive losing speed only by virtue of lack-
ing a transverse component. This relation describes the
relationships of Fig. 6 well at high frequencies, but does
very poorly at low frequencies. This seems to suggest
that at low frequencies, where the spin wave wavelength
is much bigger than the skyrmion radius, a significant
failure mode arises in the simple analysis we have given
above.

The primary failure mode of our analysis as applied
to the skyrmion velocity lies in the fact that we have
neglected the conservative force −∂ω/∂r in Eq. (5).
Though at high frequencies this force will differ between
circularly and linearly polarized currents only perturba-
tively at O(D), we expect this missing force to be signifi-
cantly (O(1)) polarization-dependent at low frequencies.

Studies on antiferromagnetic domain walls have shown
that the transmission spectra of alternately polarized an-
tiferromagnetic spin waves vary significantly below a crit-
ical frequency determined by the Dzyaloshinskii-Moriya
interaction and uniaxial anisotropy at the center of the
domain wall.43 Understadning the low frequency regime
therefore requires a truly wave-theoretic analysis; our
wavepacket quasiparticles are not senisble constructions
when they are subject to partial transmission and reflec-
tion.

As a result of nontrivial transmission and reflec-
tion, spin waves at sufficently lower energy may also
become trapped inside the energy barrier along the
skyrmion’s circumference, filling bound magnon states of
the skyrmion texture. We are not aware of any thorough
investigations of these bound states in antiferromagnets,
but they are known to cause significant modifications in
the physics of ferromagnetic skyrmions.7 We have alluded
to some of the effects such states may have in antiferro-
magnetic skyrmions, such as the mass reduction explored
in Sec. VA, but a through study of these phenomena is
beyond the scope of the manuscript. We expect future
research in this area could be extremely interesting, and
may differ significantly from the ferromagnetic physics,
for two key reasons. First, unlike in ferromagnets, the
spin carried by the bound magnon states is not locked
to the background texture. Second, the dynamics of
the spin carried by these bound modes could be very
rich; a bound mode initially occupied by an externally
driven right-handed magnon can undergo a dynamical
evolution of its isospin,30 and the full effects of such an
evolution are yet unknown. In general, the spectrum of
bound modes and corresponding vibrational modes of the
skyrmion are complicated questions, and only recently
are full classifications of these degrees of freedom begin-
ning to be fully explored in general solitonic systems.54

VI. APPLICATIONS

The previous sections have laid out theory and simula-
tions of the skyrmion and topological spin Hall effects in
antiferromagnets. In the present section, we discuss how
these phenomena might be put to use as components in
a magnonic or skyrmionic logic device.

Ideas around magnonic logic have been around for
some time55 and are traditionally considered for im-
plementation in ferromagnets. Though comparatively
young, the enterprise of antiferromagnetic magnonics has
potential advantages. It has been pointed out by many
authors that antiferromagnetic insulators lack stray fields
and would avoid cross-talk between tightly packed de-
vices. The terahertz regime in which antiferromagnetic
dynamics operates is widely regarded as attractive for
its speed and its uniqueness among solid state systems,
which generally operate in lower frequency bands.

Another limitation of ferromagnetic magnonics is that
it can use only amplitude and phase to encode informa-
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FIG. 7. Spin wave circulators implemented using antiferromagnetic skyrmions. In all cases, a spin wave current is injected from
the left. Spin polarized magnon currents circulate about the device with the handedness of their internal isospin. For linearly
polarized waves, the circulator acts as an isolater/filter for the spin eigenmodes. The radius from device center to the central
edge of any port is 200 nm; the injected spin waves have frequency 0.2THz. The color scale represents the square of the spin
wave amplitude integrated over the full simulation time.

tion, as these are the only dynamical degrees of freedom
available. Antiferromagnets possess an additional degree
of freedom, the isospin, whose interaction with skyrmions
this manuscript has addressed. Whereas ferromagnetic
spin waves are bound by the background magnetization
texture to carry a particular spin current, antiferromag-
netic spin waves are not. Naturally, this increases the
amount of information they can carry. It also changes
the nature of the computation, because the order of op-
erations on an antiferromagnetic spin wave signal affects
the outcome30. Lebrun et al. have recently pointed out
that the isospin degree of freedom can also allow us to dis-
tinguish coherent magnon signals from thermal magnon
currents, which will be spin unpolarized in general.50,56
In ferromagnets, of course, thermal magnons carry the
same sign of spin as coherent magnons.

Because skyrmions couple differently to spin up and
spin down magnonic currents, they could be used in prin-
ciple as part of a magnonic logic device. We outlined in
Ref. 30 how inversion symmetry breaking, domain walls,
and other components of the antiferromagnetic free en-
ergy could be used to realize unitary rotations of the
isospin vectors η. The use of a skyrmion-induced topo-
logical spin Hall effect, however, would be quite different.
Since the skyrmion projects a signal into its spin chan-
nels, it acts explicitly as a nonlinear element that cannot
be captured as a unitary transformation. As such, it is
also nonreciprocal: sending an output spin wave back
into the skyrmion does not direct it toward the original
input. This notion is exemplified by a device called a
spin wave circulator.

The circulator, more generally, is a nonreciprocal de-
vice which can separate input and output channels. It has
been widely used to realize full-duplex communication
in nonmagnonic media: the microwave circulator57 and
acoustic circulator58 are two examples. Spin-wave circu-

lators are expected to be critical components of magnonic
computers.59 Using the topological spin Hall effects out-
lined in this article, we present the design of a spin-wave
circulator based on skyrmions in a synthetic antiferro-
magnet in Fig. 7, where three skyrmions are confined in
a three-terminal structure.

Due to the skyrmion-skyrmion and the skyrmion-edge
repulsion, the skyrmions are stable in such a structure as
shown in the micromagnetic simulation results of Fig. 7.
The three ports of the circulator are structurally equiv-
alent. The spin channel projection behavior is shown in
Fig. 7. Incoming magnons are successively scattered by
two skyrmions to either the top or bottom output ports,
depending on their spin. Mixed signals are split into their
two spin components.

VII. CONCLUSION

In this article, we explored the Hall effects arising from
magnon-skyrmion interactions in easy-axis antiferromag-
netic insulators. The underlying principle for these ef-
fects is the breaking of mirror plane symmetry across
quasiparticle trajectories: in the magnon case, broken by
the skyrmion spin texture; and in the skyrmion case, bro-
ken dynamically by the unbalanced scattering profile of
a circularly polarized magnon current. Unlike the ferro-
magnetic case (where the sign of the skyrmion Hall angle
cannot be tuned), antiferromagnetic skyrmions offer a
large range of dynamic tunability that could be put to
use in logical or neuromorphic magnonic systems.

We have explored the magnonic case here, where chi-
ral spin waves could in principle be generated electroni-
cally, optically, or thermally. However, even spin polar-
ized electron currents can be produced in antiferromag-
netic metals,60,61 giving unbalanced spin tranfer torques
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on the sublattices and breaking the mirror symmetry we
discussed in Sec. II to produce Hall physics. Even when
the skyrmion does not move, the spin Hall effect it pro-
duces could be useful in such computing schemes, or as
an experimental method for inferring a skyrmion’s exis-
tence.

We emphasize that although our micromagnetic simu-
lations focused on synthetic antiferromagnets, our theory
is equally applicable to both synthetic and traditional, bi-
partite antiferromagnets. Whereas the former are easily
probed in experiment, observing skyrmion-scale spin tex-
tures in antiferromagnets can be a challenge. Using spin
Hall signals as an indirect means of observation may be
a useful tool both experimentally and in skyrmion-based
devices. The parameters we used in our micromagnetic
simulations correspond approximately to two antiferro-
magnetically coupled layers of yttrium iron garnet (YIG),
as have been used in a variety of similar studies.44,47
Recently, experimental work has demonstrated antiferro-
magnetic coupling between ultrathin bilayers of yttrium

iron garnet and gadolinium iron garnet (GdIG).62 This
realization of an insulating, two-dimensional synthetic
antiferromagnet would be an ideal system for testing the
topological spin Hall effect we described in this paper.
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