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We theoretically study topological planar Josephson junctions (JJs) formed from spin-orbit-
coupled two-dimensional electron gases (2DEGs) proximitized by two superconductors and subjected
to an in-plane magnetic field B). Compared to previous studies of topological superconductivity
in these junctions, here we consider the case where the superconducting leads are narrower than
the superconducting coherence length. In this limit the system may be viewed as a proximitized
multiband wire, with an additional knob being the phase difference ¢ between the superconducting
leads. A combination of mirror and time-reversal symmetry may put the system into the class
BDI. Breaking this symmetry changes the symmetry class to class D. The class D phase diagram
depends strongly on B) and chemical potential, with a weaker dependence on ¢ for JJs with nar-
rower superconducting leads. In contrast, the BDI phase diagram depends strongly on both B and
¢. Interestingly, the BDI phase diagram has a “fan”-shaped region with phase boundaries which
move away from ¢ = m linearly with Bj. The number of distinct phases in the fan increases with
increasing chemical potential. We study the dependence of the JJ’s critical current on B, and find
that minima in the critical current indicate first-order phase transitions in the junction only when
the spin-orbit coupling strength is small. In contrast to the case of a JJ with wide leads, in the
narrow case these transitions are not accompanied by a change in the JJ’s topological index. Our
results, calculated using realistic experimental parameters, provide guidelines for present and future
searches for topological superconductivity in JJs with narrow leads, and are particularly relevant to
recent experiments on InAs 2DEGs proximitized by narrow Al superconducting leads (A. Fornieri

et al., Nature 569, 89 (2019)).

Majorana zero modes (MZMs) [1-9] are not only of
fundamental interest but can also be used as the building
blocks for a fault tolerant quantum computation [10, 11].
These MZMs exist in the vortex core of two-dimensional
(2D) topological superconductors (TSCs) [12, 13] or at
the edge of 1D TSCs [14]. The theoretical proposals
on TSCs [13-20] have triggered a tremendous amount
of experimental effort to realize TSCs in different plat-
forms ranging from 1D nanowire [21-41], topological in-
sulators [42, 43], and ferromagnetic atomic chains [44—
47]. Recently, a two-dimensional electron gas (2DEG)
with strong spin-orbit coupling (SOC) and proximitized
by two spatially separated superconductors (SCs), thus
forming a Josephson junction (JJ), was proposed as a
new platform to engineer TSC [48, 49]. Compared to
the other setups, this system has the advantage of be-
ing able to be tuned into T'SC by changing not only the
strength of the applied magnetic field but also the su-
perconducting phase difference ¢ across the JJ [48, 49].
Recent experiments [50, 51] using this setup have ob-
served some evidence of the Zeeman- and phase-tunable
topological superconductivity in form of zero-bias con-
ductance peaks.

In the presence of a symmetry which is a product of the
mirror and time-reversal symmetries [48, 49], the topo-
logical planar JJ belongs to the symmetry class BDI in
the tenfold classification [52, 53], characterized by a Z
topological invariant Q7. This invariant corresponds to
the number of MZMs at the junction’s end. Breaking

this symmetry changes the symmetry class to D with
a Zo index. For JJs with SCs whose width Wgc is
much larger than the coherence length £ (as studied in
Refs. [48, 49, 54]), the class BDI and D phase diagrams
have weak dependence on the chemical potential but de-
pend strongly on both the Zeeman field and ¢. Moreover,
if ¢ is not externally controlled, then as the Zeeman field
is varied the system undergoes a first-order topological
phase transition (TPT) where the phase of the ground
state jumps from ¢ =~ 0 (trivial) to ¢ ~ 7 (topological)
or vice versa. This phase jump [48, 55-57] is accompa-
nied by a minimum in the critical current which can be
used as an experimental probe for the TPT.

Motivated by recent experiments on InAs 2DEGs prox-
imitized by narrow Al SCs [50], in this Rapid Communca-
tion we study the topological superconductivity in planar
JJs with narrow SCs (Wgsc < §), see Fig. 1. We further
examine the relation between this system and a 1D multi-
band nanowire TSC [58, 59]. We establish numerically
and analytically that the class D phase diagram depends
strongly on the in-plane magnetic field B| applied along
the junction, but only weakly on the superconducting
phase difference ¢. This is due to the presence of multi-
ple normal reflections that originate from the interfaces
of the SC leads with the vacuum. Furthermore, the nor-
mal reflections make the phase diagram more sensitive
to the 2DEG chemical potential. In contrast, the BDI
phase diagram is strongly dependent on both B) and
¢. Crucially, it exhibits a “fan”-shaped region emerging
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FIG. 1. (a) A JJ made of two narrow SC leads in con-
tact with a 2DEG. By applying an in-plane Zeeman field
Ez) = gnsB) /2 parallel to the JJ and a superconducting
phase difference ¢, the system can be tuned into a TSC sup-
porting MZMs ~. (b) Class D and (c) class BDI phase di-
agrams as functions of Ez ) and ¢. Regions with odd and
even @z topological index in the class BDI [panel (c)] corre-
spond respectively to the topological (Qz, = —1) and trivial
(Qz, = 1) regions of the class D [panel (b)]. The phase di-
agrams are obtained from numerical simulations performed
using the Kwant package [60] of a tight-binding version of
Eq. (1) (see Sec. I of Ref. [61]). The parameters used corre-
spond to the experimental parameters of recent experiments
on InAs 2DEGs [50], i.e., m* = 0.026me., a = 0.1 eVA,
p = 0.6 meV, A = 0.15 meV [{ = hvp/(rA) = 126 nm)],
W =80 nm, and Wsc = 160 nm.

from ¢ = 7 at B = 0 where the BDI phase boundary
lines diverge away from ¢ = 7 linearly with Bj. The
number of distinct BDI phases in the fan increases with
increasing chemical potential p as there are more occu-
pied subbands for a larger . In addition, the critical
current through the junction has minima as a function
of B). These minima correspond to discontinuous tran-
sitions of the value of ¢ that minimizes the free energy.
However, unlike the case of wide SC leads, here these
transitions are not necessarily accompanied by a change
in the topological index.

The Hamiltonian for the planar JJs [Fig. 1(a)] in the

Nambu basis ¥y, = (wkzmlbkm,uwikwi,—wika)T is
H =5 [ dkq [ dy¥}, (y)Hx, (4) Pk, (y) where

h2 (k3 — 0y)

2m*

Hyi, (y) = ( — ,u) 7. + akgoy + 10y0,)T,
+ Ez 102 + A(y)my + A" (y)1,
(1)

with ¢y, 4/, (y) being the annihilation operator of an elec-
tron with spin 1 / | and momentum k,. Throughout
most of this paper, we assume the JJ to be infinitely
long. The Pauli matrices 7 and o act in particle-hole and
spin spaces, respectively, and 74 = (7, £ i7,)/2. Here,
m* is the effective electron mass in the 2DEG, p is the
chemical potential, « is the Rashba SOC strength and

Ez) = gupB)/2 is the Zeeman energy due to the ap-
plied in-plane magnetic field B). The proximity-induced
pairing potential in the 2DEG is [see Fig. 1(a)]

Ae /2 for —(Wsc + W/2) <y < —W/2,
Aly) =<0 for —W/2 <y < W/2,
Ae'?’? for W/2 <y < Wse + W/2.

(2)

The Hamiltonian in Eq. (1) anticommutes with the
particle-hole operator P = 0,7, K where K denotes com-
plex conjugation. When Ez; = 0 and ¢ = 0 or m, the
Hamiltonian commutes the standard time-reversal op-
erator T = —ioy,K (where 7% = —1) and thus it be-
longs to the symmetry class DIIT [52, 53]. It also com-
mutes with the mirror operator along the z-z plane, i.e.,
M, = —oy x (y - —y). While the T and M, sym-
metries are broken when Ez | # 0 and/or ¢ # 0,,
the Hamiltonian remains invariant under the product
T = M,T =iK x (y — —y) [48]. Since T? = 1, the sys-
tem belongs to the class BDI. The presence of T and P
symmetries implies that the Hamiltonian anticommutes
with the chirality operator C = —iPT = M,T,. Breaking
the T symmetry reduces the symmetry class from BDI
to D.

To obtain the phase diagrams, we calculate the topo-
logical invariant following Ref. [62]. Since the chirality
operator obeys C? = 1, it has eigenvalues +1. In the
basis where C' is diagonal, the Hamiltonian is block off-
diagonal (since {C, H} = 0). The Z topological invari-
ant (Qz) of the class BDI is calculated from the phase
of the determinant of the off-diagonal part. The wind-
ing of this phase from k, = 0 to k, = 27 gives Qy.
The Zs index of class D is simply the parity of @)z, i.e.,
Qz, = (—1)% [14, 62].

Figure 1(b) shows the class D phase diagram of a JJ
with narrow leads (Wsc < €), calculated numerically.
The phase diagram shows a sequence of TPTs from the
trivial (Qz, = 1) to topological (Q)z, = —1) phases. Con-
trary to the case of wide SC leads [48], the phase bound-
aries depend only moderately on ¢. As Wgc becomes
smaller, the strength of normal reflections from the SC
edges increases resulting in a weaker dependence of the
class D phase boundaries on ¢ [63] and the physics crosses
over to that of the 1D multiband nanowire TSC [58, 59].

The BDI phase diagram [Fig. 1(c)], on the other hand,
depends strongly on both £z and ¢. For Ez,| = 0, the
BDI topological invariant is Q7 = 0, except at ¢ = =
where the gap closes. As Ez | increases, the gap closing
point expands into a fan-shaped region containing phases
with different values of Q7.

These features of the phase diagram can be under-
stood qualitatively as follows. Phase transitions where
(z, changes require gap closings at k, = 0, while transi-
tions with an even change in Q7 occur as a consequence
of gap closings at the Fermi wavevector, k, = +kp. In
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FIG. 2. BDI phase diagrams as functions of Zeeman field £z and superconducting phase difference ¢ for different chemical
potentials: (a) 4 = 0.6 meV, (b) u =4.4 meV, and (c) p = 8.4 meV. The phase boundary lines inside the “fan”-shaped region
emanate from ¢ = 7w and Ez | = 0 with slopes which are linearly proportional to Ez, and decrease with increasing p. The

parameters used are the same as in Fig. 1.
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FIG. 3. (a) Fermi surfaces of the 2DEG. An applied magnetic
field along «x shifts the two spin-orbit split Fermi surfaces (la-
beled by 71 = =+ for the outer and inner Fermi surface) oppo-
sitely along k,. The arrows show the spin orientation on the
Fermi surfaces. The Zeeman field tilts the spin-orientation an-
gle towards its direction. (b) Energy spectrum of an infinitely
long 2DEG with a finite width. Each n-th band consists of 2
subbands labeled by m = 4, denoting the eigenvalues of the
mirror operator M,. We label the gap A} by the band index
n and the mirror eigenvalue m = 41 of the right-moving state
kr, > 0.

the limit where £ < Wy, the system can be treated as a
multiband nanowire [58, 59], with an induced gap that is
smaller than the energy spacing between subbands. For
generic values of u, the spectrum at k, = 0 is gapped
for all ¢, and therefore the phase diagram depends only
weakly on ¢. This situation changes at special values of
p and Ez |, where the chemical potential enters a new
subband (see Sec. II of Ref. [61] for details). Indepen-
dently of u, a gap closing occurs at k, = +kp for p =7
and Ez | = 0. This gap closing occurs as a consequence
of the mirror symmetry, where the effective induced gap,
which is a spatial average of the gap of two symmetric
SC leads, vanishes for ¢ = 7 and Ez | = 0.

As shown in Fig. 2, the gap closing point at ¢ = 7
and Ez) = 0 expands into a “fan”-shaped region in the
phase diagram with phase boundaries which move away
from ¢ = 7 with slopes which are linearly proportional

with Fz) and decrease with increasing p. To under-
stand this fan, in the following we derive analytically the
dependence of the superconducting gap in a given sub-
band n on Ez | and ¢. For simplicity, we work in the
limit where A, E5 || < akr < p. The dispersion of the
2DEG, shown in Fig. 3(a), exhibits two concentric cir-
cular Fermi surfaces. SOC locks the spin orientation to
the momentum, such that the outer and inner Fermi sur-
faces (labeled by 1, = £1) have different in-plane spin
orientations. When a Zeeman field is applied, the spin
tilts towards the Zeeman field direction. Moreover, to
the leading order in Ez | /(akp) the Zeeman field also
shifts the two Fermi surfaces uniformly along k, in the
opposite direction by Ey | /(hvr) [see Fig. 3(a)].

We now take into account the finite size of the system
in the y direction. We denote the transverse wavefunc-
tions of the normal Hamiltonian (A = 0) by ¢7', -~ (y),
where n is the band index, s =7,|, and we label each
subband according to the M, eigenvalue (m = =£) of the
state at k, = +kp, in the limit £ || = 0 [see Fig. 3(b)].
A weak Zeeman field mixes the two mirror eigenvalues
and opens a gap at k, = 0 but does not strongly af-
fect the wavefunctions at k; = kp,, such that we may
keep using the =+ labeling of the subbands. Te walls at
y = £(W/24 Wsc) mix states with different values of 7,
(See Sec. IIT of Ref. [61] for the explicit expression of the
wavefunction).

Proximitizing the 2DEG with SCs induces intraband
pairing potentials At [see Fig. 3(b)]; in the limit Wgq <
¢, we may neglect the inter-band matrix elements of the
pairing potential. The pairing potentials Al can be ob-
tained from the first-order degenerate perturbation the-
ory, and are given by (see Sec. IV of Ref. [61])

A !

n = WSC_’_W/Q/dyA(y)Gn(y)Ff(yL (3)



where

o [y + Wse + W/2)
Gr(y) = sin Weo + W2 ] , (4a)

) = i 10 4 () — (1)), (4D)

where A,, is a function of kg, , W and Wy, while B,, and
C,, are functions of «, vg,, kp,, W and Wsc (see Egs.
S-53 and S-54 in Ref. [61]). The zeroth-order term of the
gap in the Zeeman energy can be understood intuitively
as follows. For JJs with narrow SCs (Wsc < £), electrons
undergo multiple normal reflections from the edges of the
SCs before they can be Andreev reflected. As a result, the
gap is the average of the left and right superconducting
gaps, i.e., AF oc A(e™**/2 4 ¢'¢/2) /2 which vanishes at
¢ = m. This gap closing also follows from the fact that
the Hamiltonian respects the mirror and time-reversal
symmetries at ¢ = 7 for Ez) = 0 which implies that
F*(y) = FF(—y) (see Ref. [61] for details). Since FF(y)
and G, (y) are even functions of y while A(y) is an odd
function, AT =0 at ¢ = and Ez; = 0 [see Eq. (3)].

Expanding Eq. (5) around ¢ = m, we have the gap-
closing points moving away from ¢ = 7w by

2 By

+ _
00 = (1+ A,) akp,

(B, £ C,). (6)

Thus, inside the fan in the BDI phase diagram, the gap
closing lines of each subband move away from ¢ = 7 with
slopes which are inversely proportional to kr, [see also
Fig. 2]. Since these are gap closings at k, = +kp,_, they
are accompanied by changes in Q7 by +2, but do not
affect Qz,.

As E | increases, the fan of BDI phase boundaries in-
tersect the class D phase boundary where (Jz, changes.
As seen in Fig. 2, at each of these intersections, either
three or four different phases meet. The four-phase inter-
section points signify simultaneous gap closings at both
ky = *kp, and k; = 0. The three-phase intersection
points happen when two gap closings at ky = +kp, are
moved by varying E || and ¢, merge at k, = 0, and get
lifted (See Sec. V of Ref. [61] for details).

The BDI symmetry can be broken by applying a trans-
verse in-plane magnetic field (along y), disorder that
breaks the mirror symmetry, or if the two SCs have differ-
ent gaps or different widths. Applying a transverse Zee-
man field tilts the spectrum, which reduces the gap and
results in gapless regions (see Sec. VI A of Ref. [61]). On
the other hand, the gap-closing points at k; = £kp, are

= A5C {(HA”)COS <2

To the leading order in Zeeman energy, the intraband
pairing potential for the n-th band is

¢> +E20 g 4 ¢y sin (gﬂ (5)

OékF

n

(

lifted when the BDI symmetry is broken by disorder [64]
or an asymmetry of the left and right SCs [48, 49, 61].
Breaking the BDI symmetry also results in the hybridiza-
tion of MZMs residing at the junction’s end, leaving
either zero or one MZM at each end (see Sec. VI of
Ref. [61]). We note that the eract BDI symmetry for
planar JJs is preserved as long as the left-right symme-
try is not broken, independent of the ratio of W and
Wsc to the spin-orbit length [(so = h?/(m*«a)]. On the
other hand, for the case where the left-right symmetry is
broken, there is a transition from a class D to an approz-
imate BDI symmetry when W + Wgc drops below £go,
similar to the nanowire case [62, 65].

Next, we calculate the Josephson current (see Sec. VII
of Ref. [61] for details):

2e dF de E; dE;
I(qs)hdthg:tanh(%;T) TJ? (7)

where F is the free energy of the system, T is the tem-
perature, and Ej; are the eigenvalues of the Hamiltonian.
The critical current is

I.= mgx[(q’)). (8)

Figure 4 shows I, and I(¢) as a function of E | for a JJ
with narrow leads at temperature T' = 0.3A/kg, and for
two different values of . The critical current oscillates
as a function of Ez || with an amplitude that decays with
Eyz). For small a, e.g.,, a = 0.1 eVA [Figs. 4(a,c)], at
the critical Zeeman field where the critical current ex-
hibits a minimum, the phase at which the free energy is
minimal changes from ¢ ~ 0 to ¢ ~ 7. Unlike JJs with
wide SCs [48], this phase jump does not necessarily im-
ply a TPT due to the weak dependence of the class D
TPT on ¢ [Fig. 2(c)]. For larger values of SOC, e.g.,
o =1 eVA [Figs. 4(b,d)], the critical current exhibits a
minimum with a shallower depth and at a larger critical
Zeeman field. This minimum, however, is not accom-
panied by a discontinuous change of ¢ that minimizes
the free energy. To understand this, we can calculate the
energy-phase relation of the junction perturbatively in A,
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FIG. 4. Upper panel: critical current I. as a function of Zee-
man energy Lz for different SOC strengths: (a) a = 0.1
eVA and (b) @ = 1 eVA. Lower panel: Josephson current
as a function of ¢ and Ez | for (c) a = 0.1 eVA and (d)
a =1 eVA. Here,  is the same as in Fig. 2(c), and the tem-
perature is T = 0.3A/kg. For o = 0.1 eVA, I, exhibits a
minimum at E7 || ~ 0.55 meV. The minimum of the critical
current does not coincide with the class D TPT, which occurs
at Bz | =~ 0.27 meV [see Fig. 2(c)]. As « increases, the mini-
mum becomes more shallow [panel (b)]. For small «, there is
an abrupt shift by nearly 7 in the current-phase relation I(¢)
at £7 ||, while for large «, 1(¢) has a gradual phase shift with
Ez [see panels (b) and (d), respectively].

for two different limits: akp, > Ez ) and akp, < Ez )
(see Sec. VII of Ref. [61]).

In conclusion, we have studied topological supercon-
ductivity in planar JJs with narrow SCs and how it
crosses over to the nanowire case. As the width of SC
leads gets narrower, the strength of normal reflections
from the SC edges increases, which renders the class D
phase diagram to depend strongly on the chemical po-
tential and more weakly on the superconducting phase
difference. On the other hand, the BDI phase diagram
is strongly dependent on the superconducting phase dif-
ference. Finally, we show that contrary to the wide lead
case, the minima in the critical current of JJs with nar-
row leads do not necessarily indicate TPTs. These re-
sults are directly relevant to recent experiments [50], and
elucidate the consequences of the BDI symmetry on the
phase diagram of these systems.
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