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The Spirit framework is designed for atomic scale spin simulations of magnetic systems with arbi-
trary geometry and magnetic structure, providing a graphical user interface with powerful visualiza-
tions and an easy to use scripting interface. An extended Heisenberg type spin-lattice Hamiltonian
including competing exchange interactions between neighbors at arbitrary distances, higher-order
exchange, Dzyaloshinskii-Moriya and dipole-dipole interactions is used to describe the energetics
of a system of classical spins localised at atom positions. A variety of common simulation meth-
ods are implemented including Monte Carlo and various time evolution algorithms based on the
Landau-Lifshitz-Gilbert (LLG) equation of motion. These methods can be used to determine static
ground state and metastable spin configurations, sample equilibrium and finite temperature thermo-
dynamical properties of magnetic materials and nanostructures or calculate dynamical trajectories
including spin torques induced by stochastic temperature or electric current. Methods for finding
the mechanism and rate of thermally assisted transitions include the geodesic nudged elastic band
method, which can be applied when both initial and final states are specified, and the minimum
mode following method when only the initial state is given. The lifetimes of magnetic states and
rates of transitions can be evaluated within the harmonic approximation of transition-state the-
ory. The framework offers performant CPU and GPU parallelizations. All methods are verified and
applications to several systems, such as vortices, domain walls, skyrmions and bobbers are described.

I. INTRODUCTION

Multiscale materials simulations have emerged as one
of the most powerful and widespread assets in the quest
for novel materials with optimal or target properties,
functionalities and performance. Simulations are em-
ployed to narrow down the design continuum of devices,
to decrease the effort required in designing novel ma-
terials, to substitute experiments that seem unfeasible,
to analyse existing experiments and suggest alternatives.
They can also provide understanding of the underlying
physics on scales ranging from Ångström to millimeters
and from femtoseconds to decades. In this context, spin-
tronics is a very active field where multiscale simula-
tions1 play an important role for the conceptualization
and development of the next-generation data devices.2
This includes nanoscale magnetic objects like domain
walls or nontrivial magnetic textures such as solitons with
a time dilemma of 16 orders of magnitude between writ-
ing and saving information. The simulation approach is
extremely useful as it links the desired properties to the
choice of magnetic materials and their development, giv-
ing rise to a large variety of potential applications.3

Quantum mechanics is the key to understand mag-
netism from a fundamental level and it is therefore com-
mon to use ab initio methods, such as density functional
theory, to calculate interactions between atoms and var-
ious other properties. Due to the computational com-
plexity of such calculations, they can currently only be
applied to magnetic structures in crystals with length
scales in the order of 1 nm and cannot be used for time-
dependent dynamics simulations on time-scales relevant

for spintronics. From ab initio methods one may extract
parameters for more approximate, atomistic spin mod-
els, such as Heisenberg type spin-lattice Hamiltonians.
There, detailed information about the electronic struc-
ture is integrated out to effective parameters describing
the interaction between pairs of classical spins, so that
simulations of magnetization dynamics can be extended
over the timescale of nanoseconds for systems of hundreds
of nanometers. The third level of the multiscale approach
in spintronics is the well-known micromagnetic approxi-
mation4 based on the assumption of a continuous magne-
tization vector field, defined at any point of the magnetic
sample, is valid when changes of the magnetization are
much larger in space than the underlying atomic lattice.
In contrast, the atomistic spin-lattice model covers the
technologically increasingly important length scale from
a few to several tens of nanometers.

Here, we present a general purpose, open source, i.e.
publicly available, framework for atomistic spin simula-
tions called Spirit.5 There are actually a number of com-
putational tools available for the simulation of the time-
and space-dependent magnetization evolution. Among
the software packages for micromagnetic simulations,
two of the most impactful and widely known ones are
OOMMF6 and mumax3.7 This software definitely revolu-
tionized the simulation of magnetic properties of materi-
als and the temporal behavior of devices described by the
Landau Lifshitz Gilbert (LLG) dynamics. Based on the
micromagnetic approach these methods have well-known
limitations, e.g. the description of antiferromagnets, frus-
trated magnets, higher order non-pairwise interactions
(e.g. three-spin or four-spin interaction), stochastic spin
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dynamics and Monte Carlo simulations, etc. Moreover,
most micromagnetic software is not interactive or pro-
vides quite limited in situ access to the parameters of
the modeled system. Among the atomistic simulation
programs, UppASD8 and VAMPIRE9 are examples of
well-tested tools that provide important functionalities
beyond LLG simulations.

The functionality of the aforementioned softwares can
be greatly extended by adding an interactive graphical
user interface (GUI) that can be used to control calcula-
tions in real time – to not only change parameters, but
also interact with the spin texture as demonstrated for
example in Ref. 10. In combination with such a GUI,
Spirit unifies various computational methods that are
commonly applied to atomistic (and to a certain extent
also to micromagnetic) simulations: Monte Carlo and
Landau Lifshitz Gilbert (LLG) dynamics,11 the geodesic
nudged elastic band (GNEB) method12, minimum mode
following13 (MMF), harmonic transition-state theory14
(HTST) and the visualization of eigenmodes. All of these
methods are quite distinct, but complementary in na-
ture.15 For example, LLG dynamics can be used to sim-
ulate the time evolution of a magnetic system on a short
time scale, while GNEB and/or MMF can be used to
find first-order saddle points of the energy landscape –
corresponding to transition states for thermally assisted
transitions. These calculations can provide important
information, such as the energy barrier for the transi-
tion and can be used in HTST to calculate the lifetimes
of metastable magnetic configurations over a long time
scale. The integration of these methods into a single,
uniform framework can lead to a significant increase in
productivity.

The following section will introduce the structure of
the Spirit software and subsequent sections will detail
the aforementioned methods, in order of their complexity,
which we ranked according to the derivatives of the en-
ergy required in implementing these methods. The exam-
ples provided are mainly related to magnetic skyrmions,
which represents one of the most rapidly developing fields
in modern nanomagnetism.

II. THE FRAMEWORK

The framework consists of modular components, as il-
lustrated in Fig. 1: a core library for calculations and in-
put/output; an application programming interface (API)
layer to abstract the interaction with the code and pro-
vide a uniform interface across various programming lan-
guages, e.g. C/C++ and Python; a set of user interfaces
to enable fast and easy interaction with simulations, pow-
erful real-time visualization and post-processing features,
for instance visualization of 2D and 3D magnetization
vector fields with corresponding isosurfaces and visual-
ization of eigenmodes.

The visualization of Spirit is available as a standalone
library called VFRendering,16 which utilizes advanced
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FIG. 1. The general structure of the framework, which is
separated into a core library with an application programming
interface (API) layer and a set of user interfaces (UIs). The
core library handles input/output and calculations, while the
API layer provides an abstract way of interacting with the
code through several programming languages. The UIs pro-
vide direct control of calculations, as well as real-time visu-
alization and post-processing features. The back end for nu-
merical calculations can be used in single-threaded and CPU-
as well as GPU-parallel calculations.

features of modern OpenGL, e.g. shaders, available since
version 3.2. Note that the images of spin systems in
Figs. 3 and 8 have been generated using the graphical
user interface of Spirit. Other examples of the visualiza-
tion features of Spirit can be found in Refs. 13, 17–19.
Spirit has also been used for numerical calculations in
Refs. 1, 13, 20, and 21.

As the API layer is written in the C programming lan-
guage, many other languages can be used to call the cor-
responding functions. The core library can thus be used
in many different contexts. An illustration of this flexi-
bility is the implementation of an additional, web based
user interface,22 using JavaScript to call Spirit and We-
bGL to display the simulated system. The desktop GUI
can be used to control parameters in the calculation, such
as system size or interaction parameters – useful for fast
testing and setup – as well as for direct interaction with
the spin textures. The latter is highly useful, for example
in setting up complex initial states10 or rectifying calcula-
tions, such as GNEB paths that have diverged from their
intended transition. In order to increase productivity in
repetitive or long-timescale calculations, Spirit can be
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used in Python scripts. Such scripts allow to reproduce
all steps which can be taken in the GUI, thus enabling the
flexible and effective use of clusters and remote machines.
Sample Python scripts can be found in the code repos-
itory5. Note that the ability to use Spirit from Python
also enables a straightforward integration into multiscale
simulations and workflow automation frameworks, such
as ASE23 or AiiDA.24 Documentation of input, features
and the APIs, as well as examples of usage can be found
online.5
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FIG. 2. Iterations per second of a LLG simulation over side
length L of a simple cubic system for 1 thread, 10 threads
and on a GPU. The CPU parallelization consistently increases
performance by almost an order of magnitude. By using a
GPU, another order of magnitude can be gained for large
system sizes, while the GPU performance at small system
sizes is limited by the overhead of CUDA kernel launches.
Calculations were performed on a Linux system with an Intel
Core i9-7900X 3.30GHz and a NVIDIA GeForce GTX 1080.

The spin-lattice Hamiltonian, as well as all imple-
mented methods and solvers have been abstracted from
the specifics of numerical operations, allowing a generic
backend, which can optionally use OpenMP for CPU
parallelization or CUDA for GPU parallelization. The
performance of a simple LLG simulation over different
system sizes, including dipolar interactions, is shown in
Fig. 2. The performance gain of the parallelization over
the single-threaded case is obvious as 10 cores give almost
an order of magnitude across a broad range of system
sizes and the GPU can give another order of magnitude
at larger system sizes. As expected, the speed drops with
the system size. Note that when dipolar interactions are
included, due to the usage of FFTs, iterations can be
slowed down if a side length of the system is not a power
of two.

III. MODEL AND METHODS

A. Hamiltonian

In Spirit, we implemented an extended Heisenberg
Hamiltonian25,26 of classical spins ni of unit length lo-
cated at lattice sites i giving rise to the magnetic moment

mi = µini. The general form

H =−
∑
i

µiB · ni −
∑
i

∑
j

Kj(K̂j · ni)2

−
∑
〈ij〉

Jijni · nj −
∑
〈ij〉

Dij · (ni × nj)

+
1

2

µ0

4π

∑
i,j
i6=j

µiµj
(ni · r̂ij)(nj · r̂ij)− ninj

rij3
,

(1)

includes (i) the Zeeman term describing the interaction
of the spins with the external magnetic field B, (ii) the
single-ion magnetic anisotropy, where K̂j are the axes
of the uniaxial anisotropies of the basis cell with the
anisotropy strength Kj , (iii) the symmetric exchange in-
teraction given by Jij and the antisymmetric exchange,
also called Dzyaloshinskii-Moriya interaction, given by
vectors Dij , where 〈ij〉 denotes the unique pairs of inter-
acting spins i and j, (iv) the dipolar interactions, where
r̂ij denotes the unit vector of the bond connecting two
spins.

Quite often, the number of pairs for the exchange in-
teractions is limited to nearest or next-nearest neighbors
only. In Spirit the implementation of the Hamiltonian (1)
does not assume any limitation on the number of or dis-
tance between such pairs, meaning that long-ranged and
non-isotropic interactions can be considered.

Additionally, higher-order multi-spin-multi-site inter-
actions27 are implemented in Spirit as quadruplets of the
form

EQuad = −
∑
ijkl

Kijkl (ni · nj) (nk · nl) . (2)

These can represent the 4-spin-2-site28 (also called bi-
quadratic), the 4-spin-3-site,29 and the 4-spin-4-site30
(also called "4-spin") interactions.

Both the system geometry and the underlying lattice
symmetry can be chosen arbitrarily by setting the Bravais
vectors and basis cells with any given number of atoms.
Spirit also allows the pinning of individual spins or a set
of spins, for instance belonging to the boundary layers.
One can also introduce defects, such as vacancies and
atoms of different types.

Dipolar interactions. The dipole-dipole interaction,
due to its long-ranged nature, represents the most com-
plex contribution to the Hamiltonian (1). Direct sum-
mation over all interacting spins is of complexity O(N2),
where N is the number of spins, resulting in dramatic
decrease of performance of the simulations. By making
use of fast Fourier transforms (FFTs) and the convolu-
tion theorem, the computational complexity can be re-
duced to O(N logN). This convolution method is well-
known in micromagnetic simulations,31 based on a finite
difference scheme. To treat arbitrary spin lattices with
any given number of atoms in the basis cells, we use an
adapted version of this method. In particular, we con-
sider sublattices composed of atoms with the same index
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FIG. 3. Helicity (3) of a ferromagnetic cube, composed
of 50× 50× 50 spins on a simple cubic lattice with constant
a = 1Å and nearest-neighbor exchange of J = 16.86 meV.
The stray-field induced helicity ν (circles) and ν2 (triangles)
are shown in dependence on the reduced external magnetic
field h. Both ν and h = B/(µ0Ms) are unitless parameters,
with the saturation magnetisation density Ms. The fitted
curves (solid lines) show that the dependence of ν2 close to
the critical field is approximately linear and they give a critical
field value of hc = 0.159 – which matches the expected value
of hc = 0.158, as shown in Ref. 34, within 1%. The two insets
show illustrations of how the cube will be magnetized at h = 0
(left) and h = 0.1 (right).

in the basis cell. One FFT is performed on each of these
sublattices and additional convolutions are required to
describe the interactions between the sublattices. An ef-
ficient implementation of this scheme is achieved using
high performance, robust FFT libraries.32,33

To verify our implementation of dipolar interactions,
we compared it to the direct evaluation of the sum for
random configurations with spatially non-symmetric ba-
sis cells and checked the convergence of the stray field of
a homogeneously magnetized monolayer against the an-
alytically known result. Here, we show that Spirit cor-
rectly reproduces the solution of typical problems, e.g.
Ref. 34, by calculating the stray field-induced helicity of
a ferromagnetic cube. The helicity is defined as the ab-
solute value of the line integral over the curve C which
is composed of the upper edges of the cube:

ν =

∣∣∮
C
n · ds

∣∣∮
C
|ds|

. (3)

In the atomistic case this is discretized into the appro-
priate sums.

The energy minimization was performed using a
Verlet-like velocity projection method (see Appendix D).
The results are shown in Fig. 3. The squared helicity is
expected to approach the critical field linearly, so that a
line can be fitted to extract the precise result from the
calculations. We note that the resulting critical field con-
verges to the expected value of hc = 0.158 with increasing
resolution of the grid, where a cube with 303 lattice sites
already gives an agreement within 2% and the shown ex-
ample with 503 sites a discretization error of less than

1% with respect to the continuum solution.
Topological charge. When the order parameter of

the system represents a smooth unit vector field n(r),
defined at any point of 2D space, r∈R2, the field config-
urations corresponding to localized solutions (n(r)→ n0

for |r| → ∞) can be classified using the topological con-
cept of homotopy. The whole domain of definition
of the order parameter can be mapped to an S2 sphere:
R2 ∪ {∞}↔S2. Note, the space of the order parameter
n(r), which in magnetic systems represents a magnetiza-
tion field n(r) =m(r)/µ, is also a sphere S2

n. The map
S2 → S2

n leads to a homotopy classification of localized
solutions in 2D with the topological invariant

Q =
1

4π

∫
R2

n · (∂xn× ∂yn) dr . (4)

Any localized solutions with an identical integer index
Q belong to the same homotopy class. It means that
such vector fields can be continuously transformed into
one another – without the appearance of singularities.
An example of a large variety of topologically nontrivial
solutions with |Q| ≥ 1 are the skyrmions in the con-
ventional model of chiral magnets which were recently
discussed in Ref. 35. Topologically trivial magnetic con-
figurations have Q = 0 and irrespective of morphology
they can always be continuously transformed into the
collinear state, n(r) = n0. Note, the homotopy classifi-
cation is not applicable to vector field configurations with
noninteger Q.

To avoid ambiguity, in the calculation of the topolog-
ical index with equation (4) one should follow the sign
convention assuming that the polarity of the solutions
always obey the condition n0 =(0, 0, 1) for |r|→∞.36

B. Monte Carlo

The Monte Carlo method is well-known in Physics
and has a broad range of applications.37 We have imple-
mented a basic Metropolis algorithm with a cone angle
for the displacement of the spins.11,38 This requires only
the calculation of the energy, making it the most straight-
forward method of those implemented in Spirit. While
it is a useful tool to calculate equilibrium properties, the
drawback is that it cannot resolve time-dependent pro-
cesses.

One iteration of the Metropolis algorithm will sequen-
tially – but in random order – pick each spin in the sys-
tem once and perform a trial step. Trial steps are pre-
formed by defining a relative basis in which the current
spin is the z-axis and choosing a new spin direction by
uniformly distributed random variables ϕ ∈ [0, 2π] and
cos(θ) ∈ [0, cos(θcone)], where θcone is the opening angle
of the cone. The trial step is accepted with a probability

P = e−∆E/kBT , (5)

where ∆E is the energy difference between the previous
spin configuration and the trial step. The cone angle can
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FIG. 4. A 30× 30× 30 ferromagnet with J = 1 meV, with
an expected critical temperature of TC ≈ 16.71 K. Normalized
values of the total magnetization M , susceptibility χ, specific
heat CV and 4th order Binder cumulant U4 are shown. The
magnetization is fitted with M(T ) = (1− T/Tc)

b. At each
temperature, 104 thermalisation steps were made before tak-
ing 105 samples. Monte Carlo calculations give Tc ≈ 16.60 K
– an agreement with expectation within 1%. The exponent is
fitted with b ≈ 0.33. The inset shows the Binder cumulants
for system sizes of L = 30, L = 20, L = 15 and L = 10, giving
an intersection at TI = 16.5±0.25, which is an excellent agree-
ment with the expected value of Tc within the temperature
step of 0.5 K.

be set by an adaptive feedback algorithm according to a
desired acception-rejection ratio.

Using this method, one can, for example, calculate the
critical temperature of a spin system. It is known that the
isothermal susceptibility is related to the magnetization
fluctuations39

χ =
1

kBT

(
〈m2〉 − 〈m〉2

)
, (6)

where m = 1
N |
∑
i ni| is the average magnetization of the

sample, while the specific heat relates to fluctuations of
the energy

CV =
1

kBT 2

(
〈E2〉 − 〈E〉2

)
, (7)

where both should diverge at the critical temperature Tc

for a phase transition, e.g. to the paramagnetic phase.
The 4th order Binder cumulant40, which is often used to
avoid finite size scaling effects, is defined as

U4 = 1− 〈m4〉
3 〈m2〉2

. (8)

Fig. 4 shows these quantities as results of a Monte Carlo
calculation of a cube of 30× 30× 30 lattice sites for
J = 1 meV. For a simple cubic ferromagnet, from the
high-temperature expansion method,41 the critical tem-
perature is known to be42 Tc = 1.44 J/kB = 16.71 K.
The results shown in Fig. 4 demonstrate the validity of

the implementation, as the expected critical temperature
is matched with an error of less than 1%.

Note that in Monte Carlo methods, the parallel tem-
pering algorithm has proven to be an effective tool. 43–45
The usage of Python and an MPI package would enable
one to quite easily reproduce this algorithm in a Python
script using Spirit.

C. Landau-Lifshitz-Gilbert Dynamics

The Landau-Lifshitz-Gilbert (LLG) equation46,47 is
the well-established equation of motion for the dynamical
propagation of classical spins. In its explicit form and in-
cluding spin torque and temperature contributions,48,49
it can be written

∂ni
∂t

=− γ

(1 + α2)µi
ni ×Beff

i

− γα

(1 + α2)µi
ni × (ni ×Beff

i )

− α− β
(1 + α2)

uni × (ĵe · ∇r)ni

+
1 + βα

(1 + α2)
uni × (ni × (ĵe · ∇r)ni) ,

(9)

in which the terms correspond to (i) precession,
(ii) damping, (iii) precession-like current-induced spin
torque, and (iv) damping-like current-induced spin
torque. γ is the electron gyromagnetic ratio, α is the
damping parameter, Beff

i is the effective field, β is a non-
adiabaticity parameter, u = jePgµB/(2eMS) with je the
current density, P the polarization of the current, e the
electron charge and MS the saturation magnetization, ĵe
is the electron current normal vector, and ∇r = ∂/∂r is
the spatial gradient acting on the spin orientation. The
effective field always contains a component related to the
energy gradient Beff

i = −∂H/∂ni, but in this notation
for the LLG equation, the effective field may contain also
a stochastic thermal field, i.e. Bi → Bi +Bth

i , given by

Bth
i (t) =

√
2Diηi(t) =

√
2αkBT

µi
γ
ηi(t) , (10)

where the magnitude is given by the fluctuation-
dissipation theorem and ηi is white noise, such that the
ensemble average and variance of the thermal field ful-
fill 〈Bth

iα(t)〉t = 0 and 〈Bth
iα(t)Bth

jβ(0)〉
t

= 2Diδijδαβδ(t)

respectively. To achieve these properties in an implemen-
tation, the vectors ηi(t) can each be created from three
independent standard normally distributed random val-
ues at every time step. Note also that in time-integration
schemes, to fulfill the fluctuation-dissipation relation, the
thermal field needs to be normalized by the time step
with a factor 1/

√
δt. For more details on the integration

of the stochastic LLG equation see for example refer-
ences 51–53 and references therein.

Sampling of the stochastic LLG for the same param-
eters as shown in Fig. 4 is presented in Appendix E,
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FIG. 5. LLG calculation (top) and numerical error (bottom)
of a single spin in an external magnetic field of B = 1 T with
a damping of α = 0.1 and a timestep of dt = 10 fs, using
the Depondt method. The error is the difference between the
numerically calculated value and the analytical solution (11).
Note that the error may depend strongly on the time step and
damping. While the Heun method matches well with results
shown in Ref. 9, giving an error within 10−6, the Depondt
method shows a lower error of around 3× 10−7 with respect
to the analytical solution.

verifying the implementation and the equivalence of the
stochastic LLG and Monte Carlo methods.

In order to evolve a spin system in time according to
this equation, quite a few well-known solvers can be ap-
plied. In Spirit, currently Heun’s method,11 a 4th or-
der Runge-Kutta solver, Depondt’s Heun-like method54,
and Mentink’s semi-implicit method B (SIB)51 are im-
plemented (see Appendices B and C for details). These
methods can also be used for energy minimization by
considering only the damping part of the LLG equation.
However, experience has shown that a Verlet-like veloc-
ity projection solver12 can greatly improve convergence
to the closest energy minimum, as it carries a fictive mo-
mentum (see Appendix D for details).

An easy test for the validity of the implemented dy-
namics solvers is the Larmor precession and the damping
of a single spin in an external magnetic field, as shown in
Fig. 5. The analytical equations with which the results
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FIG. 6. The average velocity of head-to-head domain wall
(see top) for various values of the non-adiabatic parameter β.
For β = 0.10 the Walker breakdown occurs at approximately
uW ≈ 0.01. For β = 0 a critical current is at uc ≈ 0.0414.
From this point the relation 〈v〉 =

√
u2 − u2

c/(1 + α2) men-
tioned by Thiaville et al.55 takes effect. The mentioned rela-
tion is fitted to the data for β = 0. For β = 0.1 and currents
under the walker breakdown and β = 0.02 the dashed lines
show linear fits. Open symbols denote rotation around the
x-axis. The results from Ref. 49 are reproduced well.

can be compared are

nz(t) = tanh

(
αγ

(1 + α2)µ
|B|t

)
ϕ(t) =

γ

(1 + α2)µ
|B|t

nx(t) = cos(ϕ(t))
√

1− n2
z(t) .

(11)

The errors of the Depondt solver, shown in Fig. 5, match
those of an equivalent calculation given in Ref. 9.

In order to verify our implementation of spin current
induced torques, the results from Ref. 49 on the velocity
of a domain wall in a head-to-head spin chain were repro-
duced for various non-adiabatic parameters β. The chain
is oriented along the x-axis and the first and the last spin
are fixed in +x and −x direction, respectively. As a sub-
set of the general Hamiltonian (1), the Hamiltonian for
this example can be written as follows:

H = −
∑
i

K1n
2
ix +K2n

2
iy − J

∑
〈ij〉

ni · nj . (12)

The reference provides analytical equations against which
the numerical results were checked. In Fig. 6 we show the
data for the average domain wall velocity 〈v〉 over ap-
plied current u in normalised units. The approximate
prediction55 〈v〉 =

√
u2 − u2

c/(1 + α2) fits the results
well, as shown in Fig. 6. As expected, we observe the
Walker breakdown56 and a critical effective velocity of
uc ≈ 0.0414, which is in close agreement with the re-
ported value of uc ≈ 0.0416. Note, for β = 0.1 and
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currents larger than uW , as well as for β = 0 and cur-
rents larger than uc, the wall starts rotating around the
x-axis.

D. Geodesic Nudged Elastic Band Method

When determining the rates of some rare transition
events or the lifetimes of metastable magnetic states,
LLG dynamics simulations typically are typically unfea-
sible due to the disparity between the time scales of the
simulation and the transition events. An approach to this
problem is given by a set of rate theory methods, namely
the geodesic nudged elastic band12 (GNEB) and mini-
mum mode following13 (MMF) methods together with
harmonic transition-state theory14 (HTST). The latter
two are higher order methods, requiring knowledge of the
second derivatives of the energy – the Hessian matrix –
and will be described in the following sections.

The GNEB method is a way of calculating minimum
energy transition paths between two pre-determined con-
figurations. The path is discretized by a number of spin
configurations, in the following called images. In order
to converge from an initial guess to a stable, energy-
minimized path, spring forces are applied along the path
tangents, while energy gradient forces are applied orthog-
onal to the path tangents. The total force therefore reads

F tot
ν = F S

ν + FE
ν , (13)

where ν is the image index along the chain, F S is a spring
force, and FE

ν is an energy gradient force. The forces in
this section are 3N -dimensional vectors. A simple def-
inition of the spring force, which gives an equidistant
distribution of images in phase space, is given by

F S
ν = (lν−1,ν − lν,ν+1) τν , (14)

where lν,µ is a measure of distance between images ν and
µ and τν is the (normalized) path tangent at image ν.
The FE

ν should pull each image towards the minimum
energy path, while leaving the distance to other images
unchanged. They can be defined to be orthogonal to the
path by orthogonalizing with respect to the tangents

FE
ν = −∇Eν + (∇Eν · τν)τν , (15)

where ∇i = ∂/∂ni. The path tangents can be easily
approximated by finite differences between spin configu-
rations, but in order to avoid the formation of kinks in
the path the definitions given in Ref. 57 should be used.

In order to precisely find the point of highest energy
along the minimum energy path, a first order saddle
point of the energy landscape, one can use a so-called
climbing image (CI).58 Convergence onto the saddle point
is achieved through the deactivation of the spring force
for that image, while inverting the energy gradient force
along the path:

F S,CI
ν = 0, FE,CI

ν = −∇Eν + 2(∇Eν · τν)τν . (16)
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FIG. 7. An illustration of the GNEB method for a single spin
system (the Hamiltonian and corresponding parameters are
given in Appendix G). The two-dimensional energy landscape
is shown superimposed on a unit sphere. The initial guess
(green), relaxed path (blue), and final path using climbing
and falling images (red) are shown.

This will cause it to minimize all degrees of freedom, ex-
cept the tangent to the path, which is instead maximized.

So far, the definitions match those of the regular NEB
method. In order to use the NEB method for spin sys-
tems, it is necessary to consider the constraint of constant
spin length and treat tangents and force vectors accord-
ingly.12 For more details see Appendix F and H.

In order to verify and illustrate the GNEB method, we
show the example of a single spin in a set of Gaussian po-
tentials (see Appendix G). Fig. 7 shows the initial guess,
made by homogeneous interpolation between the initial
and final configuration, as well as a relaxed chain of im-
ages and a chain with two climbing and one falling image.
The climbing images converge onto the saddle points and
the falling image onto an additional local minimum, so
that the energy barriers are known exactly.

The implementation of the GNEB method can be fur-
ther tested using a conceptually simple process, which
has enough degrees of freedom to pose a challenge for
convergence: the destruction of a skyrmion tube in a chi-
ral magnetic thin film. The parameter set is chosen in
accordance with a calculation presented in Ref. 59, where
a novel particle-like state is shown to emerge along the
minimum energy path – the chiral bobber. The nucle-
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FIG. 8. The skyrmion tube (SkT) is either cut in half by
the nucleation of a pair of Bloch points in the center (red
minimum energy path) or separated from the upper surface
by nucleation of a single Bloch point (blue minimum energy
path). At a field strength of H = 0.8 HD, both processes
have almost equal energy barriers of ∆Ecenter = 23.13 J and
∆Esurface = 22.81 J . A chiral bobber is formed (two when the
skyrmion tube is cut in half), whose collapse has an energy
barrier of ∆Ebobber = 7.55 J . Note that the slight differences
in the collapse of the chiral bobber between the two paths
come from different initial paths.

ation of a pair of Bloch points, cutting the skyrmion tube
in half, is reported, resulting in the formation of one chi-
ral bobber at each surface of the film. In fact, as we
show in Fig. 8, also a single Bloch point can be nucleated
at one of the films free surfaces. For these calculations
the specific parameters are J = 1 meV and D = 0.45 J ,
meaning that the incommensurate spin spiral has a pe-
riod of LD = 13.96 a. We note that the conical phase
background – corresponding to the ground state of the
system – introduces additional modes with little energy
cost associated and this can slow the convergence to the
minimum energy path. The climbing-image method58
was used to converge nearby images onto the maxima
along the path. Analogous to a suggestion in Ref. 58,
the spring forces were modified to distribute the images
evenly along the energy curve. The latter improves the
convergence onto the maxima, as the resolution for the
finite-difference calculation of the tangents at the saddle
points is increased. As it is common to calculate cubic
polynomials to interpolate between the discrete points,
the segment length of these polynomials can be used for
the spring forces between the images. In Spirit, an ad-
ditional parameter is implemented, with which one can
set the weighting of energy versus reaction coordinate.
Without the climbing image method, energy barrier cal-
culations may be quite imprecise, especially when the
resolution near the maximum is low. This is illustrated
by the fact that we observe a ratio of the energy barriers
between the collapse of the bobber and the Bloch point

0.65 0.7 0.75 0.8 0.85 0.9 0.95

0
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20

30

B/BD

∆
E
[J
]

BP at surface
BP in center

Bobber nucleation
Bobber collapse

FIG. 9. Energy barriers for the nucleation of Bloch points at
the surface (blue circles) and in the center (green square), as
well as the nucleation (red triangles up) and collapse (red tri-
angles down) of a chiral bobber for a cube of size 30× 30× 30
over applied magnetic field H. Periodic boundary conditions
are applied in the xy-plane. The BP nucleation at the sur-
face and center represents collapse of a skyrmion tube, while
the bobber nucleation represents the creation of a BP in an
otherwise homogeneous sample.

nucleation of only 3.3, while Ref. 59 – not using climbing
images – reports a ratio of 4.3.

The GNEB calculations reveal a crossover between the
two Bloch point nucleation mechanisms, where at in-
creasing field it becomes favorable to nucleate just one
Bloch point at the surface. It can further be seen that
the energy barrier for the collapse of the bobber goes to
zero right below the critical field HD, meaning that – in
the frame of this model – it can only be stabilised in the
conical phase. In order to give additional quantitative
reference results for this parameter set, the dependence
of the energy barrier on the external magnetic field is also
presented in Fig. 9.

E. Harmonic Transition-State Theory

As certain processes may be too rare or the desired
time scale, which is to be simulated, too large to allow
for dynamical simulations, other approaches are essential
in estimating stability and the calculation of lifetimes of
metastable magnetic states. One can employ the well-
known transition-state theory,60 which has been used ex-
tensively, e.g. in chemical reaction and diffusion calcula-
tions.61 The rate of transitions can be estimated from the
probability of finding the system in the most restrictive
and least likely region separating the initial state from
possible final states – the transition state, sometimes also
called dividing surface. Within the harmonic approxima-
tion to transition-state theory14 (HTST), one can make
simplifications allowing the analytical calculation of the
transition rate. The rate is then given by an Arrhenius-
type law with an exponential dependence on the inverse
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FIG. 10. Lifetime τ = 1/ΓHTST of an isolated skyrmion
in a periodic two-dimensional system, with J = 1 meV and
D = 0.6 meV, as a function of temperature T and external
magnetic field H. The lifetime is given on a logarithmic scale
with isolines ranging from 1 ps up to 1 year. Due to the fact
that only a single transition mechanism is taken into account,
the structure of the graph is simple.

temperature T and the energy barrier of the transition
∆E, as well as more complicated pre-exponential factors:

ΓHTST =
v

2π
Ω0e

−∆E/kBT , (17)

wherewith

Ω0 =

√
det′HM

det′HS
=

√√√√√
∏′

i
λM
i∏′

i
λS
i

, (18)

v =
√

2πkBT
NM

0 −N
S
0 V S

V M

√∑′

i

a2
i

λS
i

, (19)

where the M and S superscripts indicate the minimum
and first order saddle point of the transition. The λi are
eigenvalues of the Hessian matrix (see Appendix H), V
are the phase space volumes of zero modes (if present,
otherwise V = 1), N0 are the number of zero modes –
modes with zero eigenvalue – and ai are coefficients in the
expansion of the velocity along the unstable mode. The
primes next to determinants, products, and sums denote
that only positive eigenvalues are taken into account.

The factors ai are in fact velocities: the first row of
the dynamical matrix V transformed into the eigenbasis
of the Hessian according to

V|2N = ΛTTTV|3NTΛ , (20)

where T is a 3N × 2N basis matrix of the tangent space
and Λij denote the matrix of the Hessians eigenvectors (in
2N -representation, i.e. in the basis T ). See Appendix H
for more information.

The implementation has been verified against
UppASD ,8 and we additionally present an example for
the calculation of the lifetime τ of an isolated skyrmion

in a two-dimensional system. As parameters we chose
J = 1 and D = 0.6 J and only the radial collapse
mechanism is considered, making for a simple structure
of the dependence on external field and temperature.
Note that this example is purely illustrative and while
larger skyrmions would exhibit longer lifetimes, the
parameters are chosen to produce a small skyrmion in
order to reduce the computational effort. Fig. 10 shows
the results for an external field varied between 3.5 T
and 5 T and temperature between 2 K and 5 K. HTST
as well as Langers theory,62 which is closely related,
have recently both been used to calculate skyrmion
lifetimes.63–65 These calculations show that energy
barriers are in general not sufficient for the estimation
of the stability of metastable magnetic states and the
entropic contributions in the pre-exponential factors can
have a significant impact.

There are two translational zero modes at the initial
state minimum, while – due to the lattice discretisation
and the defect-like shape of the skyrmion at the sad-
dle point – there are no zero modes at the saddle point.
Consequently, the transition rate prefactor has a linear
temperature dependence.

F. Minimum Mode Following Method

To find the first order saddle points on the energy sur-
face, without prior knowledge of the possible final states,
the minimum mode following method13 can be used. The
effective force acting on a spin configuration is defined as

F eff = F − 2(F · λ̂)λ̂ , (21)

where F = −∇H is the negative gradient of the energy
and λ̂ is the normalized eigenvector corresponding to the
lowest, negative eigenvalue of the Hessian matrix of sec-
ond derivatives. Note that these vectors and the dot
product are 3N -dimensional for a system with N spins.

The calculation of second derivatives requires fur-
ther attention, as the requirement of constant length
effectively constrains the spins ni to a sub-manifold
Mphys ⊂ E of an embedding space E = R3N . As
is shown in Ref. 13, the covariant second derivatives,
valid at all points of the phase space, can be calculated
using a projector-based approach.66 The corresponding
2N × 2N Hessian matrix can be represented as

Hij = TTi H̄ijTj − TTi I(nj ·∇jH̄)Tj , (22)

where i and j are spin indices, H̄ is the smooth con-
tinuation of the Hamiltonian to the embedding space,
H̄ij = ∂2H̄, I is the 3× 3 unit matrix and Ti is a 3× 2
matrix that transforms into a tangent space basis of spin
i. As the Hessian matrix (22) is represented in the 2N -
dimensional tangent basis, the evaluation of an eigen-
mode in the 3N -representation of the embedding space
E requires a transformation back, i.e. λ|3N = Tλ|2N .



10

a)

b)

FIG. 11. A single spin under the exchange and DMI in-
teraction with another spin. The energy landscape is two-
dimensional and is projected onto a sphere. a) the gradient
force field, pointing away from the maximum and towards the
minima. b) the effective force field, pointing towards the sad-
dle point. The resulting paths for four different starting points
are shown (black, gray and white lines). See Appendix I for a
visualization of the corresponding minimum mode directions.

Further details on the above mathematical concepts and
notations can be found in Appendix H.

For a single spin, the energy landscape and force vec-
tors can be visualized easily as the phase space is two-
dimensional. An illustration of the method is shown in
Fig. 11 for a system consisting of one movable spin inter-
acting with a second, pinned spin. The parameters of the
Hamiltonian are, relative to the exchange constant J ,

K = 4J , D = (0, 0, 1J) , (23)

where the anisotropy K is used to reduce the symmetry
of the energy landscape. The figure illustrates how the
minimum mode can be used to invert the right part of
the gradient force in order to obtain a force that directs
the system to a first order saddle point.

The test of a larger and far more complex system has
been given in Ref. 13, where the minimum mode follow-
ing method revealed the existence of a skyrmion dupli-
cation mechanism. By defining the force field in the
above way, previously unknown transition mechanisms
can be found and subsequently used in the calculation
of lifetimes. Applying this saddle point search method
to three-dimensional systems will likely identify an even
larger variety of mechanisms, as the additional dimension
can significantly increase the amount of possible transi-
tions.

IV. CONCLUSIONS

The functionality of a comprehensive simulation frame-
work, Spirit, for studies of atomic scale magnetic systems
is presented and various example applications described.
It is an open source software written in the C++ pro-
gramming language and is available for free under the
so-called MIT license (see Ref. 5). Spirit is a very flexi-
ble, high-performance, and interactive tool, able to sim-
ulate for example ferromagnets, antiferromagnets, syn-
thetic antiferromagnets, ferrimagnets, noncollinear mag-
netic structures, vortices or skyrmions. Arbitrary geome-
tries and interactions can be described, such as bulk sys-
tems, thin films, exchange bias, multilayers, nanotubes or
core-shell nanoparticles. The computational domain can
be treated by open and periodic boundary conditions and
can be subjected to external magnetic fields, temperature
and spin-current induced torques. Due to the fact that
it can be used with the Python programming language,
Spirit can integrate perfectly into multiscale simulations
and workflow automation frameworks, such as ASE23 or
AiiDA.24 It can be used on most common architectures,
such as desktop and laptop computers, clusters or su-
percomputers and even current day mobile devices. The
calculations can be parallelized both on CPUs and GPUs.

Various simulation methods have been implemented,
including Monte Carlo, Landau-Lifshitz-Gilbert dynam-
ics, Langevin dynamics, geodesic nudged elastic band and
minimum mode following methods as well as the calcula-
tions of transition rates and lifetimes within the harmonic
approximation to transition-state theory. The basic algo-
rithms of these methods have been outlined, their imple-
mentation verified and applications to several systems,
such as vortices, domain walls, skyrmions and boobers
are described. The parameters of the simulation can be
set and modified in real time through a graphical user
interface and the output of the simulations can be visu-
alized easily.

We note that a micromagnetic description of the en-
ergetics could easily be implemented in Spirit and the
micromagnetic calculations would then be able to make
use of the various simulation methods and visualization
features.
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Appendix A: Determination of topological charge
for spin density on a lattice

For the proper definition of the topological charge of
a discrete lattice of spins n(xi, yi), where i runs over all
lattice sites, we follow the definition given by Berg and
Lüscher,50 and arrive at the following expression:

Q =
1

4π

∑
l

Al, (A1)

with

cos

(
Al
2

)
=

1 + ni · nj + ni · nk + nj · nk√
2 (1 + ninj) (1 + njnk) (1 + nkni)

(A2)
where l runs over all elementary triangles of any trian-
gulated regular lattice, and Al is the solid angle, i.e. the
area of the spherical triangle with vertices ni, nj , nk,
see Fig. 12. The sign of Al is determined as sign (Al) =
sign [ni · (nj × nk)].

The sites i, j, k of each elementary triangle are num-
bered in a counter-clockwise sense relative to the surface
normal vector r̂⊥ pointing in positive direction of the z-
axis. The latter means that the numbering should satisfy
the condition r̂⊥ ·(rij×rik) > 0, where rij is a connection
vector directed from lattice site i to j.

The parameter Al can be thought of as local topolog-
ical charge density, which takes values in the range of
−2π < Al < +2π. According to Berg and Lüscher,50
there is a set of exceptional spin configurations for which
Q is not defined but still measurable as Al in (A2) is de-
fined for all possible spin configuration. The exceptional
spin configurations correspond to the case when a spheri-
cal triangle degenerates to a great circle Al = 2π. In this
case the orientation of Al becomes ambiguous and the
position of these elementary triangles l∗ are considered
as exceptional configurations or topological defects of a
two-dimensional magnetic structure.

FIG. 12. Fragment of hexagonal lattice of magnetic spins,
which illustrates the definition of the topological charge on a
discrete lattice as given in the main text. Al is the area of
a spherical triangle defined by vectors ni, nj , nk located at
the vertices of a triangle of lattice points (indicated shaded).

These topological defects satisfy the following condi-
tion:

ni · (nj × nk) = 0, and |ni + nj + nk| ≤ 1. (A3)

The elementary triangle l∗, for which the condition (A3)
is satisfied, can be considered as the position at which

the localization of a topological defect takes place. It
is important to note that the definition of the topologi-
cal charge given above remains correct only for spatially
extended two-dimensional systems. This means that a
topological analysis of the spin structure on a finite size
domain is only defined if periodical boundary conditions
are present. In the case of open boundary conditions,
strictly speaking, the topological charge is not defined.

Appendix B: Heun’s solver

To simplify the following discussion, we write the LLG
equation (9) as

∂ni(t)

∂t
= ni(t)×Ai (t, {nj(t)}) , (B1)

where {nj} is the set of all spins and we keep the ex-
plicit time-dependence of Ai, as the Hamiltonian can be
time-dependent, for example when an AC magnetic field
is used. Heun’s method is a common and illustrative way
to solve ordinary differential equations (ODEs) by first
calculating an intermediate prediction step and then “av-
eraging” to obtain the final approximation. Denoting the
time step δt, for an ODE of the form

∂y(t)

∂t
= f(t, y(t)) , y(t0) = y0 , (B2)

the predicted value yp is first calculated as

yp(t+ δt) = y(t) + δtf(t, y(t)) (B3)

and then the approximation for the next step as

y(t+ δt) = y(t)

+ δt
f(t, y(t)) + f(t+ δt, yp(t+ δt))

2
.

(B4)

When applied to the LLG equation, where f=̂n×A, this
integration scheme obviously does not intrinsically pre-
serve the spin length, requiring the re-normalization of
the vectors ni after a given number of iterations, depend-
ing on the required precision. Note that Heun’s method
falls into the category of Runge-Kutta methods, which
function analogously and therefore all have this property.

In order to improve on this, Ref. 54 proposes to make
use of the fact that the spins are only allowed to rotate,
by writing an appropriate rotation matrix Ri, which is
calculated directly from the field Ai. Applied to Heun’s
method, the prediction step (B3) reads

n pi (t+ δt) = Ri (Ai(t, {nj(t)})) ni(t) . (B5)

To perform the correction step (B4), one needs the cor-
rection field Ac, which is calculated from the average of
the initial and predicted fields:

Ac
i =

Ai(t, {nj(t)}) +Ap
i (t+ δt, {npj (t+ δt)})
2

(B6)
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From this, in turn, the rotation matrix for the correction
step Rci (Ac

i ) is obtained and the final step of the scheme
reads

ni(t+ δt) = Rci (Ac
i ) ni(t) . (B7)

Higher order Runge-Kutta schemes could apply this ap-
proach analogously.

Appendix C: Semi-implicit midpoint solver

The semi-implicit scheme B (SIB), described in Ref. 51,
makes use of an implicit midpoint (IMP) structure.
In contrast to Runge-Kutta type schemes, such as de-
scribed in Appendix B, this intrinsically preserves the
spin length. IMP schemes solve differential equations of
the form y′(t) = f(t, y(t)), y(t0) = y0 (see Eq. (9) of the
main text) and an iteration step is defined as

y(t+ δt) = y(t) + δtf

(
t+

δt

2
,
y(t) + y(t+ δt)

2

)
. (C1)

For the LLG equation (B1) and a time step δt this leads
us to

ni(t+ δt) =ni(t) + δt
ni(t) + ni(t+ δt)

2
×

Ai

(
t+

δt

2
,

{
nj(t) + nj(t+ δt)

2

})
.

(C2)

The SIB scheme uses a predictor npi to reduce the implic-
itness of the equation above by removing the dependence
of Ai on nj(t + δt). To preserve the spin length the
predictor is obtained with the IMP structure.

npi (t+ δt) = ni(t)+δt
ni(t) + npi (t+ δt)

2
×

A(t, {nj(t)}) .
(C3)

Eq. (C3) can be rewritten as:

M · np(t+ δt) = MT · n(t) (C4)

with the matrix

M = I + skew(A) =

 1 −Az Ay
Az 1 −Ax
−Ay Ax 1

 . (C5)

The right hand side of Eq. (C4) can be easily calculated
as:

MTni = ni + ni ×Ai =: a . (C6)

To solve Eq. (C4) we use Cramer’s rule. The components
npi,α with α = x, y, z of npi are calculated with

npi,α =
det(Mα)

det(M)
(C7)

where Mα is the same matrix as M but column α is
replaced with the vector a, for example

Mx =

ax −Az Ay
ay 1 −Ax
az Ax 1

 . (C8)

We now use the predictor npi in the IMP step (C2) to
calculate ni(t+ δt):

ni(t+ δt) = ni(t) + δt
ni(t) + ni(t+ δt)

2
×

Ai

(
t+

δt

2
,

{
nj(t) + npj (t+ δt)

2

})
.

(C9)

The correction step is analogous to the prediction
step (compare eqs. (C3) and (C9)), meaning that the
scheme (C7) can be applied to obtain ni(t+ δt), too.

Appendix D: Velocity projection solver

This description is derived from Ref. 12. Verlet-like
methods generally find application in solving second or-
der differential equations of the form ẍ(t) = F (t, x(t)),
x(t0) = x0, ẋ(t0) = v0, such as Newtons equation of
motion. One formulation of this method is to increment
both the position and the velocity at each time step

x(t+ δt) = x(t) + δt v(t) +
1

2m
δt2 F (t) (D1)

v(t+ δt) = v(t) +
1

2m
δt(F (t) + F (t+ δt)) . (D2)

The velocity projection is used to accelerate convergence
towards local minima and to avoid overstepping due to
momentum. The velocity at each time step is damped
by projecting it on the force

v →

{
(v · F )F/|F |2, (v · F ) > 0

0 else
(D3)

Note that the dot product and norm in this equation
denote those of 3N -dimensional vectors.

To apply this scheme to the energy minimization of a
spin system, we therefore no longer solve the LLG equa-
tion, but instead pretend that the spins are massive par-
ticles moving on the surfaces of spheres. The force is then
simply

Fi = − ∂H
∂ni

. (D4)

As the method does not conserve the length of the spins,
they should be renormalized after each iteration

ni(t+ δt)→ ni(t+ δt)

|ni(t+ δt)|
(D5)

Note that this scheme, too, would most likely benefit
from the usage of rotations instead of displacements.
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Appendix E: Stochastic LLG
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FIG. 13. A 30× 30× 30 ferromagnet with J = 1 meV, with
an expected critical temperature of TC ≈ 16.71 K. The energy
per spin E and normalized values of the total magnetization
M , susceptibility χ, specific heat cV and 4th order Binder cu-
mulant U4 are shown. The value obtained from the simulation
is Tc ≈ 16.92 K – an agreement with expectation of 1.2%. The
exponent is fitted with b ≈ 0.33. At each temperature, 2 · 105

thermalisation steps were made before taking 106 samples.

Instead of Monte Carlo, one can also sample the
stochastic LLG equation over time. We present here the
results of such sampling for the same system and parame-
ters, as the example shown in Fig. 4. Recall the expected
critical temperature Tc = 1.44 J/kB ≈ 16.71 K. Fig. 13
shows the results.

The results shown in Fig. 13 demonstrate the validity
of the implementation, as the expected critical temper-
ature of TC ≈ 16.71 K is matched with an error of only
1%. Note, however, the higher number of samples (com-
pared to Monte Carlo) required to obtain this result: at
each temperature 2 · 105 thermalisation steps were made
before taking 106 samples.

Appendix F: GNEB tangents and forces

For spin systems, special care has to be taken due to
the fact that the phase space is curved (the spins are
restricted to unit spheres (see also Appendix H)). The
expression for lν,µ should not be the Euclidean distance
norm, but the geodesic (here, the great-circle) distance.
Further, the tangents τν need to lie in the tangent space
to their corresponding image. One may correct the tan-
gents for example by a simple projection, orthogonalizing
the corresponding 3-component subvectors with respect
to the spins

τν,i → τν,i − (τν,i · nν,i)nν,i . (F1)

After this, the tangent needs to be re-normalized τν →
τν/|τν |. This tangent projection is illustrated for a single

τ
*proj
ν

τ
*FD
ν

τ
*
ν

n*ν+1

n*ν−1
n*ν

FIG. 14. Schematic visualization of the projection of the
tangents for a single-spin system. After a tangent τFD

ν is
determined by finite difference calculation, it needs to be pro-
jected onto the tangent plane to the spin configuration so that
it correctly points along the path. This tangent is denoted
τprojν and can be calculated e.g. by removing the component
in the direction of the image, see Eq. (F1). Note that the tan-
gent vector τν needs to be normalized, which for a multi-spin
system needs to be performed in 3N dimensions.

spin in Fig. 14. As the spring forces are constructed from
tangent vectors, they are by definition in the tangent
space. Finally, for the energy gradient force, the same
scheme as for the tangents can be applied and we write
for each spin

FE
ν,i → FE

ν,i − (FE
ν,i · nν,i)nν,i . (F2)

Appendix G: GNEB Parameters of the single spin
system

The energy surface of the single-spin system, shown in
Fig. 7 in the main text to illustrate the geodesic nudged
elastic band method is defined for a single spin as a sum
of Gaussians of the form

H =
∑
i

Hi =
∑
i

ai exp

(
− (1− n · ci)2

2σ2
i

)
, (G1)

with parameters given in Table I.

TABLE I. Parameters of the Gaussians in the energy surface
of the single-spin system shown in Fig. 7 in the main text.

a σ cx cy cz

−1.10 0.06 −0.20 0.00 −0.90
0.80 0.15 −1.00 0.20 −0.20
−0.90 0.10 1.00 −0.20 −0.10

0.09 0.03 0.80 0.50 −0.80
0.15 0.07 0.80 −0.50 −0.70
−0.90 0.10 0.50 1.20 −0.40
−0.90 0.10 0.20 −0.90 −0.40

Appendix H: Details on the curved manifold

The following has been detailed in the supplementary
material of Ref. 13, but the key ideas are reproduced here.
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Both the HTST and MMF methods require the calcula-
tion and diagonalization of the Hessian matrix. However,
when treating Riemannian manifolds, the second deriva-
tives do not have an intrinsic geometrical meaning and
therefore need to be treated with special care.67 In a spin
system where the spin length is fixed, the manifoldMphys

of physical states is composed of the direct product of N
spheres

Mphys =

N⊗
i=1

S2 ⊂ R3N . (H1)

Hence, Mphys is a submanifold of the embedding eu-
clidean space E = R3N .

It turns out to be convenient to treat the spins and
derivatives with respect to their orientations in a 3N -
dimensional cartesian representation. This also avoids
problems of other representations, such as the singulari-
ties which arise at the poles of spherical coordinates. The
derivatives in the embedding space E are readily calcu-
lated by extending the Hamiltonian H, which is defined
onMphys to a function H̄ on E . While we denote the gra-
dient taken in the embedding space E as ∂H̄, the gradient
taken on the manifold Mphys has to lie in the tangent
space to the manifold, which we write as a projection
Px∂H̄. The Hessian matrix of second derivatives in the
embedding space E is denoted ∂2H̄.

In this extrinsic view onto the spin manifold, the co-
variant second derivatives can be extracted from a pro-
jector approach,66 where for any scalar function f on the
manifoldMphys, the covariant Hessian is defined as

Hess f(x)[z] = Px∂
2f̄(x)z +Wx(z, P⊥x ∂f̄) . (H2)

Wx denotes the Weingarten map, which, for a spherical
manifold, for any vector v at a point x is given by

Wx(z, v) = −zxT v , (H3)

where z is a tangent vector to the sphere at x. To calcu-
late the Hessian, we insert v = P⊥x ∂H̄ and retrieve

Wx(z, P⊥x ∂H̄) = −zxTP⊥x ∂H̄
= −zxTxxT∂H̄
= −zxT∂H̄ ,

(H4)

where xT∂H̄ is the scalar product of the spin with the
gradient.

To illustrate the implementation in Spirit,5 we switch
notation to matrix representation and drop the subscript
x. For spin indices i and j, the gradient ∂H̄ can be
written as a 3-dimensional object ∇iH̄ and the second
derivative ∂2H̄ as a matrix H̄. In Euclidean represen-
tation, the Hessian of Eq. (H2) becomes as a 3N × 3N
matrix

H|3N = (Hij |3N ) =

H11|3N H12|3N · · ·
H21|3N H22|3N · · ·

...
...

. . .

 (H5)

consisting of N2 blocks, each corresponding to a different
spin-spin subspace. It is obtained by acting with Eq. (H2)
on the euclidean basis vectors of the embedding space E .
These subspace matrices of size 3× 3 are given by

Hij |3N = PiH̄ij − δijInj ·∇jH̄ , (H6)

where I denotes the 3× 3 unit matrix.
The matrix H|3N of course describes 3N degrees of

freedom, while there can only be 2N physical eigenmodes
of the spins, spanning the tangent space to the spin con-
figuration. In order to remove the unphysical degrees
of freedom in the embedding space E , is is sufficient to
transform the matrix into a tangent space basis, which
we can write as Hij = TTi Hij |3NTj , where Ti is the basis
transformation matrix of spin i fulfilling TTP = TT and
TTT = I|2N . The true Hessian H = (Hij) of Eq. (H2) in
the 2N × 2N matrix representation, containing only the
physical degrees of freedom, is therefore defined as

Hij = TTi H̄ijTj − TTi I(nj ·∇jH̄)Tj , (H7)

Note that this reduction of dimensionality also improves
the numerical efficiency of the diagonalization. As the
eigenmodes λ|2N are represented in the tangent basis,
the 3N representation needs to be calculated by λ|3N =
Tλ|2N .

While the 3× 2 basis matrix Ti can be calculated quite
arbitrarily by choice of two orthonormal vectors, tangent
to the spin ni, we found it convenient to use the unit
vectors of spherical coordinates θ and ϕ

T = {eθ, eϕ} =

cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0


=

zx/rxy −y/rxyzy/rxy x/rxy
−rxy 0

 (H8)

where rxy = sin θ =
√

1− z2. Note that the poles need
to be excluded, but since the basis does not need to be
continuous over the manifold, one may e.g. orthogonal-
ize ex and ey with respect to the spin vector to obtain
suitable tangent vectors.

Finally, the Hessian matrix in the embedding space
E = R3N is needed, denoted H̄ij |3N . As the atomistic
Hamiltonian can generally be written in matrix form

H = −
N∑
j

Aijnj −
∑
〈ij〉

niBijnj (H9)

where Aij are matrices of size 3× 3 describing the lin-
ear contributions, such as the Zeeman term, and Bij
are matrices describing the quadratic contributions, such
as anisotropy, Exchange, DMI and dipolar interactions.
The Hessian matrix is then naturally given by

H̄ij = ∂2H̄ = −2Bij . (H10)
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Appendix I: Minimum modes in the interacting spin
system

Recall Eq. (21) of the main text, which can be written

F eff = −∇H+ 2(λ̂ · ∇H)λ̂ , (I1)

where (·) denotes the dot product of 3N -dimensional
vectors. The following Fig. 15 illustrates how the min-
imum eigenmode¸ axis λ̂ is oriented and in which di-
rection, therefore, the gradient force is inverted. The
figures 11 and 15 can be compared to equivalent
cartesian-coordinate figures from molecular calculations
in Ref. 68.

FIG. 15. Field of minimum eigenmodes (white lines) of a
single spin in anisotropy and the interaction field of a second,
pinned spin, corresponding to the force fields shown in Fig. 11.
The minimum mode following paths are shown in gray colors.
The dashed lines show the separation of the convex regions
around the minima from the rest of the configuration space.

Eq. (21) describes the reflection of the energy gradi-
ent’s component along the mode. Following this force,
the system climbs in energy along the mode, while mini-
mizing the energy in the orthogonal degrees of freedom.
As can be seen in Fig. 15, the minimum mode reflects
the symmetry of the energy landscape as it is pointed
approximately between the two minima. This is espe-
cially obvious in the area close to the saddle point. Con-
sequentially, the MMF force acts analogous to the climb-
ing image method (see Eq. (16)), but using the lowest
eigenmode instead of a transition path tangent.
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