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Larkin-Ovchinnikov superconducting state has spontaneous modulation of Cooper pair density,
while Fulde-Ferrell state has a spontaneous modulation in the phase of the order parameter. We
report that a quasi-two dimensional Dirac metal, under certain conditions has principally different
inhomogeneous superconducting states that by contrast have spontaneous modulation in a sub-
manifold of a multiple-symmetries-breaking order parameter. The first state we find can be viewed
as a nematic superconductor where the nematicity vector spontaneously breaks rotational and trans-
lational symmetries due to spatial modulation. The other demonstrated state is a chiral supercon-
ductor with spontaneously broken time reversal and translational symmetries. It is characterised
by an order parameter, which forms a lattice pattern of alternating chiralities.

For most superconductors, the ground state represents
a configuration where the superconducting fields are ho-
mogeneous and can be classified according to the pairing
symmetries. A generalization was theoretically proposed
by Larkin and Ovchinnikov (LO) [1] and independently
by Fulde and Ferrell (FF) [2]. It was demonstrated that
not only U(1) symmetry can be broken in such a su-
perconducting state but also the translational symmetry
due to formation of Cooper pairs occurring with finite
momentum. That state is called Larkin-Ovchinnikov-
Fulde-Ferrell (LOFF) state. In the simplest case, it can
be caused by the pair breaking effect of the Zeeman field
in conventional superconductors. There are other mech-
anisms for the formation of inhomogeneous states in dif-
ferent systems such as cold atoms [3], or dense quark
matter in neutron stars interiors [4]. This made periodi-
cally modulated superconducting and superfluid states a
subject of wide interest, for reviews see Refs. [5, 6].

In this paper we discuss a class of materials that sup-
ports inhomogeneous states which are principally differ-
ent from the LOFF solutions. Namely, we find an in-
homogeneous counterpart of the chiral superconducting
state, where the system spontaneously forms a pattern
of alternating chiralities: thereby breaking both transla-
tional and time reversal symmetries. Since the time re-
versal shares Z2 symmetry with Ising magnets, we term
this state as “anti-chiral” state in analogy to the antifer-
romagnetism. Another state we find is an inhomogeneous
counterpart of the nematic superconducting state where
the relative density of the order parameter components
is modulated, forming a nematicity-wave.

We show that these states occur for the type of micro-
scopic physics like that found in the recently discovered
doped topological insulators [7–9]. Experimental stud-
ies of these materials suggest the presence of nematicity
in the superconducting state with two components and
odd-parity symmetric order parameter. However the chi-
ral state might be more energetically favourable in the
quasi-two dimensional limit of these Dirac materials, in
which the Fermi surface is cylindrical. The type of the

superconducting pairing and the Majorana surface states
are subjects of intense investigation and debate [10–13].
For a review of the superconducting instabilities in these
materials see Ref. [14].

We consider superconductivity in a Dirac metal. We
begin by demonstrating that an inhomogeneous state can
be realized there in the absence of external field, by
the violation of inversion symmetry, different from the
Zeeman pair breaking mechanism. Next we present the
first microscopic derivation of multicomponent Ginzburg-
Landau (GL) model for a superconductor with imbal-
anced fermionic populations. Then we numerically find
solutions that minimize the microscopically derived free
energy GL functional. By that we find two new kinds of
inhomogeneous superconducting states in which the chi-
rality or the nematicity of the order parameter is spatially
modulated.

Let us start with a microscopic model of the quasi-two
dimensional Dirac metal with the cylindrical Fermi sur-
face. This model might, for example, be applied to the
doped Bi2Se3 topological insulator with a layered crys-
tal structure, in which the Fermi surface might become
quasi-two dimensional under doping [15]. The quintuple
layer unit cell in this material is modelled by a bilayer
structure in which the helical electronic states occupy-
ing the top and bottom layers are hybridized. The low
energy excitations in the system can be described by the
HamiltonianH0 =

∫
S d2rΨ†(r)H0(r)Ψ(r), where S is the

area of the system and

H0(r) = −iv [σx∂y − σy∂x] τz − V τz +mτx, (1)

in which v is the Fermi velocity characterizing the two-
dimensional Dirac dispersion, m is the spin-conserving
tunnel matrix element between two orbitals describing
the mass of the Dirac fermion, σj and τj with j =
x, y, z are the Pauli matrices describing the spin and
the orbital degrees of freedom respectively, and Ψ(r) =
(Ψ↑,1(r),Ψ↓,1(r),Ψ↑,2(r),Ψ↓,2(r))T is the electron oper-
ator (↑, ↓ and 1, 2 define two spin projections and two
orbitals within the unit cell, respectively). Finally, we
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will be using ~ = 1 units and suppress the explicit spin
and orbital indices for clarity of notation.

The term V τz violates the inversion symmetry, and
corresponds to an electrostatic potential difference be-
tween the orbitals, or to the external bias, provided the
system is in the two-dimensional bilayer limit (see for
more discussion of this model for example in Ref. [16]).
Although there are many terms which break inversion, we
restrict ourselves only to inversion breaking term inde-
pendent on momentum, which preserves rotational sym-
metry around the z-axis. We then assume that the Fermi
level is in the conduction band and consider the Fermi
energy µ to be the largest energy scale in the system, i.e.
we set µ >

√
m2 + V 2.

At V = 0, the bulk of the metal is inversion symmetric
due to the presence of two orbitals with opposite signs
of the Fermi velocity within the unit cell. At finite V ,
the spectrum of quasiparticles (without the dispersion
along the z-axis) is given by εk,s =

√
m2 + (vk + sV )2,

where s = ± and k = (k2x + k2y)1/2. The role of the V τz
term is to lift the double degeneracy at every momentum
except at inversion symmetric kx = ky = 0 point, see
Fig. 1. At m > µ − m > V the spectrum is parabolic
εk,s = m+v2k2/2m+sV

√
1−m2/µ2. While at µ−m >

V > m the spectrum is linear εk,s = vk + sV + m2/2µ.
We argue that the phase volume of the inhomogeneous
state is larger in the latter case, which we will adopt in
what follows.

Consider now the superconductivity in the system de-
scribed above. Among possible superconducting instabil-
ities [14], we focus on the singlet-inter-orbital and spin-
triplet pairing. The BCS mean field Hamiltonian, in
Nambu representation, measured from the chemical po-
tential, is given by H = 1

2

∫
S d2rΦ†(r)H(r)Φ(r), where

Φ†(r) = (Ψ†(r),ΨT(r)) is the Nambu operator in the
superconducting state. The Hamiltonian density of the
system is given by

H(r) =

[
H0(r)− µ iσyτy(σ ·∆)

−iσyτy(σ ·∆∗) −H∗0 (r) + µ

]
, (2)

where σ = (σx, σy) and with the vector ∆ = (∆x,∆y)
composed of two components of the order parameter,
in which ∆x ∝ i(〈Ψ↑,2Ψ↑,1〉 − 〈Ψ↓,2Ψ↓,1〉) and ∆y ∝
〈Ψ↑,2Ψ↑,1〉 + 〈Ψ↓,2Ψ↓,1〉. For the complete classification
of the homogeneous order parameters in this kind of sys-
tems we refer the reader to Ref. [10] and to a review
article [14]. In the absence of inversion breaking, it is the
uniform chiral state with the two-fold degenerate order
parameter ∆± = ∆c(1,±i) which is energetically more
favourable than the nematic state ∆ ∝ (cos θ, sin θ) with
constant nematic angle θ, as was noticed for example in
Ref. [17] and then later extended in Ref. [18].

The uniform chiral state spontaneously breaks time re-
versal symmetry. The close analogies of this chiral state
are the quasi-two dimensional p-wave superconductors
and the A-phase in superfluid 3He [19, 20], where the

spin-triplet pairing might be stabilized by the spin fluc-
tuation feedback mechanism [21].

We “project” the multi-band Hamiltonian in Eq. 1
onto a 2 × 2 subspace corresponding to the conduction
band and arrive at the effective BCS Hamiltonian in mo-
mentum representation provided spatially homogeneous
order parameter

H(k) =

[
ξk − σzV iσyσz(∆xk̂x + ∆yk̂y)

iσyσz(∆
∗
xk̂x + ∆∗yk̂y) −ξk + σzV

]
,

(3)
where ξk = vk − µ (in which we have already included

corrections ∝ m2/µ into the chemical potential) and k̂
is the unit vector in the direction of momentum. The
spectrum of bulk quasiparticles is given by Es,±(k) =

sV ±
√
ξ2k + |∆xk̂x + ∆yk̂y|2, s = ±. It is seen that at

V = 0, the superconductor is gapped. The boundary of
the superconductor hosts pairs of one-way propagating
Andreev-Majorana modes, see Fig. 1, and for review
[22]. The increase of V closes the gap in the spectrum.
The system becomes gapless provided V ≥ |∆c|, where
the superconducting state can become unstable towards
the transition to the spatially inhomogeneous phase.
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FIG. 1: (a) The spectrum of particles E(k) in the nor-
mal state of the system for a given mass m in the case
when V 6= 0. (b) The eigenstate dispersion for chiral
phase of the quasi-two dimensional superconductor along
the y-direction in momentum space for a sample of finite
width along x-direction in the situation, where the inver-
sion symmetry breaking parameter is V = 0. The bulk
spectrum is gapped and each surface hosts pair of unidi-
rectional chiral modes. The bulk gap closes at V ≈ |∆c|.

We will now investigate the two-component chiral su-
perconductor in the presence of inversion breaking within
the microscopically derived GL formalism. The role of
the Zeeman pair breaking effect is played by the spatial
inversion, which removes the orbital degeneracy, leading
to a mismatch between the Fermi surfaces and hence de-
stroys the inter-orbital superconducting coupling.

The standard LOFF state microscopic derivation of the
Ginzburg-Landau functional was presented in e.g. [23].
The key, state-defining feature of a modulated state is
negative sign of second order gradients, which is respon-
sible for formation of an inhomogeneous state. Because
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of the negative second order gradient terms, it is neces-
sary to retain fourth order derivative terms in GL ex-
pansions for LOFF states. Furthermore in some of the
microscopic models the pre-factors of the fourth order po-
tential terms also become negative, which in turn requires
retaining potential terms up to sixth order. We apply the
standard procedure to derive the GL functional from the
microscopic model under consideration. To this end we
integrate out the fermionic degrees of freedom using the
BCS Hamiltonian in Eq. 2 and utilizing the normal state
Green function G(ωn,k) = [iωn + µ − H0(k)]−1, where
ωn = πT (2n+1) is the fermionic Matsubara frequency, T
is the temperature, and n ∈ Z. Keeping also the six-order
terms, we derive GL functional F =

∫
S d2r[F2 +F4 +F6]

where for readability the free energy density has been sep-
arated in three groups, classified according to the powers
of the gap field. The second-order terms in the free en-
ergy density are given by

F2 =
∑
s

[
α|∆s|2 + β|∇∆s|2 + δ|∇2∆s|2

]
+ (4)

β

2

[
|∂x∆x + ∂y∆y|2 − |∂x∆y − ∂y∆x|2

]
+

2δ

3

[
|∇(∂x∆x + ∂y∆y)|2 − |∇(∂x∆y − ∂y∆x)|2

]
,

where the fourth-order gradient terms are included to
ensure that the free energy is bounded from below when
second-order gradient terms become negative. Explicitly,
|∆|2 = |∆x|2 + |∆y|2 and ∆×∆∗ = ∆x∆∗y −∆y∆∗x. We
retain the following terms at the fourth order in fields

F4= γ|∆|4 − γ

3
|∆×∆∗|2 + η|∆|2[|∇∆x|2 + |∇∆y|2]

+
η

3
|∆|2

[
|∂x∆x + ∂y∆y|2 − |∂x∆y − ∂y∆x|2

]
− η

3

{
|∆x∇∆∗y −∆y∇∆∗x|2 + |∆x∇∆y −∆y∇∆x|2

− (|∆x|2 − |∆y|2)(|∂x∆|2 − |∂y∆|2)− (∆x∆∗y + ∆∗x∆y)

× (∂x∆∗x∂y∆x + ∂x∆∗y∂y∆y + c.c.)

}
. (5)

In addition we need to include potential terms at sixth
order to ensure that the free energy is always bounded
from below

F6= ε

[
|∆|4 − 3

5
|∆×∆∗|2

]
|∆|2. (6)

The coefficients in the GL functional density are given

by α = −πν2[K1(V ) − K1(V0)], β = πν2v
2

8 K3(V ), γ =
3πν2
16 K3(V ), δ = − 3

8
πν2v

4

16 K5(V ), η = − 3πν2v
2

16 K5(V ), ε =

− 5πν2
64 K5(V ), in which ν2 = µ/8πv2 is the two-

dimensional density of states at the Fermi level per
spin and orbital in the massless limit and Kj(V ) =

2TRe
∑∞
n=0 (ωn − iV )

−j
, j ≥ 1, where V0 is the pa-

rameter corresponding to the transition into uniform su-
perconducting state.

For the case V = 0, where there is no imbalance be-
tween the orbitals in Eq. 1, the coefficients β and γ in
the GL functional are positive and hence the terms with
coefficients δ, η, ε can be neglected. The GL functional
for this case was analyzed, for example, in Ref. [24].

Importantly, the sign in front of the quartic term
|∆ × ∆∗|2 = 4|∆x|2|∆y|2 sin2 φ, where φ is the phase
difference between ∆x and ∆y, in expression Eq. 5
chooses whether the superconductor is in the chiral phase
with spontaneous broken time-reversal symmetry and
φ = ±π/2 or in the nematic phase with broken rotational
symmetry and φ = 0.

The negative sign here results in the two degenerate
chiral phases, where GL functional density is minimized
by the uniform order parameters ∆± = ∆c(1,±i), with
|∆c| =

√
−3α/8γ.

It is important to note, however, that there is a phase
transition between the chiral and nematic phases as a
function of the anisotropy of the Fermi surface [17, 18].
The evolution of the Fermi surface in the microscopic
model Eq. 1 from the cylindrical to elliptic leads to
a sign flip in front of the term |∆ × ∆∗|2. Indeed in
a three-dimensional isotropic model the GL functional
density is minimized by the nematic order parameter
∆ ∝ (cos θ, sin θ) up to arbitrary nematic angle θ [24].

Now we will see that increasing V leads to decreases
of β and γ and the situation changes dramatically. Co-
efficients β and γ simultaneously change sign signalling
the instability of the uniform superconductivity towards
the formation of an inhomogeneous state. To ensure that
the free energy is bounded from below, the terms with
positive coefficients δ, η, and ε should be retained in the
GL functional in the regime where coefficients β and γ
are negative.

The resulting states are investigated in two dimen-
sions numerically by minimizing the free energy func-
tional F , adopting periodic boundary conditions, using
the finite element method framework FreeFem++ [25]
and the nonlinear conjugate gradient method. In the
regime where β and γ are negative, it is convenient to
rescale the model by defining the dimensionless quanti-
ties ∆̃s = ∆s/|∆U|, α̃ = α/(αUν2), r̃ = q0r/v where
|∆U| = −γ/2ε, αU = γ2/4ε and q20 = −β/2δ. The free
energy F = ν2v

3αU|∆U|2/q30 · F̃ where the rescaled free
energy F̃ is identical to the original, having replaced ∆s

with ∆̃s, α with α̃ and so on, where γ̃ = −2ε̃ = −2,
β̃ = −2δ̃ = −2(β/γ)2 · ε/δ and η̃ = β/γ · η/δ. All coeffi-
cients are constant except α̃, which parametrizes both V
and T . The full order parameter can be parametrized as

∆(r) =
(
|∆x(r)|eiφx(r), |∆y(r)|eiφy(r)

)
=

|∆(r)|eiχ(r)
(

eiφ(r) cos θ(r), sin θ(r)
)
,

(7)

where |∆s(r)| and φs(r) are the amplitudes and phases
of each component. We introduce |∆(r)| and χ(r) as
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the amplitude and the phase of the overall order param-
eter prefactor, respectively, φ(r) as the phase difference
between its components and θ(r) as the nematic angle.

We find a stable state which is characterized by mod-
ulation in relative density between the two components
∆x and ∆y. The state represents a nematicity-wave as
shown in Fig. 2. Correspondingly the uniform supercon-
ducting state becomes unstable towards the transition
into such a new type of inhomogeneous state.
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FIG. 2: Inhomogeneous state obtained by numerical min-
imization of the rescaled free energy functional F̃ . The
modulus of the total gap parameter |∆̃| and the nematic
angle θ are shown. The state exhibits modulation in rel-
ative density, and a periodic modulation of the nematic
order parameter. We term this state “nematicity-wave”.
The parameter α̃ which parametrizes both temperature
and inversion breaking is set to α̃ = 1, at which the
nematicity-wave state is energetically preferable over the
uniform state.

Next we investigate a similar GL functional where the
prefactor to |∆ × ∆∗|2 has been modified. Although
this change of prefactor is phenomenological, it can be
used to qualitatively describe the nematic state: in fact
we have shown that it is indeed to be favourable over
the chiral in 3D, with inhomogeneous phase arising from
different de-pairing term V τyσz. This term is replaced
by

{
γ + 3ε

2 |∆|2
}
|∆ × ∆∗|2, such that in the regime

where β and γ are positive, the energy is minimized by
the uniform gap parameter ∆θ = ∆n(cos θ, sin θ) where
|∆n| =

√
−α/2γ and the nematic angle θ is constant.

When the gradient terms are positive such a uniform
state is called nematic, see e.g. [17, 24]. By contrast,
in the regime where β and γ are negative we find a state
with inhomogeneous gap parameter which is energetically
preferred over the uniform state. It is characterized by
modulation in the phase difference φ and a formation of
a checkerboard pattern of alternating chirality. The state
is shown in Fig. 3.

Studying the individual phases φx and φy one can see
that the formation of this pattern is accompanied by the
vortex-antivortex lattice. Namely, in the corners of each
chirality domain there forms a vortex in one component
and an antivortex in the other component. Since these

vortices and antivortices are co-centered this composite
vortex does not carry magnetic flux.

It is worthwhile to note that the homogeneous nematic
and chiral phases are topological, in the sense that they
support Majorana Kramer’s pairs and chiral Majorana
modes bound at the defects (for example, at the vortices
and boundaries), respectively, see [14, 24]. The proper-
ties of the topological modes in the inhomogeneous ne-
matic and chiral states will be studied separately.
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FIG. 3: Inhomogeneous state obtained by numerical
minimization of the free energy functional, where the
term proportional to |∆ × ∆∗|2 has been replaced by{
γ + 3ε

2 |∆|2
}
|∆ ×∆∗|2 (i.e. where the potential terms

would produce the nematic superconducting state if the
gradient terms were positive) and the parameter α̃ = 1.
The phase difference in φ shows that the state has the
form of the pattern with alternating chiralities. Like the
uniform chiral state, this inhomogeneous state breaks Z2

symmetry associated with flipping chiralities in each seg-
ment. We call this state “anti-chiral”. The individual
phases φx and φy show that the pattern leads to the
formation of a lattice of co-centered vortices in one com-
ponent and anti-vortices in the other component.

To summarize, we demonstrated two classes of inho-
mogeneous superconducting states: the first “nematicity-
wave” is a superconducting state where there is a period-
ically modulated nematic order parameter. The second
class is “anti-chiral” where the system forms an alternat-
ing pattern of opposite chiralities. In an analogy with
an Ising antiferromagnet it has broken time reversal Z2

symmetry associated with the flipping of chiralities, or
equivalently shifting the pattern by half of its period.

The patterns that we find are accompanied by a spon-
taneous formation of vortex-antivortex lattice. This
highly unconventional effect is energetically penalized for
uniform superconductors with positive quadratic gradi-
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ent terms, but becomes the very efficient energy minimiz-
ing solution when the quadratic gradient terms are neg-
ative. We demonstrated microscopically, that the can-
didate materials where this state may form are doped
topological insulators. It was recently discussed that
the phase transitions from modulated to normal super-
conducting states should proceed in two steps with sys-
tem first loosing superconductivity in the bulk but only
at elevated temperatures on the surface [26]. It can
be utilized to distinguish these states from the homo-
geneous chiral and nematic superconductors, for exam-
ple in calorimetry measurements. Since both the anti-
chiral and nematicity-wave states exhibit lattice of den-
sity zeros due to the presence of vortex-antifvortex lat-
tice, they should be observable in tunnelling microscopy
experiments.
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tikainen, and Päivi Törmä, “The Fulde-Ferrell-Larkin-
Ovchinnikov state for ultracold fermions in lattice and
harmonic potentials: A review,” Reports on Progress in
Physics 81, 046401 (2018).

[4] Mark Alford, Jeffrey A. Bowers, and Krishna Rajagopal,
“Crystalline color superconductivity,” Phys. Rev. D 63,
074016 (2001).

[5] A. I. Buzdin, “Proximity effects in superconductor-
ferromagnet heterostructures,” Rev. Mod. Phys. 77, 935–
976 (2005).

[6] Y. Matsuda and H. Shimahara, Journal of the Physical
Society of Japan 76, 051005 (2007).

[7] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan,
J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong,
and R. J. Cava, “Superconductivity in CuxBi2Se3 and
its Implications for Pairing in the Undoped Topological
Insulator,” Phys. Rev. Lett. 104, 057001 (2010).

[8] L. Andrew Wray, Su-Yang Xu, Yuqi Xia, Yew San Hor,

Dong Qian, Alexei V. Fedorov, Hsin Lin, Arun Bansil,
Robert J. Cava, and M. Zahid Hasan, “Observation of
topological order in a superconducting doped topological
insulator,” Nat. Phys. 6, 855–859 (2010).

[9] M. Kriener, K. Segawa, Z. Ren, S. Sasaki, and Y. Ando,

“Bulk Superconducting Phase with a Full Energy Gap in
the Doped Topological Insulator CuxBi2Se3,” Phys. Rev.
Lett. 106, 127004 (2011).

[10] L. Fu and E. Berg, “Odd-Parity Topological Supercon-
ductors: Theory and Application to CuxBi2Se3,” Phys.
Rev. Lett. 105, 097001 (2010).

[11] L. Fu, “Odd-parity topological superconductor with ne-
matic order: Application to CuxBi2Se3,” Phys. Rev. B
90, 100509 (2014).

[12] X. Wan and S. Y. Savrasov, “Turning a band insulator
into an exotic superconductor.” Nat. Commun. 5, 4144
(2014).

[13] F. Wu and I. Martin, “Nematic and chiral superconduc-
tivity induced by odd-parity fluctuations,” Phys. Rev. B
96, 144504 (2017).

[14] M. Sato and Y. Ando, “Topological superconductors: a
review,” Rep. Prog. Phys. 80, 076501 (2017).

[15] E. Lahoud, E. Maniv, M. S. Petrushevsky, M. Naamneh,
A. Ribak, S. Wiedmann, L. Petaccia, Z. Salman, K. B.
Chashka, Y. Dagan, and A. Kanigel, “Evolution of the
Fermi surface of a doped topological insulator with car-
rier concentration,” Phys. Rev. B 88, 195107 (2013).

[16] B. Seradjeh, J. E. Moore, and M. Franz, “Exciton Con-
densation and Charge Fractionalization in a Topological
Insulator Film,” Phys. Rev. Lett. 103, 066402 (2009).

[17] A. A. Zyuzin, J. Garaud, and E. Babaev, “Nematic
Skyrmions in Odd-Parity Superconductors,” Phys. Rev.
Lett. 119, 167001 (2017).

[18] Luca Chirolli, “Chiral superconductivity in thin films of
doped Bi2Se3,” Phys. Rev. B 98, 014505 (2018).

[19] P. W. Anderson and P. Morel, “Generalized Bardeen-
Cooper-Schrieffer States and the Proposed Low-
Temperature Phase of Liquid He3,” Phys. Rev. 123,
1911–1934 (1961).

[20] R. Balian and N. R. Werthamer, “Superconductivity with
Pairs in a Relative p Wave,” Phys. Rev. 131, 1553–1564
(1963).

[21] P. W. Anderson and W. F. Brinkman, “Anisotropic Su-
perfluidity in 3He: A Possible Interpretation of Its Sta-
bility as a Spin-Fluctuation Effect,” Phys. Rev. Lett. 30,
1108 (1973).

[22] M. Silaev and G. E. Volovik, “Andreev-Majorana bound
states in superfluids,” JETP 119, 1042 (2014).

[23] A. I. Buzdin and H. Kachkachi, “Generalized Ginzburg-
Landau theory for nonuniform FFLO superconductors,”
Phys. Lett. A 225, 341 (1997).

[24] J. W. F. Venderbos, V. Kozii, and L. Fu, “Odd-parity
superconductors with two-component order parameters:
Nematic and chiral, full gap, and Majorana node,” Phys.
Rev. B 94, 180504 (2016).

[25] F. Hecht, “New development in freefem++,” J. Numer.
Math. 20, 251–265 (2012).

[26] M. Barkman and E. Babaev, “Surface pair-density-
wave superconductivity,” ArXiv e-prints (2018),
arXiv:1811.09590 [cond-mat.supr-con].

http://dx.doi.org/ 10.1103/PhysRev.135.A550
http://dx.doi.org/ 10.1103/PhysRev.135.A550
http://dx.doi.org/ 10.1088/1361-6633/aaa4ad
http://dx.doi.org/ 10.1088/1361-6633/aaa4ad
http://dx.doi.org/10.1103/PhysRevD.63.074016
http://dx.doi.org/10.1103/PhysRevD.63.074016
http://dx.doi.org/ 10.1103/RevModPhys.77.935
http://dx.doi.org/ 10.1103/RevModPhys.77.935
http://dx.doi.org/10.1143/JPSJ.76.051005
http://dx.doi.org/10.1143/JPSJ.76.051005
http://dx.doi.org/10.1103/PhysRevLett.104.057001
http://dx.doi.org/ 10.1038/nphys1762
http://dx.doi.org/ 10.1103/PhysRevLett.106.127004
http://dx.doi.org/ 10.1103/PhysRevLett.106.127004
http://dx.doi.org/ 10.1103/PhysRevLett.105.097001
http://dx.doi.org/ 10.1103/PhysRevLett.105.097001
http://dx.doi.org/ 10.1103/PhysRevB.90.100509
http://dx.doi.org/ 10.1103/PhysRevB.90.100509
http://dx.doi.org/ doi:10.1038/ncomms5144
http://dx.doi.org/ doi:10.1038/ncomms5144
http://dx.doi.org/ 10.1103/PhysRevB.96.144504
http://dx.doi.org/ 10.1103/PhysRevB.96.144504
http://dx.doi.org/10.1088/1361-6633/aa6ac7
http://dx.doi.org/10.1103/PhysRevB.88.195107
http://dx.doi.org/10.1103/PhysRevLett.103.066402
http://dx.doi.org/ 10.1103/PhysRevLett.119.167001
http://dx.doi.org/ 10.1103/PhysRevLett.119.167001
http://dx.doi.org/ 10.1103/PhysRevB.98.014505
http://dx.doi.org/10.1103/PhysRev.123.1911
http://dx.doi.org/10.1103/PhysRev.123.1911
http://dx.doi.org/ 10.1103/PhysRev.131.1553
http://dx.doi.org/ 10.1103/PhysRev.131.1553
http://dx.doi.org/ 10.1103/PhysRevLett.30.1108
http://dx.doi.org/ 10.1103/PhysRevLett.30.1108
http://dx.doi.org/ 10.1134/S1063776114120097
http://dx.doi.org/10.1016/S0375-9601(96)00894-8
http://dx.doi.org/10.1103/PhysRevB.94.180504
http://dx.doi.org/10.1103/PhysRevB.94.180504
http://arxiv.org/abs/1811.09590

	Anti-chiral and nematicity-wave superconductivity
	Abstract
	Acknowledgments
	References


