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Time-dependent density functional theory (TDDFT) has developed into an efficient and versatile
description of realistic extended many-electron systems driven, e.g., by strong laser fields. It ac-
counts for the fully coherent evolution of the N -electron wavepacket representing an isolated system.
Decoherence as encountered in open systems by coupling to external degrees of freedom of a bath of,
e.g. phonons or defects, is, by construction, absent. In this work we present an open-quantum system
(OQS) extension of TDDFT accounting for dephasing and decoherence due to electron-phonon or
defect scattering. We test the OQS-TDDFT for high-harmonic generation and irreversible changes
of dielectric properties in solids driven by strong ir and mid-ir laser pulses. We present applications
to diamond as a prototypical wide band-gap dielectric. For weak pulses we demonstrate the equiva-
lence of OQS-TDDFT with the solution of the Bloch equations for the reduced one-particle density
matrix while differences appear at high excitation densities.

Our study highlights the importance of the accurate representation of the bandstructure in simu-
lations of the harmonic spectrum. Narrow avoided crossings within the Brillouin zone can give rise
to Bloch-type oscillations.

I. INTRODUCTION

The description of the electronic system of solids is no-
toriously difficult to achieve due to the large number of
interacting particles involved in the extended system and
requires drastic simplifications. One of the most success-
ful methods for the determination of the ground state
in many-electron systems is density-functional theory1

(DFT) based on the notion that all physical observables
of any system can be expressed as functionals of the local
density n(~r). The extension of DFT to model the dynam-
ics of time dependent electronic systems is founded on the
Runge-Gross theorem2 setting the stage for a plethora of
investigations of systems interacting with time depen-
dent external potentials Vext(t). Incorporating periodic
boundary conditions in crystalline solids, it became pos-
sible to study the electronic dynamics in solids driven
by strong and short laser pulses3. While many physical
observables can be accounted for by TDDFT, in partic-
ular for weak pulses in the linear-response regime, major
challenges remain.

One current topical case in point is the high-harmonic
generation (HHG) spectrum, the highly non-linear opti-
cal response of solids. While experiments display a se-
quence of well-pronounced odd harmonics in the so-called
“plateau regime” at frequencies well above the band
gap4–7, standard effective single-particle Schrödinger
equations8,9 or solutions of the Kohn-Sham equations
of TDDFT10–12 display noisy and largely structureless
high-frequency spectra in the non-perturbative regime.
Pronounced harmonics are only recognizable for low or-
ders inside or just above the band gap. It was therefore
proposed that dephasing and decoherence of the driven
electronic wavepacket along the excursion inside the solid
might be responsible for this discrepancy5,6,8,13,14 as ex-

cited electrons in a solid will suffer elastic and inelas-
tic scattering events with, e.g., phonons, crystal defects,
impurities, or at higher excitation densities, undergo
electron-electron scattering.

Extension of TDDFT and time-dependent current
density functional theory (TDCDFT) to open quan-
tum systems is still a widely open problem. Ex-
tensions of the Runge-Gross theorem2 using a master
equation approach15 or stochastic methods16–18 have
been presented for interacting many-electron systems.
To account for the dephasing influence of higher-order
terms of the BBGKY hierarchy19 on the coherence of
the one-particle reduced density matrix [1RDM and
its diagonal elements, the one-particle density n(~r, t)]
exchange-correlation functionals with memory kernels
have been proposed20–23. In the stochastic mean-field
approach24 closely related to the truncated Wigner
approximations25, initial correlations are included in
the propagation through stochastic ensembles of den-
sity matrices. Alternatively, electron-electron collisions
have been explicitly included during the propagation
in terms of Boltzmann-type collision kernels within the
framework of the stochastic time-dependent Hartree-
Fock (STDHF) approximation26,27. Applications to re-
alistic three-dimensional solids and to the regime of non-
linear driving have remained an unsolved problem. Ex-
tensions of TDDFT to the electronic systems with cou-
pling to environmental degrees of freedom28–31 have so
far only been presented for atoms, molecules or small
model systems. Yet, an operational protocol for the im-
plementation in real-space real-time TDDFT simulations
of extended systems appears to be missing.

In the present work we extend the TDDFT simula-
tions of laser-solid interactions to an open-quantum sys-
tem (OQS-) TDDFT. The electronic system described by
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TDDFT is allowed to interact with external (“environ-
mental”) degrees of freedom representing, e.g., phonons
or lattice defects. We focus on dephasing and deco-
herence in the electronic system induced by an exter-
nal bath rather than on decohering effects of intrinsic
multi-particle correlations on the 1RDM accounted for
by memory kernels. System-bath interactions allow for
energy exchange, induce stochastically fluctuating phases
and, eventually, dephasing of the electronic wavepacket.
Including these processes consistently while preserving
the properties of the time evolution of the non-linear
Kohn-Sham (KS) equations, most importantly the par-
ticle number, is key for a successful implementation of
OQS-TDDFT. For the present case of laser-solid inter-
actions we exploit Houston orbitals as the pointer states
of decoherence32. The method outlined in the follow-
ing is, however, general and is applicable for a wide ar-
ray of non-equilibrium scenarios. The present approach
can be viewed as the extension of stochastic wavefunc-
tion methods18 or Lindblad-Redfield approaches33,34 to
the realm of TDDFT. As a first proof of principle we
demonstrate the equivalence of the present OQS-TDDFT
with the Bloch equation (BE) approach to the time de-
pendent one-body reduced density matrix (TD-1RDM),
when using the same ground-state DFT input for the
bandstructure and dipole coupling matrix elements and
the same phenomenological decoherence or dephasing
rate 1/τdec = 1/T2. This correspondence holds remark-
ably well for weak fields and even for moderately strong
fields when the applicability of electronic ground-state
properties is, a priori, not obvious. We demonstrate
this equivalence for high-harmonic spectra. Decoherence
is found to be primarily responsible for modifying the
non-linear response at later times and suppressing the
induced post-pulse currents. OQS-TDDFT allows, how-
ever, to go beyond the weak-field limit and to simulate
the strong-field regime approaching the dielectric break-
down regime. One hallmark of decoherent dynamics is
the irreversible electronic excitations from the valence
band to the conduction band at the conclusion of the
pulse modifying the dielectric properties of the medium.

In Sec. II we briefly review the present implemen-
tation of the real-time real-space TDDFT. Its gener-
alization to an open quantum system approach, OQS-
TDDFT, is introduced in Sec. III. We benchmark against
the TD-1RDM evolution using the standard Bloch equa-
tions and demonstrate the importance of accounting for
decoherence in the calculation of the linear and non-
linear response of diamond in Sec. IV. Atomic units
(e = ~ = me = 1) are used throughout this paper unless
otherwise stated.

II. TIME-DEPENDENT DENSITY
FUNCTIONAL THEORY

In the present real-space real-time formulation3 of
TDDFT describing the non-linear electron dynamics in-

duced by strong and short laser pulses in crystalline in-
sulators we solve the time-dependent Kohn-Sham (KS)
equations

i∂tun~k(~r, t) = ĤKS
~k

(t)un~k(~r, t) (1)

with the KS Hamiltonian

ĤKS
~k

(t) =
1

2

(
~p+ ~k + ~A(t)

)2

+ VKS[n(~r, t)] (2)

for the periodic orbitals un~k(~r, t) entering the Bloch
wavefunctions for periodic potentials

φn~k(~r, t) = ei
~k~run~k(~r, t) . (3)

The electron-electron and electron-ion interactions and
the exchange-correlation potential are included in the
effective one-electron KS potential VKS[n(~r, t)], a func-
tional of the local electron density n(~r, t). In this work we
use the local-density approximation (LDA) to VXC with
the parametrization of Perdew and Zunger35. The cou-
pling to the radiation field in terms of the vector potential
~A(t) in dipole approximation ~A(t) = −

∫ t
−∞ dt′ ~F (t′) with

~F (t) the electric field employs the velocity gauge [Eq. (2)]
in order to preserve the periodicity of the Bloch states in
the presence of the strong field.

A suitable basis for expanding the periodic orbital

un~k(~r, t) in the presence of the ~A(t) field are the Houston

orbitals36,37

uH
n~k

(~r, t) = exp

(
−i
∫ t

dt′εn~k+ ~A(t′)

)
uGS
n~k+ ~A(t)

(~r ) (4)

where uGS
n~k+ ~A(t)

are the ground-state orbitals shifted by

~A(t) in ~k-space with an additional global phase fac-
tor depending on the eigenenergies εn~k. They resemble

the Volkov states38 employed in strong-field atomic and
molecular physics and represent the solution of Eq. (1)

in the adiabatic limit of slowly varying ~A(t). The expan-
sion of the time-dependent periodic orbitals in Houston
orbitals

un~k(~r, t) =

Nvb∑
i=1

αin~ku
H
i~k

(~r, t) +

Ncb∑
i=1

βin~ku
H
i+Nvb

~k
(~r, t) (5)

carries the key advantage that the number of bands re-
quired to be included in converged calculations can be
restricted to those that are non-adiabatically coupled,
preferentially near avoided crossings in the bandstruc-
ture. Moreover, Eq. (5) allows for a well-defined separa-
tion into Nvb valence- and Ncb conduction-band contri-
butions. These properties will also play a key role in our
implementation of decoherent dynamics.

For the BE simulation results presented in this paper
we choose diamond as prototypical wide band gap di-
electric solid. The cuboid 4.77 × 4.77 × 6.74 a.u.3 unit
cell is discretized on a Cartesian grid with spacing 0.21
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a.u. and 0.29 a.u. parallel and orthogonal to the polar-
ization direction of the laser pulse polarized parallel to
the Γ−X direction. This unit cell contains 4 C-atoms of
which the inner shell 1s2 electrons are frozen and included
in norm-conserving pseudopotentials of the Troullier-
Martins form39. In reciprocal space we apply a Cartesian
grid with spacing 0.02 a.u. and 0.07 a.u. parallel and or-
thogonal to the polarization direction, respectively. For
the time propagation we employ a fourth-order Taylor
expansion using a time step of ∆tTDDFT = 0.015 a.u.
All discretization parameters were carefully checked for
numerical convergence. We will consider the electronic
dynamics in diamond driven by few-cycle strong linearly

polarized laser pulses ~F (t), either by an infrared pulse
with λ = 800 nm corresponding a cycle period of T ≈ 2.7
fs or a mid-ir pulse with λ = 3200 nm with T ≈ 10.7 fs.
With increasing cycle period the influence of dephasing
is expected to increase even for few-cycle pulses.

The physical observables considered in the following
can be extracted from the induced current density aver-
aged over the unit cell volume Vc

~J(t) = − i

Vc

∫
Vc

d3r
∑
n~k

φ∗
n~k

(~r, t)
[
ĤKS(t), ~̂r

]
φn~k(~r, t) ,

(6)
which is directly accessible from the TDDFT orbitals. In
particular, the HHG spectrum can be calculated using
Larmor’s formula40

Sn̂(ω) ∝
∣∣∣∣Ft{ d

dt
~J(t) · n̂

}∣∣∣∣2 = ω2
∣∣ ~J(ω) · n̂

∣∣2 , (7)

where n̂ is the unit vector in polarization direction.

III. INTRODUCING DECOHERENCE INTO
TDDFT

A. An open two-level system

Our strategy to incorporate dephasing and decoher-
ence into TDDFT is patterned after open-quantum
system approaches developed for the stochastic ex-
tension of the time-dependent Schrödinger equation
(TDSE)18,41,42. Accordingly, the stochastic TDSE con-
tains in addition to the system Hamiltonian H, a stochas-
tically fluctuating system-bath interaction Vk (often re-
ferred to as “kicks”) which, in general, couples the system
to the environment at random times ti. This stochas-
tic system-bath interaction accounts for both dissipation
and fluctuations in line with the dissipation-fluctuation
theorem43. The time evolution of the state |ψ(t)〉 is con-
sequently given by an alternating sequence of continu-
ous evolution operators governed by the system Hamilto-

nian U(ti+1, ti) = T exp
(
−i
∫ ti+1

ti
H dt′

)
interrupted by

stochastic perturbations described by the evolution op-

erator U
(j)
k ,

|ψ(j)(t)〉 =
∏
i

[
U

(j)
k U(ti+1, ti)

]
|ψ(t0)〉 . (8)

Ensemble averages over M different realizations of the
sequence of stochastic interactions {|ψ(j)(t)〉}, referred
to as the quantum trajectories, yield the reduced density
matrix (RDM),

ρ(t) =
1

M

M∑
j=1

|ψ(j)(t)〉〈ψ(j)(t)| (9)

which, for a wide class of stochastic processes, can be
shown to obey a Lindblad-type equation of motion34,

d

dt
ρ(t) = −i[H, ρ(t)] + TρT † − 1

2
[T †T, ρ]+ (10)

with the transition operators T (T †) induced by Vk rep-
resenting the system-bath interaction. For effective one-
particle quantum trajectories, ρ(t) represents the 1RDM.
In the present case of the open quantum system exten-
sion of TDDFT, the starting point are the Kohn-Sham
equations of motion [Eq. (1)] rather than the TDSE.

We first illustrate the explicit construction of the re-
laxation or decoherent dynamics in analogy to that of
Eqs. (8), (10) with the help of a simplified two-level sys-
tem denoted by {|a〉, |b〉} coupled to an external bath
with quantum state (|s〉, s = 0, . . .) representing, e.g., a
phonon bath. In the following |a〉 and |b〉 will correspond
to valence and conduction band states, respectively. As-
suming for simplicity that the phonon bath is initially in
its ground state |s = 0〉 (e.g. at zero temperature), the
initial non-entangled product state of system and envi-
ronment may be, in general, a coherent superposition of
the valence and conduction-band states,

|ψ0〉 = α |a, 0〉+ β |b, 0〉 , (11)

with |α|2 + |β|2 = 1. The initial electronic 1RDM is given
by the trace over the phonon degrees of freedom |s〉

ρ(t0) = Trs (|ψ0〉 〈ψ0|) =

(
|α|2 αβ∗

α∗β |β|2
)
. (12)

For the initial state [Eq. (11)], ρ(t0 = 0), of course, still
represents a pure state. The interaction Vk now couples
the electronic and phonon degrees of freedom. For suffi-
ciently small interaction time intervals ∆t and weak cou-
pling within the Born-Markov limit44, the amplitudes for
state admixtures are given in first-order approximation
by time-dependent amplitudes

c(a)
s (∆t) = −i∆t 〈a, s|Vk |a, 0〉 (13)

c(b)s (∆t) = −i∆t 〈b, s|Vk |b, 0〉 (14)

resulting in the entangled state

|ψ(∆t)〉 = αNa(∆t)

[
|a, 0〉+

∑
s>0

c(a)
s (∆t) |a, s〉

]
+ βNb(∆t)

[
|b, 0〉+

∑
s>0

c(b)s (∆t) |b, s〉
]

(15)
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with renormalization factors

Na,b(∆t) =

(
1 +

∑
s>0

|c(a,b)s (∆t)|2
)−1/2

. (16)

The total probability for an electron in state |a〉 (or |b〉)
to induce a transition in the phonon bath during the time
interval ∆t is Pj(∆t) = 1−N 2

j (∆t) (with j = a, b). For
suitable choices of the stochastic variable ∆t the coupling
to the bath [Eq. (15)] allows for the discretization of the
system-bath interaction and the introduction of discrete
decoherence steps in analogy to Eq. (8). In general, the
coupling strength to the environment will depend on the
electronic state. In the limit that only the conduction-
band state |b〉 can excite phonons, only Nb(∆t) < 1 while
Na(∆t) = 1. For the entangled state Eq. (15), after
tracing out the phonon degree of freedom the 1RDM after
one decoherence step becomes

ρ(∆t) =

(
|α|2 αβ∗Dab(∆t)

α∗βD∗ab(∆t) |β|2
)

(17)

with

Dab(∆t) = Na(∆t)Nb(∆t)

(
1 +

∑
s>0

c(a)
s (∆t)c∗(b)s (∆t)

)
(18)

the decoherence factor. Eq. (17) represents for all |Dab| <
1 a mixed state and remains a pure state only for Na =
Nb = Dab = 1 (i.e. for vanishing phonon coupling). The
evolution of ρ [Eq. (17)] during one decohering time step
can be formally written as

ρ(∆t) = R(∆t)ρ(0) (19)

in terms of the relaxation super-operator R(∆t) in Liou-
ville space45,46 with

Rij,kl(∆t) = δikδjl ×

 1 (i = j)
Dab(∆t) (i < j)
D∗ab(∆t) (j < i)

. (20)

In the basis of the time dependent Kohn-Sham orbitals,
R(∆t) will be, in general, explicitly time dependent, i.e.
R(t,∆t). For notational simplicity we suppress this de-
pendence in the following. The time evolution of ρ(t)
over finite time intervals from t0 = 0 to t can now be for-
mally written in analogy to Eq. (8) by a sequence of alter-
nating steps of smooth evolution governed by the system
Hamiltonian and discrete stochastic perturbations due to
environmental couplings

ρ(t) =

m−1∏
i=0

{
R(∆t) T exp

[
−i
∫ ti+1

ti

dt′L (t′)

]}
ρ(t0 = 0)

(21)

with tm = t. In Eq. (21), L (t) denotes the explic-
itly time-dependent Liouvillian of the unitary evolution,
[H(t), . . .], in between stochastic scatterings requiring the
time-ordered (T ) exponentiation. Analogously to Eqs.
(8) and (10), an ensemble average over stochastic real-
izations of Eq. (21) should be taken.

B. Decoherence in TDDFT

1. Generalization to N levels

We now generalize the open two-level system (Sec.
III A) to the Kohn-Sham Hamiltonian for the electronic
structure in solids. The Kohn-Sham system can be
viewed as an ensemble of electronic N -level systems,

each member of which corresponds to one discrete ~k
(grid) point that is adiabatically shifted by the vec-
tor potential. We restrict ourselves in the following to
(approximately) quasi-momentum conserving scattering
processes such as electron-phonon scattering or distant
(soft) electron-electron scattering for which the associ-
ated quasi-momentum transfer is smaller than the k-grid

spacing ∆k. For each ~k-point, the KS system consists of
N orbitals {|a1〉 , . . . , |aNvb

〉 , |b1〉 , . . . , |bNcb
〉} with Nvb

valence band states and Ncb conduction band states and
Nvb +Ncb = N being the number of basis functions suf-
ficient to represent all excited states that acquire popu-
lation during the time propagation. For notational sim-

plicity we drop the index for the ~k-point in the following.
The initial state of the system at t = 0 is taken to be

the ground-state density matrix

ρ(0) =

N∑
n=1

wn|Φn(0)〉〈Φn(0)| (22)

with occupation numbers wn = 1 for 1 ≤ n ≤ Nvb and
wn = 0 for states in the conduction band. The ground-
state KS orbitals (|ΦGS

n 〉 = |Φn(0)〉) also coincide with
the natural orbitals, a property which is lost after the
first decoherence step (see below). At any time during
the time evolution we expand the KS orbitals in the Hous-
ton basis [Eq. (4)] denoted by {|ai〉, |bi〉} representing the
field-shifted valence {|ai〉} and conduction band {|bi〉}
states. Generalizing Eq. (11) the states of the combined
system of electronic states and environmental degrees of
freedom (e.g. phonons) read prior to a decohering scat-
tering event

|ψn〉 = |Φn, 0〉 =

Nvb∑
i=1

αin |ai, 0〉+

Ncb∑
i=1

βin |bi, 0〉 (23)

with
∑Nvb

i=1 |αin|2 +
∑Ncb

i=1 |βin|2 = 1. Since the Houston
states are capable of adiabatically following the strong-
field perturbation and couple dynamically only through
“high” frequency components driving transitions among
them, they are well suited to act as “pointer states”32,
i.e. the preferred basis with respect to which off-diagonal
elements of the density matrix
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ρ(t) =



ρ1 1 ρ1 2 · · · ρ1Nvb

ρ2 1 ρ2 2 · · · ρ2Nvb

...
...

. . .
...

ρNvb 1 ρNvb 2 · · · ρNvbNvb

ρ1Nvb+1 · · · ρ1N

ρ2Nvb+1 · · · ρ2N

...
...

ρNvbNvb+1 · · · ρNvbN

ρNvb+1 1 ρNvb+1 2 · · · ρNvb+1Nvb

...
...

...

ρN 1 ρN 2 · · · ρN Nvb

ρNvb+1Nvb+1 · · · ρNvb+1N

...
. . .

...

ρN Nvb+1 · · · ρN N



. (24)

will decohere. The off-diagonal entries depicted in
green in Eq. (24) describe valence intraband coherences,
red entries corresponding conduction-band intraband co-
herences, and blue entries interband coherences. Ac-
cordingly, we construct the relaxation super-operator
R(t,∆t) for the density matrix in the Houston basis. The
scattering probabilities for a particle in a valence band
orbital, Pai(∆t) = 1 − N 2

ai(∆t), and for a particle in a

conduction band orbital, Pbi(∆t) = 1−N 2
bi

(∆t), will, in
general, be different (typically Nai(∆t) > Nbi(∆t)) and

orbital (i) and ~k-dependent. Simple approximations for
scattering rates can be derived from, e.g., mean free paths
for electron-phonon, electron-defect, or distant electron-

electron scattering. Generalizing Eq. (20), the matrix
elements of R(∆t) follow from Eq. (23) as

Rij,kl(∆t) = δikδjl ×



1 (i = j)
Daiaj (∆t) (i < j ≤ Nvb)
D∗aiaj (∆t) (j < i ≤ Nvb)
Daibj (∆t) (i ≤ Nvb < j)
D∗aibj (∆t) (j ≤ Nvb < i)

Dbibj (∆t) (Nvb < i < j ≤ N)
D∗bibj (∆t) (Nvb < j < i ≤ N)

(25)
with

Daiaj (∆t) = Nai(∆t)Naj (∆t)
(

1 +
∑
s>0 c

(ai)
s (∆t)c

∗(aj)
s (∆t)

)
(26)

Daibj (∆t) = Nai(∆t)Nbj (∆t)
(

1 +
∑
s>0 c

(ai)
s (∆t)c

∗(bj)
s (∆t)

)
(27)

Dbibj (∆t) = Nbi(∆t)Nbj (∆t)
(

1 +
∑
s>0 c

(bi)
s (∆t)c

∗(bj)
s (∆t)

)
. (28)

Analogously to Eq. (21), the time evolution of the density
operator is now formally given by

ρ(t) =

m−1∏
i=0

{
R(∆t) T exp

[
−i
∫ ti+1

ti

dt′LKS(t′)

]}
ρ(t0)

(29)
with LKS(t′) the time-dependent Liouvillian acting on
the Kohn-Sham system. After each application of the re-
laxation operator the density matrix is decomposed into
a sum of dyadic products of new orbitals |Φ′n(ti)〉 with
new weights w′n

ρ(ti) =

N∑
n=1

w′n|Φ′n(ti)〉〈Φ′n(ti)| (30)

which are further propagated during the next time step

using the KS-Hamiltonian. In general, an ensemble av-
erage over stochastic realizations of Eq. (29) is required.

2. Numerical implementation

For the implementation of the protocol outlined above
[Eqs. (22)–(30)] Houston orbitals acting as “pointer
states” are required as input. They should be calcu-
lated before each decoherence step by diagonalization of
the (GS) KS Hamiltonian shifted in reciprocal space for
each quasi-momentum associated with the instantaneous

vector potential ~k0 + ~A(t). As recalculating Houston or-
bitals for each step is extremely time-consuming, in the
present implementation we prepare KS orbitals prior to
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the TDDFT propagation on a very fine ~k-grid with spac-
ing ∆k = 6 × 10−4 a.u. along the polarization direction
of the laser pulse. During the propagation, Houston or-
bitals pertaining to the continuously distributed quasi-

momentum ~k0 + ~A(t) [Eq. (23)] are approximated by

those KS orbitals at the closest grid-point ~k ≈ ~k0 + ~A(t).
This approximation significantly speeds up the calcula-
tion but introduces a small discretization error. The al-
gorithm employed to correct for this discretization error
is described in appendix A.

We simplify solving Eq. (29) by taking the following
steps: First, we solve the real-space real-time Kohn-
Sham equations for the N = Nvb + Ncb orbitals
un(~r, ti) = 〈~r |Φn(ti)〉 from time ti to ti+1 with the

density in ĤKS[n(~r, t)] calculated using the weights wn,

n(~r, t) =
∑N
n=1 wn|un(~r, t)|2. After 5 time steps we

apply the decoherence operator R(∆t) at time ti+1 to
account for decoherence accumulated over the period
∆t = ti+1 − ti = 5 × ∆tTDDFT = 0.075 a.u. We re-
place in the following the ensemble average over different
realizations by one single “representative” quantum tra-
jectory using a fixed ∆t. Variation of the precise value
of ∆t have been found to leave the numerical results
unchanged as long as ∆t � τdec. Application of the
decoherence step after ∆t results in a changed density
matrix ρ(ti+1) and a new set of weights and orbitals,
√
wn|Φn(ti+1)〉 R(∆t)−−−−→

√
w′n|Φ′n(ti+1)〉, defining the dis-

crete sequence of stochastic perturbation.

As discussed above, Nai(∆t) and Nbi(∆t) will in gen-

eral depend on the orbital i and momentum ~k. For the
simple test calculations shown here and for the direct

comparison with the results of the BE for the TD-1RDM
we use Nai(∆t) = 1 and Nbi(∆t) = N (∆t) independent

of i and ~k for all i ∈ {1, . . . , Ncb}, corresponding to an
effective decoherence time τdec ' ∆t

1−N (∆t) . This implies

that the blue and red entries in Eq. (24) are damped
per decoherence step by e−∆t/τdec and e−2∆t/τdec , respec-
tively, while green entries remain unchanged. Note that
when using microscopic input [Eqs. (26)–(28)] rather
than this model input, deviations from a simple expo-
nential decay are to be expected. Using the numerical
procedure described in Appendix A inclusion of deco-
herence increases the CPU time for propagation com-
pared to the TDDFT propagation by about a factor of
4 while maintaining a high level of numerical accuracy.
The present implementation of decoherence is conceptu-
ally independent of the level of sophistication employed
for the underlying TDDFT, in particular of the choice of
the exchange-correlation potential VXC . In addition to
the A-LDA we have also tested the Tran-Blaha-mBJ ap-
proximation for the VXC featuring the correct band gap
of diamond47. While the enlarged band gap accommo-
dates additional band-gap harmonics, the change in the
XC-potential leaves the effect of decoherence largely un-
changed. For reasons of computational efficiency we have
used the A-LDA VXC for the numerical results presented
below.

C. Bloch equations in the Houston basis

For a comparison with previously employed methods
for incorporating decoherence in driven solid-state elec-
tron dynamics, we propagate the one-particle reduced

density matrix ρ
~k
mn in the Houston basis [Eq. (4)] by solv-

ing the Bloch equations for centro-symmetric systems

∂tρ
~k
mn = −iω~k+ ~A(t)

mn ρ
~k
mn + i ~F (t)

∑
l

(
~d
~k+ ~A(t)
ml ρ

~k
ln − ~d

~k+ ~A(t)
ln ρ

~k
ml

)
− (1− δmn)

ρ
~k
mn

τmn
(31)

for a dense set of ~k-points initially in the first Brillouin
zone and shifted in reciprocal space in time by the quasi-
momentum associated with the vector potential. The last
term in Eq. (31) represents the loss of coherence between
bands m and n with decoherence time τmn corresponding
to the “transverse” relaxation time T2. The “longitudi-
nal” relaxation time is quite long, T1 � T2, and does
not affect the evolution of the 1RDM over time scales
relevant for this work (a few tens of femtoseconds). For
weak to moderate laser intensities where the electronic
system is still close to its ground state and a strong non-
linear response is not yet expected to significantly modify
the bandstructure and introduce dynamical correlation
effects, the BE approach to the TD-1RDM [Eq. (31)] is
expected to closely match the OQS-TDDFT results if the
same input from ground-state DFT calculations is used.

Accordingly, the transition frequencies ω
~k
mn = εm~k − εn~k

and the dipole matrix elements

~d
~k
mn =

 i
~p

~k
mn

ω~k
mn

, ω
~k
mn 6= 0

0, ω
~k
mn = 0

(32)

are extracted from the set of KS orbitals used as initial
state of TDDFT. We emphasize that accurate input from
3D electronic structure calculations, in particular near
avoided crossings, for both the band structure and the
magnitude and phase of the coupling matrix is essential
to reach agreement. Simplified and reduced dimension-
ality models can achieve qualitative agreement at best.

For the decoherence times we choose in line with our
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OQS-TDDFT calculation

τmn =

 ∞, m, n /∈ CB
τdec, else
τdec/2, m, n ∈ CB

(33)

The induced current density corresponding to Eq. (6) is
given in terms of the TD-1RDM by

~J(t) ∝
∑
~k

∑
m,n

~p
~k+ ~A(t)
mn ρ

~k
mn (34)

and can be separated into intraband (m = n) and in-

terband (m 6= n) contributions ~J intra and ~J inter, respec-
tively, allowing for a detailed analysis of inter- and in-

traband HHG applying Eq. (7) to ~J intra and ~J inter. This
clear separation is, again, consequence of the fact that
we formulate the BEs in the Houston basis.

For the calculations shown in this work we use a Carte-
sian ~k-grid with step size 0.01 a.u. and 0.07 a.u. parallel
and orthogonal to the polarization direction of the laser,
respectively. To accurately resolve narrow avoided cross-
ings in the band structure, the transition frequencies and
dipole matrix elements are calculated on an extremely

fine ~k-grid with spacing 0.0003 a.u. taken from the DFT
ground state. The time evolution of the BEs composed
of 4 valence and 4 conduction bands is calculated with
a 4th-order Runge-Kutta propagator with a time step of
∆tRK = 0.1 a.u. It should be noted that by neglecting
the self-consistent response of the N -electron system the
TD-1RDM approach to the propagation is computation-
ally much faster (by a factor of∼ 103) than OQS-TDDFT
but at the price of a very time consuming calculation of
consistent sets of initial-state coupling-matrix elements

and band structures on much finer ~k-grids.

IV. COMPARISON BETWEEN OQS-TDDFT
AND BLOCH EQUATIONS

In order to test the applicability of the newly devel-
oped OQS-TDDFT, we present a detailed quantitative
comparison between the induced currents, the resulting
HHG calculated with both BE and OQS-TDDFT em-
ploying identical input for band-structure and decoher-
ence times, and the response of wide band-gap materials
to strong field driving. We choose moderately intense
laser pulses in the ir (λ = 800 nm, 12 cycles total pulse
duration τir ≈ 32 fs with a sin2-envelope of the vector po-
tential corresponding to a pulse duration of τ ≈ 12 fs of
the full width at half maximum of the intensity) and mid-
ir (λ = 3200 nm, 8 cycles total pulse duration τmir ≈ 85.4
fs with a sin2-envelope of the vector potential correspond-
ing to a pulse duration of τ ≈ 31 fs of the full width at half
maximum of the intensity) frequency ranges irradiating
diamond as a prototypical target material with a band
gap of about 5 eV well beyond the one-photon energies
of the laser pulses. Additional mesoscopic propagation

effects which we have shown to be important for a real-
istic quantitative comparison with the experiment12 are
intentionally omitted from the present calculation aiming
at benchmarking the effect of decoherence on the micro-
scopic dynamics.

We start this section by an analysis of the linear re-
sponse of diamond as determined by time propagation
of the “kicked” system allowing for a simple numerical
test of our implementation of OQS-TDDFT and for the
determination of a lower bound for the decoherence time
τdec.

A. Linear response properties of diamond

The term TDDFT is used for two different settings:
on the one hand for the calculation of the linear re-
sponse (LR) of materials using Kohn-Sham orbitals from
a ground-state DFT calculation (LR-TDDFT; for solids
see, e.g.,48,49) and, on the other hand, for the time prop-
agation of Kohn-Sham orbitals as discussed in this pa-
per. Usually, linear-response properties of solids, e.g.
the oscillator strengths for excitations from the ground
state, are calculated using the former method. Here,
we use the real-time propagation method after excita-
tion of the extended system by a δ-shaped electric pulse
or, equivalently, a step function in the vector potential,
~A(t) = ~A0θ(t). For small step heights, A0 ' 0.001 a.u.,
the system remains well within the regime of linear re-
sponse and one can deduce the dielectric function of the
material,

ε(ω) = 1 + i
4πσ(ω)

ω
, (35)

with the frequency dependent conductivity σ(ω) derived
from Ohm’s law,

σ(ω) = −J(ω)/A0 . (36)

Starting from the groundstate, the current J(t) induced
by the constant vector potential A0 along the polariza-
tion direction from which J(ω) is calculated by Fourier
transform, results exclusively from interband excitations.
When accounting for decoherence with energy and mo-
mentum independent decoherence time τdec = const we
expect damping of the induced current J(t) by a sin-
gle exponential thus allowing for a direct comparison of
results from conventional and OQS-TDDFT. Our sim-
ulations using OQS-TDDFT and TDDFT confirm that
the induced current accounting for decoherence Jdec(t) ≡
JOQS
τdec

(t) = JTDDFT(t) · e−t/τdec to within numerical ac-
curacy, thus confirming the correct numerical imple-
mentation of decoherence in OQS-TDDFT. We compare
the simulated linear-response properties of LDA-diamond
close to the band-gap energy (onset of absorption) by
plotting the loss function for different decoherence times
τdec together with experimental data given by

Im

[
− 1

ε(ω)

]
=

2nκ

(n2 + κ2)2
(37)
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FIG. 1. (Color online) Simulated (lines) and experimen-
tal (symbols) loss functions of diamond. Experimental data
have been horizontally shifted by 1.45 eV to correct for the
LDA band-gap error. Simulations have been performed us-
ing TDDFT (without decoherence, τdec → ∞, black lines)
and OQS-TDDFT (strong decoherence, τdec = 10 fs, red line;
τdec = 5 and 1 fs, blue dash-dotted and dashed lines, respec-
tively).

with

ε(ω) = (n2 − κ2) + i · 2nκ (38)

where n(ω) and κ(ω) are the energy dependent refractive
index and extinction coefficient, respectively. n(ω) and
κ(ω) have been measured for many materials and are
readily available from data tables (e.g.50).

Due to the small step height A0 of the vector potential
the results of the LR calculations are extremely sensitive

to the ~k-grid density. We find that the k-spacing capa-
ble to reach convergence in simulations of induced elec-
tron dynamics in the strong-field regime (see Sec. II and
results below) is still insufficient to obtain realistic loss
functions in the linear response limit of very weak A0.
We have therefore increased for the present simulation

the ~k-grid density by setting ∆k⊥ = 0.03 a.u. (instead of
∆k⊥ = 0.07 a.u.).

Fig. 1 shows the loss functions calculated by TDDFT
(τdec → ∞) and OQS-TDDFT for τdec = 10 fs. The ex-
perimental data50 have been horizontally shifted by 1.45
eV to compensate for the well-known underestimate of
the band-gap by LDA. The onset of absorption (steep-
ness, step height) is well reproduced by both simulations.
Sharp edges in the loss function are smoothed in the
presence of decoherence. From the comparison with the
experiment near the absorption edge it is obvious that
the decoherence time τdec should be well above 10 fs.
We use τdec = 10 fs in the remainder of this work as
a lower bound taking into account that increasing exci-
tation density is expected to open additional channels
for decoherence thereby possibly slightly decreasing τdec.
Preliminary measurements of the transmission of single
pulses as a function of the intensity51 indicate that an ef-
fective decoherence time τdec = 10 fs corresponding to a

FIG. 2. (Color online) Change of loss function relative to the
ground-state response, ∆ Im(−1/ε), induced by irradiation of
diamond by a 3200 nm laser pulse with I0 = 5×1012 W/cm2.
Due to the small excitation density changes are small on an
absolute scale (see Fig. 1). However, large relative differences
are found between the coherent (τdec → ∞) and decoherent
dynamics (τdec = 10 fs).

scattering rate of 0.1 fs−1 still considerably overestimates
decoherence rate in high quality diamond crystals even
for intense pulses with intensities of the order of 1013

W/cm2. Shorter decoherence times (blue lines in Fig.
1) lead to unphysical results highlighted by the complete
disappearance of the band gap for τdec ' 1 fs.

One key advantage of the time-propagation method
over LR-TDDFT is the possibility to calculate the change
of the dielectric properties induced in the material by
a time-dependent external potential beyond linear re-
sponse. We illustrate the potential of this method with
the help of the following example (Fig. 2). For a mid-
ir laser pulse with λ = 3200 nm and peak intensity of
I0 = 5 × 1012 with a total duration of 8 cycles we have
first performed the time propagation of the system both
in the absence (τdec →∞) and in the presence of strong
decoherence (τdec = 10 fs). At the conclusion of the
pulse we set all off-diagonal elements of the density ma-

trix in the Houston basis which for ~A = 0 is equivalent
to the KS basis to zero thereby neglecting all intraband
and interband coherences. This can be viewed as an in-
coherently excited electronic system with non-vanishing
conduction band population. We then probe the linear
response of this out-of-equilibrium system by a δ-pulse.
As expected, an excitation density present in the conduc-
tion band after the conclusion of the laser pulse leads to
the opening of additional loss channels in the band gap.
While the absolute value of the induced change is rather
small the simulations show qualitatively different results
for τdec →∞ and τdec = 10 fs indicating the importance
of accounting for decoherence in time-dependent systems
to determine out-of-equilibrium properties.
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FIG. 3. (Color online) Current density in diamond induced
by an ir laser pulse (λ = 800 nm, I0 = 1013 W/cm2, total
duration 12 cycles) calculated with (dashed blue lines) and
without (red solid lines) decoherence using (a) OQS-TDDFT
and (b) Bloch equations (BE).

B. Total induced currents and high-harmonic
generation

The temporal profiles of the current densities predicted
by the OQS-TDDFT and the BE (Figs. 3 and 4) agree
well with each other on an absolute scale, both in the
absence (τdec →∞) and in the presence (τdec = 10 fs) of
decoherence. For this test the decoherence time was cho-
sen to represent a lower bound for the electron-phonon
scattering time or, equivalently, the upper bound for the
phonon-scattering rate in order to assess the overall influ-
ence of decoherence on the induced currents and the ob-
servables derived from it. In the absence of decoherence
the excellent agreement between TDDFT and BEs indi-
cates that even at moderately strong driving laser fields
the electronic structure of the ground state still provides
a realistic framework for the ensuing electron dynamics.
The persistence of this agreement in the presence of de-
coherence demonstrates that the present OQS-TDDFT
converges in the limit of weak to moderately strong per-
turbation and for phenomenological decoherence times
to the Bloch equations with a transverse relaxation time
T2 = τdec. The influence of decoherence becomes increas-
ingly important at late propagation times t > τdec while
the pulse is still on. For the few-cycle pulse with λ = 800
nm (oscillation period T ≈ 2.7 fs) the current amplitude
is only slightly reduced and the major consequence of de-
coherence is near-complete damping of post-pulse “ring-
ing”, i.e., the field-free current gets efficiently damped
(Fig. 3). These post-pulse fluctuations originate from the
excited-state coherences associated with the off-diagonal
elements of the density matrix which persist in the ab-
sence of interactions with its surroundings. For mid-ir
pulses (λ = 3200 nm) with a cycle period of T ≈ 10.7
fs, i.e. of the order of τdec, the influence of decoherence

FIG. 4. (Color online) Same as Fig. 3 but for a mid-ir laser
pulse (λ = 3200 nm, I0 = 5 × 1012 W/cm2, total duration 8
cycles), a) TDDFT b) BE.

FIG. 5. (Color online) HHG spectrum derived from the cur-
rents shown in Fig. 3 (~ω = 1.55 eV) calculated with (dashed
blue lines) and without (red solid lines) decoherence using (a)
OQS-TDDFT and (b) Bloch equations (BE).

is considerably more dramatic while the pulse is still on
(Fig. 4). The induced current is no longer in phase with
the driving pulse and its frequency distribution gets con-
siderably modified. The resulting high-harmonic spectra
for the ir pulse (Fig. 5) and the mid-ir pulse (Fig. 6) fea-
ture a broad irregularly fluctuating distribution for fre-
quencies well above the band gap extending for the mid-ir
pulse to near the ∼ 60th harmonic (Fig. 6). Low-order
intraband harmonics are increased in intensity by up to
an order of magnitude when including decoherence while
high-frequency interband harmonics are decreased by a
similar amount. However, a well-defined HHG spectrum
with pronounced peaks at odd harmonics, as expected
for inversion-symmetric crystals, is missing. This feature
has been observed previously and was attributed to the
neglect of decoherence5,6,8,13,14. Only by assuming ex-
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FIG. 6. (Color online) HHG spectrum derived from the cur-
rents shown in Fig. 4 (~ω = 0.39 eV) calculated with (dashed
blue lines) and without (red solid lines) decoherence using (a)
OQS-TDDFT and (b) Bloch equations (BE).

tremely short decoherence times of the order of 1 fs (or
significantly smaller than the cycle period for ir pulses),
the onset of a regular HHG spectrum could be recovered.
The physical origin of such fast decoherence processes
has remained unexplained. We note that such rapid de-
coherence, if present, would be a major stumbling block
for the realization of ultrafast coherent optoelectronics on
the fs scale. It could be shown recently12 that mesoscopic
propagation effects of the light field are key to restoring
a well-characterized HHG spectrum without the need for
invoking such short decoherence times.

The Gabor transform of the signal allowing for a time-
frequency analysis of the non-linear optical response is
shown in Fig. 7. The most important effect of deco-
herence is the strong suppression of the post-pulse high-
frequency radiation emitted from the polarization current
due to excited-state coherences persistent in the absence
of damping. The Gabor transform reveals a pronounced
“tilt” of the harmonic peaks above the band gap (upper
panels for λ = 800 nm): late emission is associated with
lower emission energies while early emission corresponds
to higher frequencies. This chirp is reminiscent of the
contribution from a distribution of “long trajectories” in
the semiclassical three-step model of atomic HHG52,53.
The strong tilt in the present case even leads to an overlap
of different harmonic orders when projected onto the fre-
quency axis resulting in the smearing out of well-defined
peaks at odd harmonics. Only for the low-order band-gap
harmonics (< 5 in the present case) and for the highest
frequencies near the cut-off where only few semiclassi-
cal trajectories can contribute a more clearly visible har-
monic structure emerges. We note that the present result
from OQS-TDDFT closely agree with corresponding sim-
ulations using Bloch equations (not shown).

C. Intra- vs. interband currents

The relative importance of intraband and interband
current contributions to the HHG spectra has been a
topic of lively debate (see, e.g., Ref.6 vs. Ref.8 and a
recent review on solid-state HHG54). The driven motion
of excited electrons and holes within a given conduction
or valence band represents the intraband current. Devia-
tions from a purely parabolic shape of the band give rise
to high-frequency components in the current density and,
consequently, in the emitted radiation. These contribu-
tions strongly depend on the details of the underlying
band structure contributing to the current. Morevover,
when the vector potential of the pulse is large enough to
drive excited carriers across the Brillouin-zone boundary,
i.e. A(t) > ΓX, their direction of motion changes result-
ing in Bloch oscillations contributing to intraband HHG.
On the other hand, the coherent excitation of electrons
and holes allowing for the coupling between the bands
and inducing a rapidly oscillating polarization current
gives rise to the interband contribution to HHG. The
presence of decoherence can have important implications
for the interplay between intraband and interband cur-
rents. Fig. 8 displays an example for mid-ir driving. The
total current drastically changes and gets reduced at late
times t > tdec. This results from the significant change of
the relative weight of the intraband and interband cur-
rents which are phase shifted relative to each other by
π. In the presence of decoherence (Fig. 8c) interband
and intraband contributions become comparable for late
times while the interband contribution dominates when
decoherence is neglected (Fig. 8b). While the maximum
vector potential is too small to induce conventional Bloch
oscillations, we observe a novel scenario of Bloch oscil-
lations, i.e. reversal of the group velocity, in diamond
already for A(t) & 1

2ΓX where we find an avoided cross-
ing in the band structure (see Appendix B). Driving an
intraband current across this region well inside the Bril-
louin zone results in a reversal of the carrier velocity in
close analogy to that near the Brillouin-zone boundary.
The time windows within which the quasi-momentum as-
sociated with the vector potential exceeds the quasimo-
mentum where the avoided crossing is located is marked
in Fig. 8. Within these windows these intra-Brillouin
zone Bloch oscillations (dips in the intraband currents
in panels 8b and 8c) enhance the intraband current.
This demonstrates the importance of using realistic band
structures in simulations of HHG in solids instead of sim-
ple tight-binding models of the bandstructure.

The low-energy part of the resulting HHG spectrum
(Fig. 9) gives further insight into the interplay between
intra- and interband HHG. While the low-order band-gap
harmonics (in the present case up to n = 5) are domi-
nated by the intraband current, the high-harmonics well
above the band gap are completely dominated by inter-
band contributions. The relative weight between intra-
band and interband emission at high frequencies is only
marginally affected by the presence of decoherence while
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FIG. 7. (Color online) Time-frequency analysis (Gabor transform) on a logarithmic color scale of the radiation emitted from
diamond for an ir pulse (upper row) and a mid-ir pulse (lower row). Left column panels without decoherence, right column
with strong decoherence (τdec = 10 fs). Laser parameters as in Figs. 3 and 4. Width of Gabor wavepacket σ = 2 fs (upper row)
and σ = 5 fs (lower row). Results from the Bloch equations (not shown) closely agree.

we find noticeable changes for the band-gap harmonics.

D. Response to strong-field driving

The present OQS-TDDFT allows to treat the strongly
non-linear response to strong-field driving accounting for
decoherence when the excitation density is sufficiently
high and, consequently, the ground-state electronic struc-
ture can no longer fully account for the response. During
strong-field laser irradiation a significant fraction of the
electrons are transiently excited to the conduction band.
Most of these electrons are excited close to the peaks of
the oscillating electric field of the laser pulse. This can
be recorded in terms of an oscillating energy exchange
between the radiation field and the electronic system. In-
corporation of dephasing strongly suppresses the coher-
ent deexcitation processes by destroying the well-defined
phase relation between particle and hole wavepackets to
be recombined. As an important consequence the persis-
tent excited carrier density after conclusion of the laser
pulse is strongly enhanced. In turn, the optical properties
such as the linear-response dielectric function εex(ω) as
well as the non-linear response of the excited (ex) elec-
tronic system are significantly altered compared to the
corresponding ground-state response. The resulting ex-
citation density is a function of both the laser intensity
and the decoherence rate (Fig. 10). This non-linear re-
sponse can be experimentally probed in a pump-probe
setting. The excitation density and, in particular, the fre-

quency dependent transmittivity could be mapped out by
a probe pulse arriving subsequently to the strong pump
pulse (c.f. section IV A). We find an approximately lin-
ear dependence of the excited carriers on the decoherence
rates (Fig. 10). Even at intensities close to the destruc-
tion limit for diamond (at a vacuum intensity of about
I0 ∼ 2 × 1013 W/cm2) the BE model (solid lines) still
closely agrees with the OQS-TDDFT (symbols).

V. CONCLUDING REMARKS

In this work we have presented an open quantum sys-
tem extension of TDDFT paving the way toward realistic
simulations of excited solid-state systems including deco-
hering processes. The basic idea underlying the present
approach is to expand the time-dependent Kohn-Sham
orbitals into a basis of pointer states of decoherence for
which the relaxation operator can be easily constructed.
Repeated application of the relaxation (super) opera-
tor to the reduced density matrix as the system evolves
in time according to the Kohn-Sham equations allows
to consistently account for decoherence effects within
TDDFT. We have validated our approach by an in-depth
comparison with the solutions of the Bloch equations
for the reduced density matrix within which decoherence
can be straightforwardly included via a finite dephasing
or transverse relaxation time T2. We have first verified
that for the prototypical problem of electron dynamics in
diamond driven by moderately strong ultrashort ir and
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FIG. 8. (Color online) Separation of intra- and interband
currents induced by a mid-ir laser pulse with λ = 3200 nm,
I0 = 5×1012 W/cm2, and total duration of 8 cycles. The time
intervals within which the vector potential of the pulse (a)
exceeds half the distance to the Brillouin-zone boundary and
reaches the avoided crossing, i.e. |A(t)| > ΓX/2, are shaded
in gray. The total currents (red solid lines) are decomposed
into intraband (blue dashed lines) and interband (green dash-
dotted lines) contributions for (b) fully coherent (τdec → ∞)
and (c) decoherent (τdec = 10 fs) dynamics. Total currents
calculated using TDDFT and BE are (almost) identical, ex-
traction of interband and intraband currents was done from
our BE simulation.

mid-ir laser pulses the induced current and the resulting
high-harmonic radiation TDDFT and the BE solutions
agree with each other to within the numerical accuracy
in the limit of fully coherent dynamics, i.e. in the ab-
sence of decoherence. Key to this agreement is that ab-
initio input from the same ground-state DFT calculation
that also provides the initial state of the TDDFT simula-
tion is used in the BE calculation. Ontra-Brillouin zone
Bloch oscillation contributions to intraband harmonics,
here identified for the first time, require the accurate rep-
resentation of the band structure. For moderately strong
fields and large band gaps the excitation density remains
sufficiently small such that the ground-state electronic
structure still governs the non-linear response to the field.
The near-perfect agreement between the TDDFT and BE
approaches is found to persist in the presence of decoher-
ence, i.e. for finite T2, clearly indicating that the present
OQS extension of TDDFT allows for the consistent inclu-
sion of dephasing while preserving fundamental proper-
ties of TDDFT, in particular conserving particle number
density.

FIG. 9. (Color online) Decomposition of the total spectrum
of the segment of low-order harmonics of Fig. 6 (red solid
lines) induced by a mid-ir laser pulse with λ = 3200 nm, I0 =
5×1012 W/cm2, and total duration of 8 cycles into intraband
(blue dashed lines) and interband (green dash-dotted lines)
contributions for (a) coherent (τdec →∞) and (b) decoherent
dynamics (τdec = 10 fs).

FIG. 10. (Color online) Carrier excitation density as a func-
tion of intensity following a 12 cycle ir pulse with λ = 800
nm for different decoherence rates calculated using BE. For
decoherence times τdec →∞ and τdec = 10 fs excitation den-
sities have also been calculated using OQS-TDDFT (open cir-
cles). Deviations between OQS-TDDFT and BE (solid line)
are only about 2% even for short decoherence times and high
intensities I & 1013 W/cm2.

In our numerical test cases we have used a constant
decoherence time for all excited states of the system to
allow for a quantitative comparison between results of
OQS-TDDFT with solutions of the Bloch equations. Ex-

tensions to state and ~k dependent decoherence times as
derived from inelastic mean free paths for decohering pro-
cesses can be easily implemented. For ultrashort laser
pulses with durations comparable to or even shorter than
the decoherence times, realistic simulations of the non-
linear electronic response in solids requires the inclusion
of decoherence effects. This is also true for long wave-
lengths and oscillation periods comparable to or longer
than the decoherence time. While for large band-gap ma-
terials excitation densities after conclusion of the pulse
remain small up to laser intensities near the destruc-
tion limit of the material allowing for the use of the
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numerically simpler Bloch equations based on ground-
state properties, large excitation densities as expected in
metals and small-band gap semiconductors will require
a treatment self-consistently accounting for time depen-
dent changes induced in the electronic system. The only
available method to date capable of performing this task
is time dependent density-functional theory. The method
presented here allows to consistently include dephasing
processes in solids by interaction with the environment
such as, e.g., electron-phonon or electron-defect scatter-
ing within TDDFT.
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Appendix A: Error correction in the numerical
implementation

In our implementation of the decomposition (23) the

Houston orbitals at ~k0 + ~A(t) are approximated by GS

orbitals at ~k ≈ ~k0 + ~A(t). Due to the slight mismatch

between states at ~k0 + ~A(t) and ~k a small fraction of
the wave function is artificially mapped onto energeti-
cally high lying conduction band states. To prevent the
incorrect assignment and propagation of these compo-
nents, we treat them separately from the decoherence
step. While the dominant fraction of the wavefunction is
represented within the truncated Houston basis, we store
the remaining density incorrectly assigned to higher con-
duction bands in (non-normalized) auxiliary functions
|hn〉 = |hn, 0〉 with 〈hn|hn〉 � 1. Accordingly, we ex-
pand the KS orbitals [see Eqs. (22), (23)]

√
wn |ψn〉 =

√
w̄n |Φn, 0〉+ |hn〉 =

Nvb∑
i=1

αin |ai, 0〉+

Ncb∑
i=1

βin |bi, 0〉+ |hn〉 (A1)

prior to the decoherence step. The auxiliary functions
|hn〉 account for the discretization error and store that
part of the wavefunction not properly represented in the
discretized Houston basis. After the decoherence step, we

add each |hn〉 to the correct modified KS orbitals |Φ̃m〉
following the decoherence step. Only close to avoided
crossings in the bandstructure indices m and n may dif-
fer, in most cases m = n, as expected.

We adopt the following diagonalization scheme to as-

sure |Φ̃m〉 is as close to |Φn〉 as possible, i.e., to find the
correct mapping m → n: Starting from the density ma-
trix after the decoherence step [Eq. (30)] we choose the

first state m = 1 to include all density-matrix elements
which have overlap with the energetically lowest Houston
state |a1〉

√
w̃1|Φ̃1〉 =

eiϕ1

√
ρ11


ρ11

ρ21

...
ρN1

 (A2)

leaving us with the residual density matrix

ρR1
= ρ− w̃1|Φ̃1〉〈Φ̃1| =


0 0 · · · 0
0 ρ22 − ρ21ρ12

ρ11
· · · ρ2N − ρ21ρ1N

ρ11
...

...
. . .

...
0 ρN2 − ρN1ρ12

ρ11
· · · ρNN − ρN1ρ1N

ρ11

 (A3)

where no contributions of |a1〉 are left. We then search
for the wavefunction |Φn〉 before the decoherence step

with maximum overlap with
√
w̃1|Φ̃1〉,

max
∣∣∣√w̄nw̃1〈Φn|Φ̃1〉

∣∣∣ , (A4)

to find the correct index n associated with m = 1. The
phase ϕ1 [Eq. (A2)] is chosen such that the relative phase

between |Φn〉 and |hn〉 is preserved, i.e. 〈Φn|Φ̃1〉 ∈ R+,
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FIG. 11. (Color online) Current density in diamond induced
by a nir laser pulse (λ = 800 nm, I0 = 1013 W/cm2, 12 cycles)
for τdec = 10 fs with (blue) and without (red) corrections to
the wavefunction (upper panel). Failure to properly account
for discretization errors leads to a maximum accumulated loss
of norm of the KS orbitals of . 0.1% of the 16 active electrons
in the system (lower panel).

before adding the auxiliary function to the
√
w̃1|Φ̃1〉,

√
w′1|Φ′1〉 =

√
w̃1|Φ̃1〉+ |hn〉 . (A5)

Before calculating the next state
√
w′2|Φ′2〉, |hn〉 is re-

moved from the set of auxiliary functions.

This procedure is repeated analogously for all resid-

ual matrices ρRj resulting in N orbitals
√
w̃m|Φ̃m〉 and

new
√
w′m|Φ′m〉 which serve as new KS orbitals that are

further propagated in time [Eq. (30)] until the next deco-
herence step occurs. Using the method outlined above,
we find perfect agreement in any observables compar-
ing results from our OQS-TDDFT for very long decoher-
ence times τdec →∞ and from the conventional TDDFT
propagation. Applying the correction step, the number of
electrons is conserved and no unphysical kinks in the cur-
rent density are observed (blue lines in Fig. 11). Omitting
this correction step, i.e. truncating the basis (Ncb = 16)
without using the auxiliary functions, leads to an accu-
mulated loss of . 0.1% of the active electrons in the
system (Fig. 11b) corresponding to 〈hn|hn〉 . 10−7 for
all times and orbitals. Furthermore, it induces small saw-
tooth oscillations in the current density (red line in Fig.
11a). Jumps of the current density indicate transitions

between neighboring ~k-points on our grid of precalculated
approximate Houston states.

Appendix B: Band structure of diamond

As mentioned in Sec. IV C we find reversal of the group
velocity of excited electrons for vector potentials much
too small to drive occupation from the Γ-point to the

FIG. 12. (Color online) Band structure of diamond along
three lines parallel and close to Γ−X and increasing distance
to Γ − X (from left to right ∆k⊥ ≈ 0.05, 0.08, 0.15 a.u.).
Bottom panels are magnifications of the band structure in
the surrounding of the avoided crossing marked red in upper
panels.

Brillouin-zone boundary (X). There, further increase of

the field strength would induce a jump from ~k → −~k
in addition to the (possible) sign change of the group
velocity dE(k)/dk (Bloch oscillation). For diamond we
observe sign reversals of the group velocity (intraband
current) already at approximately half the field strength
necessary to induce Bloch oscillations. Analysis of the
band structure of diamond reveals narrow avoided cross-
ings at about half the distance between Γ and X (Fig.
12) with small coupling strengths between neighboring
bands. Carrier density reaching the avoided crossing will
therefore change the sign of its group velocity with large
probability and induce the oscillations observed in the
intraband current (Fig. 8c).
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