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The mixed quantum/classical nonadiabatic molecular dynamics (NAMD) is a powerful tool to
study many phenomena, especially ultrafast carrier transport and cooling. Carrier decoherence and
detailed balance are two major issues in NAMD. So far, there is no computationally inexpensive
approach to incorporate both effects. While the decoherence effect can be easily included in the
state density matrix formalism, and the detailed balance can be included in surface hopping or
wave function collapsing approach, it is difficult to include both of them in a unified formalism.
In this work we introduce a state density matrix formalism (referred as P-Matrix) including both
the decoherence and detailed balance effects for NAMD. This method is able to explicitly treat the
decoherence between different pairs of adiabatic states. Moreover, the off-diagonal density matrix
elements are divided into two parts, corresponding to energy-increasing and energy-decreasing tran-
sitions respectively. The detailed balance is then enforced by a Boltzmann factor applied to the
energy-increasing transition part. The P-Matrix formalism is applied to study hot-hole cooling and
transfer processes in Si quantum dot (QD) systems. The calculated hot carrier relaxation time is
consistent with experiments. In a QD-pair system, the hot-hole cooling time shows weak dependence
with the QD spacing. However, the hot carrier transfer rate from one QD to another is found to
decrease exponentially with the QD-QD distance. When the QD spacing is small (∼ 1 nm), the
hot-carrier transfer can be very efficient. It is also shown that the explicit treatment of decoherence
time is important in order to treat this hot-carrier transfer correctly.

I. INTRODUCTION

Nonadiabatic molecular dynamics (NAMD)
simulation1,2 is a widely used approach to study carrier
dynamic processes involving excited states, such as
charge relaxation3–5, recombination,6 and transport7–10.
NAMD simulation is often carried out in a mixed
quantum-classic (MQC) fashion, in which the electron
degree of freedom is described quantum mechanically
following the time dependent Schrodinger’s equation
(TDSE), whereas nuclear movement is treated classically
following the Newton’s second law. There are many
MQC algorithms. In principle one can also consider the
dynamics of the whole open system, namely the quantum
subsystem coupled with the environment. This leads to
the quantum-classical Liouville equation and generalized
quantum master equation approaches11–16. Despite
their rigor, their implementation could be complicated.
Mean-field Ehrenfest dynamics (MFE)17–20 and fewest
switches surface hopping (FSSH)21–23 are two simpler
and more widely used algorithms. In the MFE, the
nuclear movement follows the average atomic force pro-
vided by all the electron states solved by TDSE. There
is no branching either for the electron wavefunction or
for the nuclear trajectory, and the electron wavefunction
is always described by a single coherent electron state
(a many-electron state), instead of by an ensemble of
states. In the FSSH approaches, the nuclei move along
one adiabatic energy surface and stochastically hop to
other surfaces, and the hopping rate is determined by
an auxiliary wavefunction following the TDSE.

Due to the inconsistencies between quantum and clas-
sical mechanics in MQC-NAMD, there could be several

issues.24 One difficulty is to maintain the detailed bal-
ance, i.e., to reproduce the Boltzmann quantum state
population in the long-time thermal equilibrium. It is
well known that the MFE lacks detailed balance7,25,26,
leading to overheating of the electronic subsystem. The
reason is that MFE is based on the electronic wavefunc-
tion alone, which does not include either the quantum
mechanical wavefunction of the phonon, or any electronic
coupling to an outside open system. This limits the ca-
pability of MFE in the study of equilibrium properties
and energy relaxation processes. Detailed balance can be
forced in MFE by introducing symmetrical coupling ma-
trix elements with quantum corrections27, but by doing
so, the transition probabilities obtained from the TDSE
is changed. Another possible solution is to include both
zero point electronic energy and windowing on top of
MFE28, but it suffers from numerical instabilities29. On
the other hand, although surface hopping does not sat-
isfy detailed balance rigorously, the energy conservation
requirement during the hopping by rescaling the rele-
vant nuclei kinetic energy provides the detailed balance
in an empirical and approximate way.30 Unfortunately,
the original surface hopping algorithm does not have the
proper decoherence.

Decoherence is another quantum mechanical phe-
nomenon caused by the separation of nuclear wave-
functions for different electronic states (or say poten-
tial energy surfaces). It describes the phenomenon
where an original single electron state breaks down
into many components which lose the ability to inter-
fere with each other. More specifically, the system at
t=0 can be described as: Ψ(r, 0)Θ(R, 0), where Ψ(r, 0)
is the electron wavefunction, and Θ(R, 0) is the nu-
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clear wavefunction. At time t, the wavefunction will
be evolved into:

∑
i φi(r, t)Θi(R, t) (φi is a electronic

adiabatic state). Due to the separation of nuclear
wavefunctions, 〈Θi(R, t)|Θj(R, t)〉 decays with time, and
the interference between φi and φj also vanishes. If
〈Θi(R, t)|Θj(R, t)〉 becomes zero for i 6= j, then φi(r, t)
and φj(r, t) become decoherent (the dot product for most
physical operators between these two states becomes
zero). As a result, from the electron wavefunction point
of view, different φi(r, t) can be described as an ensemble
of wavefunctions, e.g., the wavefunction has “collapsed”.

In their original forms, the separation of nuclear wave-
functions is not included in MFE and FSSH, hence the
wavefunctions are fully coherent. Many empirical ap-
proaches have been proposed to introduce decoherence
correction in MFE and FSSH. For example, one method
is to include a coherence penalty functional that accounts
for decoherence effects to the Hamiltonian in MFE.31

Moreover, decay-of-mixing approaches have been devel-
oped for both MFE and FSSH,32,33 in which the coeffi-
cients of the wavefunctions are modified using a decoher-
ence time after the evolution of TDSE at each time step.
Another set of popular approaches to describe decoher-
ence is the explicit wavefunction collapsing scheme, for
examples, the instantaneous decoherence34, A-FSSH35,
DISH36, and MF-SD37. In these algorithms, the wave-
function will be decomposed into several adiabatic states
Ψ(r, t) =

∑
i φi(r, t). Then it will stochastically chose an

adiabatic state φi(r, t) to be broken away from the rest
of Ψ(r, t), and one will then continue the simulation ei-
ther with φi(r, t), or with Ψ(r, t)− φi(r, t). Much like in
the surface hopping algorithm, the energy conservation
requirement during the collapsing restores the detailed
balance. Such wavefunction collapsing approaches have
been used to study many interesting problems38–42. How-
ever, there could still be potential issues. The probability
of collapsing for Ψ = φi + φj + φk depends on the av-
erage coherence time of each adiabatic state to the rest
of the adiabatic states. But this is hardly satisfactory.
For example, φk can have a short coherence time with
φi, but a long coherence time with φj . Thus breaking φk
away from the rest of the wavefunctions will do a disser-
vice to the coherence between φk and φj . More deeply,
this means the system cannot already be described by a
single electronic wavefunction at any given time, with-
out including the phonon wavefunction in an entangled
manner. It is simple to solve this issue in a density ma-
trix formalism, where the off-diagonal terms Dij , Dik,
and Djk all decay differently following their own coher-
ent time. However, to take into account the detailed
balance, so far one has to adopt a stochastic solution like
surface hopping as discussed above. In contrast, MFE is
deterministic so only one trajectory is needed, hence it
is computationally efficient. Unfortunately, there is yet
to have a method to incorporate both decoherence and
detailed balance in a unified deterministic density matrix
formalism.

For the original MFE and FSSH, the effect of the wave-

function evolution to the nuclear movement is explicitly
included. Such “back reaction” is necessary for small
systems like molecules, or cases where the trajectory of
the nuclei is the main concern (e.g., in a chemical reac-
tion with branching). But MFE and FSSH can also be
combined with the neglect of back-reaction approxima-
tion (NBRA)43, in which the “back reaction” is explic-
itly ignored (but may be implicitly included by correc-
tion terms), and one just takes an average nuclear tra-
jectory, e.g., from the conventional ground state Born-
Oppenheimer molecular dynamics (BO-MD). This is a
good approximation for many large systems where the
nuclear movement will not be dramatically altered by a
single hot electron wavefunction, and the focus of the
study is not on the nuclear movement, but on the elec-
tron dynamics, like the case for hot carrier cooling or
transfer in quantum dot, bulk, surface or large molecule.
The NBRA brings a considerable computational saving
since the trajectory can be pre-calculated using normal
MD before doing the electronic dynamics. It has made it
possible to calculate electron dynamics for systems with
several hundred atoms at the first-principles DFT level.
Thus, to achieve efficient and accurate NAMD simula-
tion, it is highly desirable to develop density matrix MFE
formalism under NBRA, and including both decoherence
and detailed balance.
In this work, we will use the NBRA since the focus of

our study is the carrier dynamics. We will modify the
conventional density matrix approach, so it can incorpo-
rate the detailed balance element in the formalism. In-
cluding this effect allows us to study carrier cooling and
charge transfer, which are among the most interesting
topics under NBRA and for large systems. The resulting
approach takes the output of a conventional BO-MD (e.g,
under density functional theory, DFT), and calculate the
NAMD as a post-process. We will then apply this new
formalism (P-Matrix) to study the hot-carrier relaxation
and transfer in Si QDs. Although our P-Matrix formal-
ism describes an ensemble of the carrier dynamics, it does
not carry out the calculation using explicit stochastic pro-
cess like in surface hopping or wavefunction collapsing
approach. As a result, it is computationally efficient.

II. METHOD

In the NAMD approach, the single-particle state ψl(t),
which satisfies the TDSE, is usually expanded by the
adiabatic eigenstates φi(t), namely:

i
∂ψl(t)

∂t
= H(t)ψl(t), (1)

ψl(t) =
∑

i

Cl
i(t)φi(t), (2)

H(t)φi(t) = εi(t)φi(t). (3)

Here H(t) is the single-electron Hamiltonian, which
under NBRA only depends on the nuclear position R(t).
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In the density matrix formalism, the density matrix
Dij(t) can represent an ensemble of single particle states
{ψl, wl}. Here wl is the statistical weight of ψl. Using
φi(t) as the basis, we have:

Dij(t) =
∑

l

wl(t)C
l
i(t)C

l
j(t)

∗, (4)

with Dij(t) = Dji(t)
∗, and Dii(t) ≥ 0. It is easy to show

that, the time evolution of Dij(t) satisfies the following
equation44:

∂

∂t
Dij(t) =− i

∑

k

[Vik(t)Dkj(t)−Dik(t)Vkj(t)]

=− i[V,D]ij ,

(5)

with

Vij(t) = δijεi(t)− i〈φi(t)|
∂φj(t)

∂t
〉. (6)

The off-diagonal term in Dij(t) represents coherent
coupling between adiabatic states φi and φj . A straight
forward approach commonly used to include the decoher-
ence phenomenon is to introduce a decay term into Eq.
5:21,45

∂

∂t
Dij(t) = −i[V,D]ij − (1− δij)

Dij(t)

τij(t)
, (7)

where τij is the pairwise decoherence time. τij can be cal-
culated either in advance or on the fly. Here it enters only
as a parameter. In principle, any method for calculating
τij can be used. By approximating the nuclear wavefunc-
tion as a product of frozen Gaussian wave packets, Wong
and Rossky proposed an instantaneous decoherence time
as45:

τij(t) = [
∑

n

1

2an~2
[Fn

i (t)− F
n
j (t)]

2]-1/2. (8)

Here an is the width of the Gaussian wave packets for nu-
clei, Fn

i is the Hellmann-Feynman force from state i, and
n runs over all phonon modes. Based on Eq. 8 and un-
der thermal equilibrium approximation, we have derived
a simplified expression of τij (See Ref.44 for details):

τij(t) =

√
24(kBT )2

〈| ∂
∂t
[ε̃i(t, t′)− ε̃j(t, t′)]|2〉t′

, (9)

where the brackets 〈〉t′ indicate the average over t′ < t,
ε̃i(t, t

′) = 〈φi(t)|H(t′)|φi(t)〉, and T is the temperature.
Our tests show that Eq. 9 and Eq. 8 give the same
magnitude of τij (Fig. S1 in Ref.44). Eq. 9 simply uses
the adiabatic state eigenenergy from the BO-MD simula-
tion to calculate the decoherence time between φi and φj ,
thus is suitable for NBRA. However, unlike Eq. 8 which
is an instantaneous formula at time t, Eq. 9 requires a
time average with t′. To avoid the situation where index
of i changes with time for a same characteristic adiabatic

state φi (e.g., due to state crossing), we have used φi(t) to
calculate the expectation value of H(t′) to define ε̃i(t, t

′).
As is shown in Ref.44, this ε̃i(t, t

′) can also be calculated
from the BO-MD output.
Besides the quantum decoherence, the other major is-

sue of Eq. 5 under NBRA is the lack of detailed bal-
ance. Here we propose a correction to this problem. To
restore the detailed balance between the i to j transi-
tion, and j to i transition, one can multiply the proba-
bility for the energy-increasing transition by the Boltz-
mann factor exp(− ∆E

kBT
), similar to the FSSH and DISH

under the NBRA limit. Therefore, to correct Eq. 5,
the key point is to distinguish the energy-increasing and
energy-decreasing transitions in the density matrix for-
malism. The off-diagonal termDij , and its corresponding
term VjiDij in Eq. 5 describes the occupied state tran-
sition between state i and j. Unfortunately, this single
Dij = D∗

ji term includes both the transitions from i to
j, and from j to i. Our key observation is that, we can
break it into two terms: Dij = Pij + P ∗

ji with Pij 6= P ∗

ji,
and Pij describes the pumping from state j to i. More
specifically, we have their time evolution equations:

∂

∂t
Pij = −i[V, P ]ij − iVij(Pii + P ∗

jj), (i 6=j) (10)

∂

∂t
Pii = −i[V, P ]ii. (11)

Keeping in mind that Vij = V ∗

ji, one can show that
Eqs. 10 and 11 can reproduce the original Eq. 5. Note
in the above formula the imaginary part of the diago-
nal term Pii does not play any role. So we can always
enforce Pii to be a real number, then Dii = 2Pii. To
understand Eq. 10, we can focus on the terms involving
only i and j states at the right side, then it becomes:
∂Pij/∂t = −i(εi − εj)Pij − iVijDjj , while the first term
is a simple phase evolution term, the second term is ob-
viously the term which pumps the charge from state j to
state i. The charge change in state i is described by Eq.
11: ∂Dii/∂t = −2Re(iVijPji) + 2Re(iPijVji)(the “Re”
comes from the fact we only keep the real part of Pii),
where the first term represents the lose of charge due
to the pumping from i to j, and the second term rep-
resents the increase of charge due to the pumping from
j to i. Having distinguished the pumping from i to j
and from j to i, we can now introduce an empirical con-
straint to force the detailed balance. If transition from
i to j increases the energy, e.g. εi < εj for electrons
(or εi > εj for holes), we then multiple Re(iPjiVij) by a

Boltzmann factor exp(− ∆E
kBT

) so that the i to j transition

is suppressed. Meanwhile the Re(iPijVji) term will be
kept unchanged. Similarly, if j to i transition increases
the energy, the Boltzmann factor should be applied to
Re(iPijVji). This is much like the FSSH or wavefunc-
tion collapsing scheme, where if the hoping (or collaps-
ing) causes an electron energy decrease, the event is al-
ways allowed. But if it causes an electron energy increase
∆E, then it depends on the corresponding phonon transi-
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tion degree of freedom. If this phonon degree of freedom
has a kinetic energy larger than ∆E, then this process
is allowed, and the kinetic energy will be rescaled. If
the kinetic energy is less than ∆E, then this stochastic
event will be abandoned. Since the probability for this
phonon degree of freedom to have energy larger than ∆E
is exp(− ∆E

kBT
) (assuming a thermal equilibrium), the al-

lowing probability (for this event to happen) should also
be proportional to exp(− ∆E

kBT
). This is exactly the re-

quirement for detailed balance. To put everything to-
gether, we finally have:

∂

∂t
Pij = −i[V, P ]ij − iVij(Pii+P

∗

jj)−
Pij

τij
, (i 6=j) (12)

∂

∂t
Pii =− Re(i[V, P ]ii)

+
∑

j

Re(iPijVji)f(∆εij)(exp(
−|∆εij |

kBT
)− 1)

−
∑

j

Re(iPjiVij)(1 − f(∆εij))(exp(
−|∆εij |

kBT
)− 1).

(13)
in which ∆εij = εi − εj and f(x) = 1(0) for x > 0, and
f(x) = 0(1) for x < 0 for electron (hole).
To carry out Eqs. 12 and 13, the only thing needed

is the Vij(t) of Eq. 6. This can be obtained from the
conventional BO-MD simulation. In the BO-MD, as im-
plemented in the DFT plane wave pseudopotential code
PWmat46,47, the overlap matrix 〈φi(t − ∆t)|φj(t)〉 be-
tween two consecutive steps t − ∆t and t is output for
every time step t along with the eigenenergy εi(t). Here,
typically ∆t is about 1-2 fs. A fixed number of adiabatic
states are used in Eq. 2, e.g., 40 for the example stud-
ied below. Here is the only place where the calculation
might be slightly more expensive than the usual BO-MD
simulation since one might need more unoccupied states.
These information can then be used to construct a lin-
ear interpolating Hamiltonian from t−∆t to t.7,20. This
Hamiltonian will be used to integrate Eqs. 12 and 13
from t−∆t to t with a much smaller time step (e.g., as
small as 10−5 fs). Since this is a small dimension Hamil-
tonian, the integration is fast. The technical details of the
integration is given in Ref.44. Overall, this postprocess
NAMD simulation does not take much time compared
to the original BO-MD simulation. Note for pure FSSH
with NBRA but without decoherence, the computational
cost is similar to our method, because in this case the so-
lution of the TDSE (eq. 5) is independent of the hopping
events, thus many surface hopping trajectories can be cal-
culated with the TDSE solved only once. However, un-
like the pure FSSH-NBRA, when decoherence is included
via wave function collapsing (like the DISH method), the
integration of the TDSE is required for each stochastic
realization of the surface hopping trajectory, because the
wavefunction collapse will affect the solution of TDSE.
The cost of solving the TDSE increases linearly with the

number of realizations of the stochastic process, which
can become an issue as discussed in Ref.48.

III. SIMULATIONS AND RESULTS

In the following we apply the above method (referred
as P-Matrix method) to investigate hot-hole relaxation
process in silicon quantum dot systems. Density func-
tional calculations were preformed using the PWmat46,47,
a GPU-based code with plane-wave basis. The planewave
cutoff energy is 30 Ry. Test calculations show that this
cutoff is sufficient to obtained converged eigenenergies,
non-adiabatic coupling coefficients, and forces44. Molec-
ular dynamics (MD) simulations were preformed at ∼300
K under the NVE ensemble with the Verlet algorithm.
The time step for MD is 1 fs. ∼40 states are used in the
valence band to expand the hot carrier wavefunction in
Eq. 2. The norm-conserving pseudopotentials49 and the
LDA functional50 are adopted. Although our formalism
can be equally applied to different functional, e.g. LDA
or HSE, in actual simulations, the choice of the functional
should be considered carefully. For example, a previous
study shows LDA and HSE give very different nonadi-
abatic couplings for Si7 or Si26 clusters.51 One possible
reason is that these systems are not passivated, so there
are many highly localized states induced by the dangling
bonds. In such cases the LDA will predict much delo-
calized states compared to HSE results. On the other
hand, Ref.51 also showed that for well passivated sys-
tems like SiH4 or Si2H6, the difference between LDA and
HSE results are quite small, because the wavefunction
localization in these systems are provided by the spatial
confinement of the QD. Our current fully passivated Si
QD belongs to the latter case, thus LDA should be good
enough.
We first look at the single silicon QD as shown in Fig.

1a. The constructed QD contains 87 Si atoms, and the
surface is passivated by H atoms. At t=0, a hot hole is
excited to 0.66 eV below VBM. The population-weighted
average energy Eave of the hot hole is calculated for t > 0
to study the hot-hole cooling process using P-Matrix. For
comparison, we also used Eq. 5 (TDSE-NBRA) and the
modified Ehrenfest (ME) algorithm in Ref.7. The TDSE-
NBRA does not include either the decoherence effect or
the detailed balance. The ME method is similar to the
FSSH under NBRA approximation. It has the detailed
balance correction (DBC) but the decoherence is missing.
In ME, the Boltzmann factor is applied in the TDSE to
the charge transfer rate between states i and j at every
instant of t. This is unlike the P-matrix formalism where
the Boltzmann is applied to Pij in Eq. 13, which is a
time accumulated quantity (see Eq. 24 in Ref.44). In
Fig. 1a it can be seen that, due to the lack of DBC in
the TDSE-NBRA, the hot hole stays around 0.6 eV be-
low the VBM and doesn’t cool down. In contrast, the
calculated Eave from both ME and P-Matrix show clear
hot-hole cooling behavior. However, the cooling rates
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(a)                                                       (b)                                                         (c)

FIG. 1. (a) The population-weighted average energy (colored lines) of the hot hole calculated by the P-Matrix, ME, and ED,
as well as the adiabatic eigenenergies (gray lines). The inset shows the structure of the Si quantum dot. (b) The excess energy
calculated by P-Matrix and ME. Dashed lines are exponential decay fitting. (c) The hot-hole cooling rates calculated by fixing
the decoherence time τ at different values using the P-Matrix method. The dashed line indicates the result obtained using
explicit τ .

are quite different. The hot-hole relaxation time Tr is
calculated by fitting the excess energy ∆E(t), defined
as ∆E(t) = EVBM(t) − Eave(t), into an exponential de-
cay function A · exp(−t/Tr). The results are presented
in Fig. 1b. ME gives a Tr of 62 fs, whereas P-Matrix
gives 195 fs. Test calculations for a larger QD with 175
Si atoms were also performed, and the fitted Tr is 248
fs from the P-Matrix method (See Fig. S6 in Ref.44).
Thus further increasing the size will not induce order-of-
magnitude change in Tr. In experiment, the hot-carrier
relaxation time of Si is determined to be 240-260 fs52,53.
Other theoretical calculations also suggests that in Si
nanostructures the carrier cools down in a few hundred
femtoseconds.54,55 These results are consistent with our
P-Matrix result. The reason for the overestimation of
the decay rate by ME is the following. In the pertur-
bation treatment of the quantum mechanical transition
between two states i and j, the energy conservation is
required through the Fermi’s Golden rule. When this
requirement is satisfied (through another phonon mode
energy), the charge transfer from state i to j will accumu-
late linearly. On the other hand, when this conservation
is not satisfied, the charge transfer oscillates as a sinu-
soidal function (thus averaged transition rate is zero). In
the ME (or FSSH treatment for this matter), this charge
transfer is treated instantaneously at every time t. For
the case of carrier cooling, if i to j charge transfer de-
creases the energy, every time it is positive, it is accepted
100%. While for negative transfer, it is suppressed by the
Boltzmann factor. This leads to a large net charge trans-
fer even when the energy conservation is not satisfied.
This problem is avoided in our P-Matrix algorithm. As
we show in Ref.44, in P-Matrix, if one ignores the indirect
i→ k → j transition, the transition between i and j does
satisfy the Fermi’s Golden rule but with a broadening of
the δ function by the dephasing time 1/τij . Besides, our
test calculations using a three-level model system show
that the P-Matrix method is able to reproduce the Boltz-
mann distribution at the equilibrium44.

For further validation of its accuracy, a direct com-

parison between the P-Matrix method and other exist-
ing schemes with both decoherence and detail balance
could be informative. In a recent study, the carrier re-
laxation times in fluorinated silicon QDs were calculated
using FSSH under NBRA, and with the decay-of-mixing
scheme for decoherence.56 The calculated cooling time
for a hot electron with an initial energy of ∼1 eV in a
Si66F40 QD is 493 fs. We took this study as a benchmark,
and did the same calculation for the same system using
the P-Matrix method. The resulting cooling time is 590
fs, in reasonable agreement with the reported value.

The calculated τij for the 87-Si QD using Eq. 9 varies
from 7 fs to over 80 fs, with a peak distribution around
20 fs (see Fig. S2 in Ref.44 for the histogram). We noted
that in Ref.57 a simple method is proposed to calculate
τij , using the standard deviation of the energy gap. This
method has similarity with Eq. 9, and both give the
same magnitudes of τij(See Ref.44 for more discussions).
Furthermore, it would be interesting to see how the deco-
herence time affects the hot-hole cooling rate. To explore
this, we did test calculations using a constant τ for all
τij . Fig. 1c shows the cooling rate as a function of dif-
ferent τ values. It is seen that as τ increases, the cooling
rate 1/Tr also increases. This is more significant when
τ is small. In a previous study, using a model two-level
system, Pradhan et al. showed that the upper bound for
the electronic transition rates is proportional to the deco-
herence time.58 The reason is that the coherent evolution
(accumulation) of electronic states is limited within the
decoherence time scale. The observed positive correla-
tion between the cooling rates and the decoherence time
here is in agreement with their conclusions. From Fig.
1c, one also found that the cooling rate calculated using
the explicit τij is similar to that using a constant τ ∼ 25
fs. Thus, 25 fs is the typical time scale for the wavefunc-
tion decoherence in the QD studied here. In many other
systems the decoherence time scale is similar.38,39

Next we investigate the hot carrier cooling and transfer
in Si QD-pairs. In the constructed systems, two 87-atom
Si QDs (QD1 and QD2) are connected by a -S-(CH2)n-S-
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FIG. 2. (a) The average energy and excess energy of the hot hole as a function of time for the n=4 QD pair. Dashed line is
exponential fitting. (b)-(c) The same as (a) but for n=8 and n=12 QD pairs, respectively.
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FIG. 3. (a) The hot-hole population on QD1 as a function of
time for the three QD-pair systems. (b) The charge transfer
time scale t0 as a function of QD spacing d. Dashed line is
exponential fitting.

ligand. The distance between the QDs is thus controlled
by the C chain length n. Three cases with different QD
spacing were studied, namely n=4, 8, and 12 as shown in
Fig. 2. Because the interaction between QD1 and QD2 is
relatively weak, most of the eigen states in the QD pairs
are localized in one particular QD. At t=0, QD1 is excited
by placing a hole in a state which is completely localized
inside QD1 and ∼0.7 eV below VBM. The charge cooling
and transfer are then calculated by P-Matrix. The calcu-
lated Eave are shown in Fig. 2a-2c. The fitted relaxation
times are: T n=4

r =179 fs, T n=8
r =200 fs, and T n=12

r =180
fs. The energy decay behaviors are quite similar to the
case of a single QD, and the relaxation time shows weak
dependence on the QD spacing.

For the charge transfer between the two QDs, one

can expect that the QD spacing will have great influ-
ence. To analysis this process, the charge density ρ(r) of
the hot hole is calculated by ρ(r) =

∑
ij Dijφi(r)φj(r)

∗,
and the population of the hot hole in QD1 and QD2
are then determined by wQD1=

∫
VQD1

ρ(r)dV and wQD2=∫
VQD2

ρ(r)dV . Note wQD1+wQD2 always equal to 1. As

described above, initially wQD1=1 and wQD2=0. A de-
crease in wQD1 indicates charge transfer from QD1 to
QD2, and vice versa. Fig. 3a shows the wQD1 as a
function of time for the three QD-pair systems. The
curves are also fitted into a exponential decay function
0.5exp(−t/t0)+0.5 (as the two QDs have the same struc-
ture, one can expect the average population on either QD
is 0.5 when t→ ∞), in which t0 gives a typical time scale
of the charge transfer. For n=4, 8, and 12, t0=205 fs,
1423 fs, and 8649 fs, respectively. Therefore, the charge
transfer rate decreases as the QD spacing increases. Ex-
perimentally, the charge transfer time between quantum
dots is found to be sensitive to the QD size.59,60 For in-
stance, in CdSe/TiO2 systems, the charge transfer time
decreases by three orders of magnitude (from ∼100 ns
to ∼0.1 ns) when the size of CdSe QD decrease from
7.5 nm to 2.4 nm.59 In our simulation the diameter of
the Si QD is only ∼1.3 nm, which is much smaller than
2.4 nm. In this regard, our resulting (sub-)10 ps charge
transfer time should be reasonable when compared with
experiments59,60.

As discussed, the hot-hole relaxation time Tr for the
Si-QDs is ∼200 fs. Hence, when the QD spacing is large
(n=12), the hot-hole in QD1 will lose its excess energy
before it transfers to QD2. When the QD spacing de-
creases, the hot-hole transfer become more efficient. In
the case of n=4 (QD spacing is 1 nm), t0 is quite close
to Tr, indicating that excitation in QD1 is able to cre-
ate significant amount of “hot” carrier in QD2. It is also
interesting to explore the relationship between the QD
spacing d and t0. As presented in Fig. 3b, t0 scales
exponentially with d, and their relationship can be fit-
ted to t0=A·exp(d/d0). The fitted A and d0 are 3.95 fs
and 0.26 nm, respectively. The carrier transfer in the
QD pair system can be understood by the state coupling
when their energies anticrossing each other7. The cou-
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FIG. 4. The charge transfer rate for the n=12 QD-pair case using both the explicit calculated τij and the averaged τ , with
different reducing factor r applied to the decoherence times.

pling strength decays exponentially as a function of the
QD-QD distance as shown in Fig. 3b. The rate of charge
transfer is a competition between the transfer rate and
the internal QD cooling as lower energy (below VBM)
region has higher density of state and also tend to have
larger coupling constant (e.g., below the ligand molecule
HOMO level).

Finally we’d like to have more discussions on the effect
of decoherence time τij . As mentioned, one advantage of
the P-Matrix is that the decoherence between different
pairs of electronic states can be treated independently.
For example, in the Si QD-pair systems, there could be
two different types of τij . When both states i and j are
localized in the same QD, their energy fluctuations have
similar trends since they are both affected by the atomic
vibration of the same QD, especially for the surface atom
vibrations which significantly alter the inner QD poten-
tials. Hence the τij value in this case could be relatively
large. In contrast, when i and j belong to different QDs,
their energy fluctuations can be quite different, resulting
in a relatively small τij according to Eq. 9. In the wave-
function collapsing scheme, for each state there is only
one associated average decoherence time, and there is
no distinguish between intra- and inter-QD decoherence.
Such an effect is especially significant when the average
τ is small. To demonstrate this point, we have calculated
the charge transfer rate for the n=12 QD-pair case using
both the explicit calculated τij and a fixed average τ (the
rate 1/τ equals to the average rate of 1/τij). To see how
the magnitude of decoherence time affects the trend, we
also rescale τij and τ using a factor r. The results for dif-
ferent r are shown in Fig. 4. It is seen that although with
r=1, the difference using τij and averaged τ are small,
with r=0.2, the difference becomes significant (in this
case the averaged τ is 3.2 fs). Thus, the explicit treat-
ment of decoherence time is important, especially when
the decoherence time is short (several femtoseconds).

IV. CONCLUSIONS

In conclusion, using the the density matrix representa-
tion, we have developed a new NAMD formalism under
the NBRA approximation incorporating both decoher-
ence and detailed balance effects. In this formalism, the
decoherence between different pairs of electronic states
are treated independently. The density matrix is divided
into two parts so that one can distinguish the energy-
increasing and energy-decreasing adiabatic state transi-
tions. The detailed balance correction is then included
by a Boltzmann factor applied to the energy-increasing
transitions. This formalism overcomes the lack of deco-
herence and overestimation of the cooling rate in the ME
(and possibly FSSH), it also overcomes the pitfall of the
wavefunction collapsing where the decoherence time τij
cannot be treated independently. Computationally, the
new P-Matrix method is also inexpensive. The hot-hole
cooling and charge transfer processes in Si QD systems
are investigated using the proposed method. The calcu-
lated hot carrier relaxation time is consistent with ex-
periments. In the QD-pair systems, the hot-hole cooling
time is almost independent with the QD spacing, while
the charge transfer rate between QDs decreases exponen-
tially as the QD spacing increases. It is also shown that
the explicit treatment of decoherence time is important
to accurately predict the charge transfer rate.
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