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First principles calculations show that electric fields applied to ferromagnets generate spin cur-
rents flowing perpendicularly to the electric field. Reduced symmetry in these ferromagnets enables
a wide variety of such spin currents. However, the total spin current is approximately the sum of
a magnetization-independent spin Hall current and an anisotropic spin anomalous Hall current. In-
trinsic spin currents are not subject to dephasing, enabling their spin polarizations to be misaligned
with the magnetization and allowing for the magnetization-independent spin Hall effect. The spin
Hall conductivity and spin anomalous Hall conductivities of transition metal ferromagnets are com-
parable to those found in heavy metals, opening new avenues for efficient spin current generation in
spintronic devices.

Introduction—Over the past few decades, the study
of electrical spin current generation has focused on two
systems: ferromagnets without spin-orbit coupling and
nonmagnets with spin-orbit coupling. In ferromagnets
without spin-orbit coupling, real space and spin space are
decoupled. As a result, spin currents are simple products
of particle flow and spin direction, each of which indepen-
dently satisfies the system’s symmetries. Thus, carriers
must flow parallel to the electric field and carrier spins
must align with the magnetization. In nonmagnets with
spin-orbit coupling, real space and spin space are cou-
pled. Because of this coupling, the net spin current is no
longer the simple product of particle flow and spin direc-
tion. Any spin current that satisfies the system’s sym-
metries is allowed. Isotropic symmetry allows for spin
currents in which the charge flow, spin flow, and spin di-
rection are mutually orthogonal. The generation of such
spin currents satisfying these constraints is known as the
spin Hall effect1–7.

Interest has now turned to spin currents generated in
ferromagnets with spin-orbit coupling8–15. In these ma-
terials, the combination of spin-orbit coupling and the
symmetries broken by the magnetization enable a wider
array of spin currents than in nonmagnets. Indeed, all
symmetries are broken for a magnetization with arbitrary
orientation with respect to the applied electric field. As
a result, ferromagnets with spin-orbit coupling exhibit
richer spin current generation and are inevitably subject
to greater confusion when interpreting experiments.

In this work we present the first calculation of the full
spin current conductivity tensor of transitional metal fer-
romagnets. Our central result is that the dependence of
the spin current on the magnetization direction is de-
scribed by two terms with familiar symmetry properties.
The spin current is a tensor Qβα with two spatial indices:
the subscript α specifies the flow direction and super-
script β specifies the spin direction. The spin current
flowing in the x̂-direction is a vector in spin space de-
noted by Qx. Our findings can be conveniently expressed
by taking the electric field along the ŷ-direction and con-
sidering the spin current flowing along the x̂-direction.

The spin direction Qx of this spin current depends on
the magnetization direction m̂ as:

Qx ≈ (σSHEẑ + σSAHE(m̂ · ẑ)m̂)E. (1)

The two terms in Eq. (1) have the symmetries of the spin
Hall effect and the spin anomalous Hall effect, respec-
tively. For the coordinate-independent form of Eq. (1),
see16. Despite its simplicity, Eq. (1) reveals counterin-
tuitive features of spin currents in ferromagnets, as we
discuss next.

The first term in Eq. (1) can be interpreted as a
magnetization-independent spin Hall effect. A counter-
intuitive feature of this spin current is that its spin di-
rection may be misaligned with the magnetization. Such
spin currents violate the common assumption that spins
misaligned with the magnetization rapidly precess in the
magnetic exchange field and quickly dephase. Thus, the
presence of the first term in Eq. (1) suggests that the spin
of eigenstates can be substantially misaligned with the
magnetization in the presence of spin-orbit coupling17.

The second term in Eq. (1) is related to the anomalous
Hall effect. The anomalous Hall effect describes the cur-
rent response perpendicular to an applied electric field E
in ferromagnets18–21. The anomalous Hall current flows

FIG. 1. (Color online) Spin currents in ferromagnets with spin
direction perpendicular to the flow and the electric field. (a)
When the magnetization and spin direction are aligned, this
spin current has contributions from both the spin Hall effect
(SHE) and the spin anomalous Hall effect (SAHE). (b) When
the magnetization and spin direction are perpendicular, the
allowed spin current arises from the spin Hall effect alone.
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FIG. 2. (Color online) Magnetization dependence of the x-
flowing intrinsic currents generated by an applied electric field
along ŷ for BCC Fe. The horizontal axis gives the magnetiza-
tion direction, which is swept in the z/y, z/x, and x/y planes.
Blue, green, and orange curves give spin currents with spin di-
rection along x, y, and z respectively. Symbols denote values
computed with density functional theory. Solid curves show
Eq. (1), where the parameters σSHE and σSAHE are extracted
from the first principles results as described in the text.

along the m̂×E-direction. Since charge flow in ferromag-
nets is spin-polarized, the anomalous Hall current should
be accompanied by a spin current with spin direction
along m̂. The generation of such a spin current, called
the spin anomalous Hall effect, was recently investigated
theoretically22. The second term in Eq. (1) describes a
spin current with the same magnetization dependence as
the spin anomalous Hall current.

Both the anomalous and spin Hall effects have extrinsic
and intrinsic contributions. Extrinsic contributions re-
sult from disorder scattering while intrinsic effects arise
from the perturbation of electronic wave functions in-
duced by the applied electric field. It is now accepted
that the intrinsic mechanism dominates the anomalous
Hall response of typical transition metal ferromagnets21.
We therefore focus on this intrinsic regime.

In this work, we use first principles calculations to com-
pute the intrinsic spin current conductivities for transi-
tion metal ferromagnets and show that that Eq. (1) de-
scribes the response. The magnitude of the total spin
current conductivity is substantial, suggesting that ferro-
magnets could be efficient and flexible generators of spin
current. We find that the spin direction of intrinsic spin
currents is not subject to dephasing, which enables spin
directions that are misaligned with the magnetization. A
simple tight-binding model is presented that captures the
relevant physics which demonstrates why intrinsic spin
currents are not subject to dephasing. Our results also
indicate that the predominant source of spin current in
experiments with heavy metal-ferromagnet bilayers may
need to be reconsidered.

First principles calculations—Following earlier cal-
culations of the anomalous Hall charge current
in ferromagnets23 and the spin Hall current in
nonmagnets24,25, we use the Kubo formalism to compute
the spin current induced by an applied electric field. For

an electric field Eγ in the γ-direction, the spin current
conductivity tensor σ yields the spin current according
to Qβα = σβαγEγ . The expression for σ in the clean limit
for zero temperature is:

σβαγ = −2e2

~
Im

∫
dk

(2π)
3

∑
n∈occ.

m∈unocc.

〈ψm|Q̂βα|ψn〉〈ψn|v̂γ |ψm〉
(En − Em)

2 (2)

where vγ = dH/dkγ is the velocity operator along the

γ-direction. The spin current operator is given by Q̂βα =
(vαsβ + sβvα) /2, where sβ is the β-component of the
Pauli spin matrices.

Eq. (2) is evaluated within density functional the-
ory. The ground state is computed with the Quantum
ESPRESSO package26, where we use the experimental
lattice constants of (0.286, 0.352, 0.251) nm for Fe, Ni,
and Co (hcp), respectively. In each case, the plane-wave
cutoff energy is set to 60 Eh, and a 12× 12× 12 uniform
k-point grid is used. We use ultrasoft, fully relativistic
pseudopotentials with a GGA functional. For Ni, Ref.27

shows that the calculated anomalous Hall conductivity
is closer to the experimental value using the GGA+U
method. We therefore adopt a similar approach for Ni,
presenting results for U = 1.9 eV and J = 1.2 eV. We do
not consider current vertex corrections to Eq. (2), which
as discussed in Refs24,25, should be unimportant for tran-
sition metal ferromagnets.

To evaluate Eq. (1) on a fine k-point mesh, we per-
formed Wannier interpolation using Wannier9028. The
Wannier projection is performed on the system with mag-
netization along the ẑ-direction. To vary the magnetiza-
tion direction, we decompose the Hamiltonian into com-
ponents that are even and odd under time-reversal, and
perform a spin-space rotation of the odd component to
the desired orientation. The integral in Eq. (2) is initially
evaluated using a uniform mesh of 2003 k-points. We use
an adaptive mesh procedure in which k-dependent con-
ductivity values exceeding 0.28 nm2 are sampled on a
refined mesh. We continue mesh refinement until calcu-
lated values are converged to 1 %.

Fig. 2 shows the magnetization dependence of the in-
trinsic spin currents computed for Fe. We again restrict
our attention to spin currents flowing in the x̂-direction
generated by an electric field in the ŷ-direction. The phe-
nomenological parameters σSAHE and σSHE are extracted
from from the values of σzxy for the magnetization along ẑ
and ŷ. The magnetization-dependence predicted Eq. (1)
is shown in sold lines while the numerically computed
values are shown as symbols. We find the full angular
dependence is well-described by Eq. (1)29.

The values for σAHE, σSHE, and σSAHE obtained for
Fe, Co, and Ni are shown in Table I. The magnitude
of the spin Hall conductivity is substantial and indicates
the potential for ferromagnets to be flexible and effective
sources of spin current. The response of the cubic crys-
tals Fe and Ni coincide well with Eq. (1), while HCP Co
exhibits substantially more anisotropy arising from the
crystal anisotropy.
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σAHE σSHE σSAHE

Fe 720 519 -419

Ni -1326 1688 -728

Co (E || a) 454 -130 -8

Co (E || c) 159 1074 -1004

TABLE I. Computed conductivity components (units of
Ω−1cm−1). For Co, results are shown for the electric field
E along a and c to show the crystal-induced anisotropy.

To analyze the microscopic origin of our results, it is
useful to write the spin current of Eq. (1) in terms of spin
components parallel and perpendicular to the magneti-
zation. For an electric field in the ŷ-direction and flow
in the x̂-direction, the appropriate form is given below.

Qx =
(
σ‖mzm̂ + σ⊥m̂× (m̂× ẑ)

)
E. (3)

where we refer to σ‖ (σ⊥) as the longitudinal (transverse)
spin Hall conductivity. Note that σ‖ = σSAHE+σSHE and
σ⊥ = σSHE.

In Fig. 3, we show the band structure and the k-
resolved conductivities for Fe with magnetization along
m̂ = (ŷ + ẑ) /

√
2. As expected, contributions to conduc-

tivities exhibit peaks at avoided band crossings near the
Fermi energy. Peaks in the anomalous Hall conductiv-
ity σAHE and the longitudinal spin Hall conductivity σ‖
(denoted by “maj” and “min”) can be associated with
interband coupling between states with the same spin.
The magnetization-aligned spin current for these states
is approximately equal to the charge current up to a sign
determined by the spin direction.

We also observe a peak in σ⊥ (denoted by “opp”) that
arises from coupling between bands with opposite spin,
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FIG. 3. (Color online) Band structure near the Fermi energy
εF (top) and k-dependent intrinsic conductivities (bottom)
for BCC Fe, where m̂ = (ŷ + ẑ) /

√
2. Band color gives value

of s · m, with blue (red) bands corresponding to majority
(minority) carriers. Avoided crossings between like (opposite)
spin bands contribute strongest to σ‖ (σ⊥), which describes
the spin current with spin direction parallel (perpendicular)
to m̂.

suggesting that different components of the conductivity
can be associated with different types of band pairs. To
quantify this association, we partition the sum over bands
n and m in Eq. (2) into two parts according to the sign
of P = (sn · sm), i.e pairs of like-spin bands (P > 0)
versus pairs of opposite-spin bands (P < 0). We find
that 95 % of the magnitude of σAHE comes from spin-like
band pairs30 while 96 % of the magnitude of σ⊥ comes
from spin-opposite band pairs. As we discuss in the next
section, a wave function which carries a spin current with
spin direction transverse to the magnetization requires a
superposition of majority and minority spin states. It is
therefore not surprising that σ⊥ arises from spin-opposite
band pairs. The longitudinal spin Hall conductivity σ‖
has contributions from both band pair types: 63 % arise
from spin-like pairs and 36 % arise from spin-opposite
pairs.
Toy model for intrinsic spin Hall conductivity — We

use a simple tight-binding model to demonstrate an in-
trinsic spin current with spin direction transverse to the
magnetization. The model consists of a 2-d square lat-
tice in the x/y plane with px and py orbitals. We include
nearest neighbor hopping t and next-nearest-neighbor
hopping t′ (see Fig. 4a). The magnetization direction
is along x̂ and leads to a spin-dependent exchange split-
ting ∆. We express the Hamiltonian H in terms of the
outer product of orbital space (px, py) and spin space
(↑, ↓). We can concisely write H with the Bloch factor
eik·r absorbed as:

H =

(
tk2x t′kxky

t′kxky tk2y

)
⊗ Is + ∆Ip ⊗ sx + λLz ⊗ sz, (4)

where Is and Ip are identity operators in spin and or-
bital space, respectively. The first term of Eq. (4) de-
scribes hopping in the (px, py) basis. The hopping is
spin-independent, so the first term consists of two copies
of the orbital-dependent hopping matrix along the spin-
diagonal. Note that the Bloch wave vector k is dimen-
sionless (scaled by the inverse lattice constant 1/a) and
we take the small k limit. The second term gives the
orbital-independent magnetic exchange splitting for mag-
netization direction along x̂. The third term captures
atomic spin-orbit coupling. The full form of spin-orbit
coupling is L·s, however Ref.31 shows that the szLz term
contributes most substantially to the spin Hall conduc-
tivity. We therefore include only this term for simplicity.
The results do not change appreciably if we use the full
spin orbit coupling form L · s.

To develop the simplest demonstration of a spin Hall
current with spins transverse to the magnetization, we
begin by considering the wave functions for kx = 0 with
no spin-orbit coupling (λ = 0). The eigenstates are pure
px or py orbitals with spins along the x direction. The ad-
dition of spin-orbit coupling modifies the eigenstates, and
its effect is strongest near degeneracies. For the degener-
ate point k∗y shown in Fig. 4(b), spin-orbit coupling splits
the states according to their total angular momentum.
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FIG. 4. (Color online) (a) Schematic of the tight binding
model, which describes electrons occupying p-orbitals on a 2D
square lattice with nearest (t) and next-nearest (t′) neighbor
hopping (m̂ = x̂). (b) Plot of the avoided band crossing
along the ky axis. The spin density vanishes at the avoided
crossing between majority and minority bands. However, the
spin current with flow and spin direction transverse to the
magnetization (Qx

z ) does not vanish at the avoided crossing.

Recall that the total angular momentum eigenstates are
given by:

|J±1/2〉 =
(
|px〉 ± i|py〉

)
⊗ |↓(↑) 〉 (5)

|J±3/2〉 =
(
|px〉 ± i|py〉

)
⊗ |↑(↓) 〉 (6)

where the arrow in parenthesis of the spin ket is paired
with the lower sign. The two eigenstates near the avoided
crossing for the spin-orbit coupled system at k∗y are:

|Ψ1〉 = |J+1/2〉 − |J−1/2〉 (7)

|Ψ2〉 = |J+3/2〉 − |J−3/2〉. (8)

The spin expectation values for |Ψ1〉 and |Ψ2〉 vanish due
to mixing of the majority and minority states. Similar
behavior is also observed in the band structure for Fe at
crossings of spin-opposite bands (see Fig. 3).

The application of an electric field E along
ŷ induces interband coupling with amplitude
iqEa〈Ψ1|∂H/∂ky|Ψ2〉/(ε1 − ε2)2, where q is the
magnitude of electron charge and ε1,2 is the energy of
|Ψ1,2〉. The perturbed wave function for |Ψ′1〉 therefore
reads:

|Ψ′1〉 = |Ψ1〉+ iqEa
k∗yt

λ2
|Ψ2〉 (9)

where λ is the energy splitting induced by spin-orbit cou-
pling. Evaluating the expectation value of the transverse
spin current Qxz with the perturbed wave function leads
to the following result (to lowest order in E):

〈Ψ′1|Q̂xz |Ψ′1〉 = −qEa
~

tt′
(
k∗y
)2

λ
= −qEa

~
t′∆

λ2
(10)

Note that the
(
k∗y
)2

factor implies that contributions
from +k∗y and −k∗y do not cancel. The second equal-
ity in Eq. (10) follows from the expression for k∗y given
in Fig. 4. Although the value of the Hall current at k∗y

diverges as λ → 0, the total Hall current conductivity
integrated over k goes continuously to zero as λ→ 0.

It is instructive to rewrite the wave function of Eq. (9)
in the (px, py)⊗ (↑, ↓) basis:

|Ψ′1〉 =
(
|px〉 − (i− E′)|py〉

)
⊗ |↑ 〉

−
(
|px〉+ (i− E′)|py〉

)
⊗ |↓ 〉 (11)

where E′ = 2qEak∗yt/λ
2. It is straightforward to show

that, to linear order in E, this wave function has van-
ishing spin density while carrying a spin current given
by Eq. (10). This example illustrates that spin currents
cannot be treated in general as direct products of a flow
direction and a spin direction.
Discussion and conclusion—Intrinsic spin currents

with spin direction transverse to the magnetization do
not dephase. These spin currents are protected from
dephasing because they are carried by perturbed eigen-
states that superimpose different spin states with the
same Bloch wavevector. As these perturbed eigenstates
propagate in space, the two spin components do not accu-
mulate any relative phase, and hence do not precess and
subsequently dephase. However, dephasing could occur
via spin-dependent scattering at interfaces, resulting in
spin torques. This suggests that spin-orbit torque must
be reexamined in magnetic heterostructures to account
for spin currents generated by ferromagnetic layers. For
extrinsic mechanisms, where the scattering site breaks
crystal translation symmetry, the scattered wave func-
tions with moments transverse to the magnetization are
coherent superpositions of states with different wave vec-
tors. The different wave vectors lead to rapid precession
and dephasing, which favors longitudinal spins.

Spin currents in ferromagnets have been measured in
several experiments. Wang et al. probe the spin Hall
effect in a single Py layer capped by oxide layers32. Us-
ing polar MOKE, a deflection of the magnetization is
observed at the Py/oxide boundaries, indicating a spin
transfer torque exerted by a spin Hall current generated
within the ferromagnetic layer. A simple model provides
a lower bound for the spin Hall conductivity, and its value
is similar to the results presented in this work. Other ex-
periments also isolate the spin Hall current whose spin
direction is transverse to the magnetization using more
complicated heterostructures13,14. Some experiments
measure the spin current with a magnetization-aligned
spin direction8–11,15, as would be expected for bulk spin
currents in ferromagnets that have spin directions aligned
with the magnetization22. Das et al. quantify contri-
butions from both transverse and magnetization-aligned
spin directions within Py12, providing experimental evi-
dence supporting some of the results presented here.

In this work, we demonstrated that spin currents in
ferromagnets generated by the intrinsic mechanism are
well approximated as the sum of a spin Hall current and
a spin anomalous Hall current. The spin Hall current
has a spin direction transverse to the magnetization and
could generate spin-orbit torques at material interfaces.
In transition metal ferromagnets, we find that these spin
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currents are comparable in magnitude to those gener-
ated in heavy metals. This work should have immediate
bearing on experiments which probe the spin anomalous
Hall and spin Hall effects in ferromagnets and spin-orbit
torque in magnetic heterostructures.
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