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A helix has a wavevector along the z axis with the magnetic moments ferromagnetically-aligned
within xy planes with a turn angle kd between the moments in adjacent planes in transverse field
H = Hx î = 0. The magnetic structure and x-axis average magnetization per spin of this system in
a classical XY anisotropy field HA is studied versus kd, HA, and large Hx at zero temperature. For
values of HA below a kd-dependent maximum value, the xy helix phase transitions with increasing
Hx into a spin-flop (SF) phase where the ordered moments have x, y, and z components. The
moments in the SF phase are taken to be distributed on either one or two xyz spherical ellipses.
The minor axes of the ellipses are oriented along the z axis and the major axes along the y axis
where the ellipses are flattened along the z axis due to the presence of the XY anisotropy. From
energy minimization of the SF spherical ellipse parameters for given values of kd, HA and Hx, four
kd-dependent SF phases are found: either one or two xyz spherical ellipses and either one or two
xy fans, in addition to the xy helix/fan phase and the paramagnetic (PM) phase with all moments
aligned along H. The PM phase occurs via second-order transitions from the xy fan and SF phases
with increasing Hx. Phase diagrams in the Hx-HA plane are constructed by energy minimization
with respect to the SF phases, the xy helix/fan phase, and the xy SF fan phase for five kd values.
One of these five phase diagrams is compared with the magnetic properties found experimentally for
the model helical Heisenberg antiferromagnet EuCo2P2 and semiquantitative agreement is found.

I. INTRODUCTION

A reformulation of the Weiss molecular field
theory for Heisenberg magnets containing identical
crystallographically-equivalent spins was developed re-
cently, termed the unified molecular field theory (MFT),
which treats collinear and noncollinear antiferromag-
nets on the same footing and is expressed in terms of
physically-measurable parameters instead of molecular-
field or exchange coupling constants [1–3]. The influences
of magnetic-dipole and single-ion anisotropies and classi-
cal anisotropy fields on the magnetic properties of such
Heisenberg antiferromagnets were also studied within
unified MFT [4–6]. Of particular interest in the context
of this MFT are coplanar noncollinear magnetic struc-
tures such as that of GdB4 and triangular antiferromag-
nets [1, 3] and of helical antiferromagnets (see Fig. 1)
such as MnO2 [7] and MnAu2 [8]. More recently the heli-
can antiferromagnets EuCo2P2 and EuCo2As2 have been
studied for which the MFT provides a good description
of the anisotropic magnetic susceptibility below their re-
spective antiferromagnetic (AFM) ordering temperatures
TN [9–12]. Some rare-earth metals also show AFM planar
helix or related cone structures [13].

Previously, the magnetic structure and magnetization
of a planar helical antiferromagnet in a high applied mag-
netic fields H perpendicular to the helix wave vector axis
(z axis) at temperature T = 0 was calculated where the
ordered magnetic moments were restricted to lie in the
xy plane [14, 15]. This is the plane in which the ordered
moments reside in zero field as shown in Fig. 1. This
situation corresponds to infinite XY planar anisotropy.
Continuous crossover, second-order, and first-order tran-
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FIG. 1: Generic helical AFM structure [1]. Each arrow repre-
sents a layer of moments perpendicular to the z axis that are
ferromagnetically aligned within the xy plane and with inter-
layer separation d. The wave vector k of the helix is directed
along the z axis. The magnetic moment turn angle between
adjacent magnetic layers is kd. The nearest-layer and next-
nearest-layer exchange interactions J1 and J2, respectively,
within the J0-J1-J2 Heisenberg MFT model are indicated.
The top view is a hodograph of the magnetic moments.

sitions were found between the planar helix and planar
fan phases with increasingH [14, 15], the nature of which
depends on the helix wave vector k. The influence of a
high z-axis field on the magnetic moment vectors for the
helix phase is shown in Fig. 2. The magnetization versus
field for this case was calculated in Ref. [2]. In Ref. [15],
the experimental high xy-plane field data at low temper-
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FIG. 2: Hodograph of the magnetic moments in a planar
helical structure in the xy plane with applied field (left fig-
ure) H = 0, and (right figure) with a large H applied along
the helix wave-vector z axis [2].

atures T for a single crystal of the helical antiferromagnet
EuCo2P2 [10] containing Eu+2 spins S = 7/2 were fitted
rather well by the theory for kd = 6π/7, close to the value
from neutron-diffraction measurements [9]. However, the
presence of a field-induced out-of-plane component of the
magnetic moments was not ruled out.

The T = 0 calculations were extended to the case of
finite XY anisotropy for fields applied perpendicular to
the helix axis, where phase transitions between the he-
lix, a three-dimensional spherical ellipse spin-flop (SF),
xy fan and the paramagnetic (PM) phases were found for
small turn angles kd [14]. This work was later extended
to include study of the magnetic structures at finite tem-
peratures using molecular-field theory [16, 17], where the
influence of in-plane anisotropy was also studied. Nu-
merical solutions for the in-plane structures at T = 0
were also obtained for arbitrary interlayer interactions
and arbitrary in-plane anisotropy and applied fields [18].
These treatments are not straghtforward to apply to ob-
tain fits of magnetization versus in-plane field data for
real materials.

Here we extend the previous T = 0 calculations to arbi-
trary rational kd values for finite classical XY anisotropy
using our formulation of the classical XY anisotropy field
HA that was originally developed within unified molecu-
lar field theory [6]. We assume that for H aligned along
the x axis, transverse to the helix z axis, the moments
can exhibit a transition to one of two types of three-
dimensional SF spherical-ellipse phases with increasing
Hx with the x axis intersecting the center of each spheri-
cal ellipse. One type arises for either ferromagnetic (FM,
J1 < 0) or antiferromagnetic (AFM, J1 > 0) nearest-
layer interactions J1 in Fig. 1 and the second type some-
times occurs for AFM J1 at low Hx and small HA1. All
helices have AFM J2 > 0 [2]. The spherical-ellipse na-
ture of the magnetic structures in the SF phase arises
from the XY anisotropy and the fixed magnitude of the
moments at T = 0.

The average energy per spin of a helical spin system
with the moments aligned in the xy plane versus Hx in
the case of infinite XY anisotropy field HA was calculated
for T = 0 in Ref. [15]. Here we calculate the average en-
ergy per spin at finite HA, minimized at fixed kd and HA

with respect to the spherical ellipse parameters for the
two types of spherical-ellipse SF phases, and compare its

energy at each field with that of the planar xy helix/fan
phase at the sameHx to determine the stable phase. The
PM phase arises naturally from the SF → xy fan → PM
and xy helix → xy fan → PM phase progression with
increasing Hx. This allows the magnetic phase diagram
in the Hx–HA plane at T = 0 to be constructed, which
we carry out for five values of the turn angle kd. As part
of these calculations, we obtain and present the x-axis
average magnetic moment per spin µx ave versus Hx and
HA for the same five values of kd which also reveal the
phase transitions as well as their first- or second-order
nature.
The unified MFT used in the present work for both

zero and finite temperatures is described in Appendix A,
where the general aspects of the theory are reviewed
in Sec. A 1 and the application of those to the one-
dimensional J0-J1-J2 model (see Fig. 1) is given in
Sec. A 2. The model for the SF phase is presented in
Sec. II. From minimization of the energy with respect
to the SF, xy helix/fan and SF fan phases for five val-
ues of kd, the resulting five T = 0 phase diagrams in
the Hx-HA plane are presented in Sec. III and in the
Supplemental Information (SI) [19], where our previous
calculations for the energies of the xy helix/fan phases in
Ref. [15] are utilized. The methods needed to interface
our theoretical T = 0 phase diagrams with experimental
low-T magnetization versus field M(H) isotherms and
magnetic susceptibility measurements versus T for heli-
cal Heisenberg antiferromagnets are presented in detail
in Secs. IVA and IVB. A comparison of the phase di-
agram for kd = 5π/6 rad with the properties obtained
from M(H) isotherm data at T = 2 K for EuCo2P2 with
kd ≈ 0.85π rad [10] is given in Sec. IVC, and reason-
able agreement is found. The results of the paper are
summarized and discussed in Sec. V.

II. MODEL FOR THE SPIN-FLOP PHASE

The reduced applied magnetic field h∗∗

x and re-
duced anisotropy field h∗∗

A1 discussed here are defined in
Eqs. (A19). Values of the average energy per spin and
the average x-axis magnetic moment per spin versus the
reduced field h∗∗

x when the moments in a zero-field helix
and high-field fan are confined to the xy plane were cal-
culated for T = 0 in Ref. [15]. Here we calculate these
T = 0 properties for the SF phase where the moments
flop out of the xy plane due to a nonzero h∗∗

x . A com-
parison of the average energy per spin in the helix and
SF phases versus h∗∗

x and h∗∗

A1 will be needed for the con-
struction of the T = 0 phase diagrams in the h∗∗

x -h∗∗

A1

plane.
In the absence of an anisotropy field, in zero applied

field a hodograph of the moments in a helix is a circle in
the xy plane as shown in Fig. 1. For an infinitesimal h∗∗

x ,
the moments flop by 90◦ into the yz plane, thus forming a
circular hodograph in the yz plane with an infitesimal tilt
of each spin towards the x axis. However, in the presence
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of a finite XY anisotropy field h∗∗

A1, we assume that the
latter circle is flattened into an ellipse in the yz plane
where the semimajor axis a of the ellipse is along the
y axis and the semiminor axis b is along the z axis, as
found analytically for a special case in Ref. [14]. Due to
the fact that we only consider T = 0, the moment mag-
nitude µ is fixed at the value given in Eq. (A1c). Hence
a hodograph of the moment unit vectors µ̂ in the pres-
ence of a nonzero h∗∗

x is a spherical ellipse of radius unity,
which is the projection of a two-dimensional ellipse in the
yz plane onto a sphere of radius unity. The magnitude µ
of the magnetic moments is taken into account in the
reduced fields h∗∗

x and h∗∗

A1.
In the spin-flop phase with finite h∗∗

x and h∗∗

A1, one ex-
pects at least for the case of AFM J12 > 0 with the
applied field in Eq. (A11), that two spherical elliptic
paths (hodographs) A and B traversed by the magnetic-
moment unit vectors could occur in which the x compo-
nents have opposite signs in order to decrease the value
of exchange interaction energy between spins in adjacent
layers. Then the reduced moments with even n in sub-
lattice A are described by

µ̂An = µ̄Anx î+ µ̄Any ĵ+ µ̄Anz k̂, (n even) (1a)

µ̄Any = aA cos(nkd), (1b)

µ̄Anz = bA sin(nkd), (1c)

µ̄Anx =
√

1− (µ̄2
Any + µ̄2

Anz), (1d)

and the moments in sublattice B with odd n are described
by

µ̂An = µ̄Bnx î+ µ̄Bny ĵ+ µ̄bnz k̂, (n odd) (1e)

µ̄Bny = aB cos(nkd), (1f)

µ̄Bnz = bB sin(nkd), (1g)

µ̄Bnx = c
√

1− (µ̄2
Bny + µ̄2

Bnz), (1h)

where c = ±1, n = 1, 2, . . . , nλ, and for each n within
each sublattice Eq. (A1f) is satisfied. The moments
are distributed in equal numbers between sublattices A
and B, labeled by consecutive odd and even integers n, re-
spectively, so the total number of moments nλ per wave-
length λ = nλd along the z axis is even. An illustration
of the spherical ellipse paths of the moments on sublat-
tices A and B described by Eqs. (1) is shown in Fig. 3 for
c = −1, aA = aB = 0.8 and bA = bB = 0.2. The value
c = −1 corresponds to two spherical-elliptic paths on op-
posite sides of µ̄x = 0 for sublattices A and B as shown in
the figure. This may be expected at small h∗∗

x for AFM
J1 > 0, whereas when c = 1 the paths are on the same
sode of the positive µ̄x axis towards which the applied
magnetic field H points, as expected for all moments for
large h∗∗

x with either AFM or FM J1.
The spherical-ellipse parameters c, aA, bA, aB, bB

are all determined at the same time by minimizing
the normalized average energy per spin Eave/(S

2J2) in
Eq. (A20b) with respect to these parameters in Eqs. (1)

A

B

FIG. 3: Spherical-ellipse paths (hodographs) of the magnetic
moment unit vectors ~µ/µ in sublattices A and B in the spin-
flop (SF) phase according to Eqs. (1) with the parameter c =
−1. These paths are elliptical in the yz plane with a constant
radius of unity from the origin of the Cartesian coordinate
system. In this illustration, the semimajor and semiminor
axes of the elliptic paths in the yz plane are set to aA = aB =
0.8, bA = bB = 0.2, but the equalities aA = aB and bA =
bB are generally not obtained for the SF phase from energy
minimization even when c = 1 and the spherical ellipses are
both on the positive side of x = 0 towards which the applied
magnetic field H points.

when inserted into Eq. (A20a) for fixed values of h∗∗

A1 and
h∗∗

x . If the obtained values satisfy c = −1 or c = 1 with
aA 6= aB, bA 6= bB, then there are two spherical ellipses,
one on each side of µ̄x = 0 if c = −1 and both on the
µ̄x > 0 side if c = 1. On the other hand, if bA and bB
satisfy bA = bB = 0 (no z-axis component to the mo-
ments), either one (aA = aB) or two (aA 6= aB) xy fan
phases are found. Finally, if aA = aB = bA = bB = 0, the
moments all point in the direction of the applied field in
the +x direction and the system is in the PM state.
Once the spherical-ellipse parameters are determined,

the average value of x component of the magnetic mo-
ment unit vector in the direction of the applied field for
the given values of h∗∗

x and h∗∗

A1 is obtained from

µ̄xave ≡
µxave

µ
=

1

nλ

nλ
∑

n=1

µ̄nx (2)

using Eqs. (1d) and (1h).
The fitted values of Eave/(S

2J2), µ̄xave, and of
c, aA, bA aB, bB are shown for representative values
kd = π/6 and π/4; π/3 and 3π/7; 13π/25 and 5π/9;
and 9π/11 and 5π/6; in SI [19]. One sees a variety of
possible SF phases for different values of h∗∗

A1 and of h∗∗

x ,
including a single spherical ellipse, a single xy fan, two
spherical ellipses, two xy fans, and at high fields, the
PM phase in which all moments are FM-aligned in the

direction î of the applied field. There is no clear mono-
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tonic dependence versus kd in the order in which the first
four phases occur. A nonmonotonic behavior versus kd
was previously found in the range 4π/9 ≤ kd < π for
the phases occuring at T = 0 versus applied x-axis field
for the xy helix and xy fan phases when the moments
are confined to the xy plane [15]. The stable phases for
0 < kd < π/2 with FM (negative) J12 all have c = 1 for
all h∗∗

x as anticipated, whereas two of the stable phases
for π/2 < kd < π with AFM (positive) J12 have c = −1
at low fields, as also anticipated, and c = 1 at high fields.

First-order transitions versus h∗∗

x occur when c discon-
tinuously changes with increasing h∗∗

x from −1 to 1 in
SI [19] for kd = 9π/11 and kd = 5π/6. The first-order
nature of the transitions is also revealed in the h∗∗

x depen-
dences of Eave, µ̄x ave and the other four spherical ellipse
parameters. The transitions versus h∗∗

x for the other six
kd values in SI [19] are seen to be second order. When
kd increases from 9π/11 to 5π/6, both with h∗∗

A1 = 1 in
SI [19], a new second-order transition at h∗∗

1 = 1.0 occurs
for kd = 5π/6, whereas for kd = 9π/11 the transition is
instead a smooth crossover.

The reduced critical field h∗∗

c versus kd is the value
at which the system becomes PM with increasing h∗∗

x .
These second-order transition fields are listed for each
of the eight kd values and the specified values of h∗∗

A1 in
SI [19]. We find that h∗∗

c depends only on kd (not on
h∗∗

A1), when nλ is even as assumed in this paper. For
h∗∗

x → h∗∗−

c , the stable phase for all values of kd is a
single fan in the xy plane, which was studied in detail
in Ref. [15]. The approximate values of h∗∗

c versus kd
listed in the figures in SI [19] are in agreement with the
respective exact values given for the xy fan by [15]

h∗∗

c = 16 sin4
(

kd

2

)

. (3)

III. PHASE DIAGRAMS IN THE h∗∗

x -h∗∗

A1

PLANE FOR REPRESENTATIVE kd VALUES

As discussed above, the phases that can occur within
MFT are the xy helix phase with moments aligned in
the xy plane (xy helix/fan), the spin-flop (SF) phase
with moments that have three-dimensional components
(xyz spin flop), the xy fan phase with moments oriented
within the xy plane (SF xy fan) and the paramagnetic
(PM) phase where the moments are ferromagnetically-
aligned in the direction of the x-axis reduced field h∗∗

x .

The phase boundary between the xy helix phase and
the xy fan phase of the helix when it occurs was deter-
mined previously in Ref. [15], where the energies of the
xy helix and higher-field xy fan phases were determined
versus h∗∗

x . However, here one needs to determine the
influence of h∗∗

A1 on those energies. Since these moments
are confined to the xy plane, the reduced energy of mo-
ment layer n for the xy helix and associated high-field

xy fan phases is given by Eq. (A20a) as

E
helix/fan
n

S2J2
=

1

2

[

J12 (µ̂n · µ̂n+1 + µ̂n · µ̂n−1) (4a)

+
(

µ̂n · µ̂n+2 + µ̂n · µ̂n−2

)]

−
(

h∗∗

A1 + µ̄nxh
∗∗

x

)

=
E

helix/fan
n

S2J2
(h∗∗

x , h∗∗

A1 = 0)− h∗∗

A1, (4b)

where the first term on the right-hand side of the bottom
equality was calculated for a variety of turn angles kd in
Ref. [15].
One anticipates that when h∗∗

A1 = 0, in order for the
system to minimize its energy an infinitesimal h∗∗

x causes
the xy helix to immediately spin-flop to a perpendicu-
lar orientation in the yz plane. With further increases
in h∗∗

x , the moments all tilt by the same angle towards
the x axis as shown in Fig. 2 where the z axis in that
figure is replaced by the x axis here. When h∗∗

A1 increases
to a finite value, one expects a finite field to be required
to cause the moments to flop out of the xy plane to en-
ter the SF phase. However, if h∗∗

A1 is sufficiently large,
this xy helix to xyz spin-flop transition is expected to
be replaced by the previously-studied xy helix to xy fan
phase transition. These expectations are borne out by
the phase diagrams shown in SI [19] and Fig. 4(c) below.
The reduced phase transition field h∗∗

x between the
xy helix phase and the xyz spin-flop phase for a given
value of reduced XY anisotropy field h∗∗

A1 was determined
by the crossover in average energy between these two
phases, where at low fields the xy helix phase has the
lower energy and at higher fields the xyz spin-flop phase
energy is lower. This is a first-order transition. The
transition between the xy helix phase and the high-field
xy helix fan phase can be first-order, second-order, or
a smooth crossover [15]. The phase transition field be-
tween the xyz SF phase and the PM phase or between
the xy SF fan phase and the PM phase are determined
by the criterion that the x component of the calculated
average moment unit vector per spin µ̄x ave ≡ µx ave/µ
becomes equal to unity with increasing h∗∗

x . This is a
continuous (second-order) transition.
The phase diagrams in the h∗∗

x − h∗∗

A1 plane at T = 0
calculated for the four turn angles kd = π/6, π/4, π/3
and 3π/4 rad are shown in SI [19]. The first three turn
angles correspond to FM nearest-layer couplings J1 < 0
whereas the fourth one is for an AFM J1 > 0. One sees
that the phase diagrams follow the above expectations.
The first three phase diagrams with FM kd < π/2 have
common forms, where approximately the same phase dia-
gram is obtained but with a rescaling of the h∗∗

x and h∗∗

A1

axes. In all three phase diagrams the phase transition
line between the xyz spin flop and the xy fan phases is
linear or nearly so. Another interesting feature is that
all three phase diagrams show a horizontal first-order
xy helix to xy fan phase boundary at large h∗∗

A1 values.
This occurs at the respective first-order transition fields
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FIG. 4: (a) Phase angles φn (n = 2, 7, 0, 5, 10, 3) with
respect to the positive x axis of the six inequivalent moments
in a helix with kd = 5π/6 confined to the xy plane at T = 0 in
the notation of Ref. [15]. (b) Average x-axis moment versus
h∗∗

x calculated from the data in (a). The data in (a) and (b)
were not presented in Ref. [15]. (c) Phase diagram in the
h∗∗

x -h∗∗

A1 plane at T = 0.

h∗∗

t between these two xy phases reported previously in
Ref. [15]. These three phase diagrams are similar in form
to the T = 0 phase diagram in Fig. 4 of Ref. [14] for small
values of kd. The phase diagram for kd = 3π/4 in SI [19]
for kd > π/2 corresponding to AFM J1 > 0 is different
from the other figures where the nearest-layer coupling
is FM. In Fig. 4 the phase diagram and other data for
kd = 5π/6 are shown which will be compared with ex-
perimental data for EuCo2P2 in the following section.
We emphasize that the transitions versus h∗∗

x at fixed
h∗∗

A1 for the SF phase shown in SI [19] and Fig. 4(c) for
particular values of kd are only observed in a real he-
lical Heisenberg AFM compound if the SF phase has a
lower energy than each of the xy helix and xy helix fan
phases for the particular values of kd, h∗∗

A1 and range of
h∗∗

x that are associated with the compound. Indeed, we
show that for the model helical Heisenberg antiferromag-
net EuCo2P2 discussed in Sec. IVC below, the values of
kd and h∗∗

A1 do not allow the SF phase to have a lower
energy than the xy helix or xy helix fan phases for any
value of h∗∗

x . Hence only the xy helix, xy helix fan, and
PM phases occur with increasing h∗∗

x .

IV. COMPARISON OF THE THEORY WITH

EXPERIMENT

A. Expressing h∗∗

A1 and h∗∗

x in terms of

experimental values of hA1 and hx

In order to compare experimental magnetic data for he-
lical Heisenberg antiferromagnets with the above theory,
one needs to determine which region of the phase dia-
gram (xy helix phase, xy helix fan phase, xyz SF phase,
xy SF fan phase, or PM phase) a material lies for the
material’s values of h∗∗

x and h∗∗

A1. Then one can com-
pare the experimental M(H) data for the compound at
low T with the theoretical phase diagrams to determine
what phase transitions are predicted versus x-axis field
for comparison with the experimental M(H) data.
To accomplish this comparison, one must first deter-

mine how the value of the reduced applied field h∗∗

x and
anisotropy field h∗∗

A1 in this paper are expressed in terms
of the reduced applied field hx and reduced anisotropy
field hA1 defined in Ref. [6] that can be obtained from
experimental magnetic susceptibility data (see following
section). From Ref. [6], one has

hA1 ≡
gµBHA1

kBTNJ
, (5a)

where kB is Boltzmann’s constant and TNJ is the Néel
temperature that would be obtained from Heisenberg ex-
change interactions alone with no anisotropy contribu-
tions. A comparison of this definition with that for h∗∗

A1

in Eq. (A19b) gives the conversion

h∗∗

A1 =

[

3

2S(S + 1)

](

kBTNJ

J2

)

hA1. (5b)
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Similarly, a comparison of the definition [6]

hx ≡
gµBHx

kBTNJ
(5c)

with that for h∗∗

x in Eq. (A19a) yields

h∗∗

x =
1

S

(

kBTNJ

J2

)

hx. (5d)

These conversions require the spin S to be known and
also the material-specific ratio kBTNJ/J2 within the J0-
J1-J2 MFT model to be computed from magnetic sus-
ceptibility data for single crystals of the material. The
latter calculation also yields J0 and J1 as discussed in
the following section.

B. Extracting values of hA1, TNJ, J0, J1, ad J2 from

experimental magnetic susceptibility data within

unified molecular-field theory

The value of the XY anisotropy parameter hA1 is es-
timated from the anisotropy in the experimental Weiss
temperatures θpα in the Curie-Weiss law fitted to mag-
netic susceptibility data in the PM state of uniaxial single
crystals according to [6]

θp ab − θp c = TN

(

hA1

1 + hA1

)

, (6)

where the ab crystal plane corresponds to the xy plane
in the theory and the c axis to the z axis, and TN is
the measured Néel temperature including both exchange
and anisotropy contributions. Then the Néel temper-
ature TNJ due to exchange interactions alone is found
from

TNJ =
TN

1 + hA1

. (7)

The Weiss temperature θpJ in the Curie-Weiss law due
to exchange interactions alone is the spherical average

θpJ =
2θp ab + θp c

3
(8)

of the measured values θp ab and θp c.
Once TNJ and θpJ are determined for a particular com-

pound, one can determine the parameters J0, J1, and J2
within the J0-J1-J2 MFT model by solving for them from
the three simultaneous equations [2]

cos(kd) = −
J1
4J2

, (9)

θpJ = −
S(S + 1)

3
(J0 + 2J1 + 2J2),

TNJ = −
S(S + 1)

3

[

J0 + 2J1 cos(kd) + 2J2 cos(2kd)
]

,

where J2 > 0, the Ji are expressed here in temperature
units, and the turn angle kd is assumed to be known from

neutron diffraction measurements and/or from fitting the
xy-plane magnetic susceptibility below TN by MFT [1–3].
The solutions for J0, J1, and J2 obtained from Eqs. (9)
are

J0 = −
3 csc4(kd/2)

8S(S + 1)

{

TNJ

[

1− 4 cos(kd)
]

(10a)

+ θpJ
[

2 + cos(2kd)
]

}

,

J1 = −
3 csc4(kd/2)

4S(S + 1)

(

TNJ − θpJ
)

cos(kd), (10b)

J2 =
3 csc4(kd/2)

16S(S + 1)

(

TNJ − θpJ
)

. (10c)

C. Application to the model molecular-field helical

Heisenberg antiferromagnet EuCo2P2

EuCo2P2 is a model MFT helical Heisenberg antiferro-
magnet with the Eu+2 spins situated on a body-centered-
tetragonal sublattice with properties given by [10]

S = 7/2, (11a)

TN = 66.6 K, (11b)

kd = 0.852π rad, (11c)

θp ab = 23.0 K, (11d)

θp c = 18.2 K, (11e)

(11f)

where the value of kd was obtained by neutron diffraction
measurements at T = 15 K ≪ TN [9] and is close to the
value kd = 5π/6 = 0.833π in Fig. 4. Using g = 2 and
Eqs. (5c) and (7) to (10), one obtains

hA1 = 0.078, (12a)

TNJ = 61.8 K, (12b)

J0/kB = −9.0 K, (12c)

J1/kB = 1.92 K, (12d)

J2/kB = 0.54 K, (12e)

h∗∗

A1 = 11.0hA1 = 0.85, (12f)

h∗∗

x = 32.9hx (12g)

= 0.72Hx[T],

h∗∗

c = 32.9hc (12h)

= 0.72Hc[T],

where 1 T = 104 Oe. The negative value of J0 is consis-
tent with the FM alignment of the moments in each helix
layer, and the positive values of J1 and J2 indicate AFM
interlayer couplings with J2 < J1 as would be expected.
A positive AFM value of J2 is required to form a helix
structure. Using Eqs. (3) and (12h) and the value of kd
in Eq. (11c), one obtains predictions for the reduced and
actual critical fields as

h∗∗

c = 15.6, (13a)

Hc = 21.7 T. (13b)
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FIG. 5: High-field magnetization Mab versus magnetic field H
applied in the crystallographic ab plane (the xy plane in the
theory here) perpendicular to the helix c (z) axis [10]. The
saturation moment is Msat = gSµB, where the spectroscopic
splitting factor is taken to be g = 2, the Eu+2 spin to be
S = 7/2, and µB is the Bohr magneton.

The value for Hc is close to the fitted value of 25.4 T
obtained in the following.
The value h∗∗

A1 = 0.85 in Eq. (12f) places EuCo2P2

near the right edge of the phase diagram in Fig. 4(c)
where a weakly first-order transition from the xy helix
phase to the xy fan phase occurs at a field of 58.5% of
the critical field. We first fit the experimental Mab(H)
data for a single crystal with the applied field in the ab
(i.e., xy) plane shown in Fig. 5 to obtain an estimate of
the critical field Hc. Using the prediction of M(H) for
kd = 5π/6 = 0.833π in Fig. 4(b), the fit shown in Fig. 5
is obtained with the fitted value

Hc = 25.4 T. (14)

The fit semiquantitatively reproduces the overall upward
curvature of the data, although the S-shape centered in
the data at ≈ 7 T occurs at a somewhat higher field
than the value of ≈ 5 T in the fit. Not surprisingly, a
similar-quality fit was previously obtained assuming kd =
6π/7 ≈ 0.857π for the helix/fan phase confined to the
xy plane [15].

V. SUMMARY AND DISCUSSION

The present work is a continuation of the development
and use of the unified molecular field theory for sys-
tems containing identical crystallographically-equivalent
Heisenberg spins [1–3]. This MFT has significant ad-
vantages over the previous Weiss MFT because it treats
collinear and noncollinear AFM structures on the same
footing and the variables in the theory are expressed in

terms of directly measurable experimental quantities in-
stead of ill-defined molecular-field coupling constants or
Heisenberg exchange interactions.

As part of this development, the influences of sev-
eral types of anisotropies on the magnetic properties of
Heisenberg antiferromagnets were calculated [4–6], in-
cluding a classical anisotropy field [6] that was used to
good advantage in the present work. This allowed the
transverse-field dependence of the spin-flop phases of he-
lical antiferromagnets to be easily calculated in the pres-
ence of finite XY anistropy. The present work allowed the
possibility of either one or two coexisting spherical ellip-
tical hodographs of the moments in the spin-flop phase
that enhanced the flexibility for the system to attain a
minimum energy versus applied and anisotropy fields.

Together with the previous work on the xy helix and
xy fan phases that occur under x-axis fields and their
corresponding energies at T = 0 [15], the present results
on the spin-flop and associated fan energies were utilized
to construct x-axis field Hx versus anisotropy field HA1

phase diagrams that can be compared directly with low-T
experimental magnetization versus transverse field data
for helical antiferromagnets. Care was taken to explain
how to do this. Then a comparison of the theory with
the magnetic behavior of the model MFT helical Heisen-
berg antiferromagnet EuCo2P2 was carried out. Semi-
quantitative agreement was found and the value of the
extrapolated critical field Hc was determined.

A previous theoretical study was reported of the helix-
to-fan transition at T = 0 that occurs with increasing x-
axis magnetic field transverse to the helix z axis when the
local moments are confined to the xy plane [14]. These
authors also calculated the transverse field versus XY
anisotropy phase diagram as in our Fig. 4(c) and SI [19]
but for small values of the helix turn angle kd where the
moments spin-flop out of the xy plane into a single spher-
ical ellipse phase with the axis of the spherical ellipse par-
allel to the applied transverse field [14]. In the present
work the range of kd was extended and the SF phase
contained up to two spherical ellipses instead of one. For
0 < kd < π/2 rad the topology of our phase boundaries
and the phases themselves are similar to theirs. How-
ever, we found significant differences between the phase
diagrams for kd = 3π/4 and 5π/6 and the phase diagrams
for kd < π/2 rad.

Since the theoretical predictions were obtained using
MFT, quantum fluctuations are not taken into account
and hence the predictions are expected to be most accu-
rate for helical Heisenberg antiferromagnets containing
large spins such as Mn+2 ions with spin S = 5/2 and
Gd+3 and Eu+2 ions with S = 7/2. Although the cal-
culated phase diagrams are for T = 0, in practice this
means that experimental data with which the theoreti-
cal phase diagrams are compared should include data at
temperatures much lower than the AFM ordering (Néel)
temperature, a restriction that is often easy to accommo-
date as in the presently-examined case of EuCo2P2.

Future work could profitably include classical ground-
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state Monte Carlo simulations to test our model for the
spin-flop phase and associated field-dependent magneti-
zation.

Appendix A: Theory

1. General theory

All spins are assumed to be identical and crystallo-
graphically equivalent which means that they each have
the same magnetic environment. The magnetic moment
~µn of spin n is

~µn = −gµBSn (A1a)

where the negative sign arises from the negative charge on
an electron, g is the spectroscopic splitting factor of each
moment, µB is the Bohr magneton, and Sn is the spin
angular momentum of ~µn in units of h̄ which is Planck’s
constant h divided by 2π. One can also write

~µn = µ µ̂n, (A1b)

where µ = |~µ|. At T = 0 as considered in this paper, µ
is the saturation moment given from Eq. (A1a) as

µ = gµBS. (A1c)

In Cartesian coordinates, the unit vector µ̂n in the direc-
tion of ~µn is written as

µ̂n = µ̄nx î+ µ̄ny ĵ+ µ̄nz k̂, (A1d)

where the Cartesian unit vectors pointing towards the

positive x, y, and z directions are î, ĵ and k̂, respectively,
and

µ̄nx,ny,nz ≡
µnx,ny,nz

µ
. (A1e)

Therefore

µ̂n · µ̂n = 1 = µ̄2
nx + µ̄2

ny + µ̄2
nz. (A1f)

The energy per spin En of a representative spin Sn

interacting with its neighbors Sn′ and with the classical
anisotropy field HAn and applied magnetic field H is

En = Eexchn + EAn + EHn. (A2)

The Heisenberg exchange energy per spin Eexchn is [2]

Eexchn =
1

2
Sn ·

∑

n′

Jnn′Sn′ , (A3)

where the prefactor of 1/2 is due to the fact that the
exchange energy from interaction between a pair of spins
is equally shared between the members of the pair, and
Jnn′ is the Heisenberg exchange interaction between spins
Sn and Sn′ . Writing the classical expression

Sn · Sn′ = S2 cosαnn′ , (A4)

where αnn′ is the angle between ~µn and ~µn′ , Eq. (A3)
becomes

Eexchn =
S2

2

∑

n′

Jnn′ cosαnn′ . (A5)

In terms of the magnetic moments, this can be written

Eexchn =
S2

2

∑

n′

Jnn′ µ̂n · µ̂n′ . (A6)

The anisotropy energy EAn is assumed to arise from
a classical anisotropy field HAn originating fundamen-
tally from two-spin interactions (i.e., not from single-ion
anisotropy) that is given by [6]

EAn = −
1

2
~µn ·HAn = −

µ

2
µ̂n ·HAn, (A7)

where the prefactor of 1/2 arises for the same reason as
in Eq. (A3). The HAn seen by ~µn is proportional to the
projection of µ̂n onto the xy plane according to [6]

HAn =
3HA1

S + 1

(

µ̄nx î+ µ̄ny ĵ
)

, (A8)

where HA1 is the so-called fundamental anisotropy field.
Inserting Eqs. (A1d) and (A8) into (A7) and using
Eq. (A1c) gives

EAn = −
3S

2(S + 1)
gµBHA1(µ̄

2
nx + µ̄2

ny)

= −
3S

2(S + 1)
gµBHA1(1− µ̄2

nz), (A9)

where the second equality was obtained using Eq. (A1f).

The Zeeman energy EHn of ~µn in the applied magnetic
field H is

EHn = −~µn ·H = −µµ̄nxHx = −gµBSµ̄nxHx, (A10)

where Eqs. (A1c) and (A1d) were used and H is assumed

to be applied in the î direction, transverse to the helix
z axis, i.e.,

H = Hx î. (A11)

Inserting Eqs. (A6), (A9), and (A10) into (A2) gives
the energy per spin as

En =
S2

2

∑

n′

Jnn′ µ̂n · µ̂n′

−
3S

2(S + 1)
gµBHA1(1− µ̄2

nz) (A12)

− µ̄nxSgµBHx.
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2. J0-J1-J2 one-dimensional MFT model for the

exchange energy of helical antiferromagnets

The J0-J1-J2 unified MFT model for the Heisenberg
exchange interactions [1, 2] is utilized to treat helical
structures such as illustrated in Fig. 1, where J0 is the
sum of all Heisenberg exchange interactions between a
representative spin Sn in a FM-aligned layer with all
other spins in the same layer, J1 is the sum of the inter-
actions of that spin with all spins in a nearest-neighbor
layer, and J2 is the sum of the interactions of that spin
with all spins in a next-nearest-neighbor layer, as shown
in Fig. 1. Within this MFT model, the exchange energy
of a representative spin Sn with magnitude S interacting
with its neighbors is given by Eq. (A5) for Hx = 0 and
with spins confined to the xy plane as

Eexchn =
S2

2
[J0 + 2J1 cos(kd) + 2J2 cos(2kd)] , (A13)

where Jnn′ and αji in Eq. (A5) are defined as J1 and kd
for a nearest-neighbor layer and by J2 and 2kd for a next-
nearest-neighbor layer, respectively, k is the magnitude of
the helix wavevector along the z axis and d is the distance
between layers as shown in Fig. 1. The prefactors of two
in the last two terms occur because each layer has two
nearest-layer neighbors and two next-nearest-layer neigh-
bors. The turn angle kd between adjacent FM-aligned
layers in the helix in zero appied field is given in terms
of J1 and J2 by [2]

cos(kd) = −
J1
4J2

, (A14)

which we utilize in subsequent calculations in this paper.
This paper is particularly concerned with spin-flop

phases that can arise from an external field Hx that is
perpendicular to the helix z axis for which the moments
are not confined to the xy plane but also have z compo-
nents. In that case, we still assume that all moments in
a layer perpendicular to the helix z axis are FM aligned,
but that the z component can vary from layer to layer.
Therefore for the spin-flop phase, the exchange energy
per spin in Eq. (A13) is generalized to read

Eexchn =
S2

2

[

J0 + J1µ̂n · (µ̂n+1 + µ̂n−1) (A15)

+ J2µ̂n · (µ̂n+2 + µ̂n−2)
]

.

This equation reduces to Eq. (A13) if the z components of
the µ̂i are zero and the turn angle between the moments
in adjacent layers is kd as in the helix in Fig. 1 when the
external applied field is Hx = 0.
It is convenient to normalize all exchange constants by

J2 because J2 > 0 for a helix [2]. Defining the dimen-
sionless ratios

J02 ≡
J0
J2

, J12 ≡
J1
J2

, J22 ≡
J2
J2

≡ 1, (A16)

Eq. (A15) becomes

Eexchn =
S2J2
2

[

J02 + J12µ̂n · (µ̂n+1 + µ̂n−1) (A17)

+ µ̂n · (µ̂n+2 + µ̂n−2)
]

.

Then normalizing all energies by S2J2 [15], Eq. (A12)
for the energy per spin now reads

En

S2J2
=

1

2

[

J02 + J12µ̂n · (µ̂n+1 + µ̂n−1) (A18)

+ µ̂n · (µ̂n+2 + µ̂n−2)
]

−
3S

2(S + 1)

gµBHA1

S2J2
(1− µ̄2

nz)

− µ̄nxS
gµBHx

S2J2
.

Dimensionless reduced magnetic fields are defined as

h∗∗

x =
gµBHx

SJ2
, (A19a)

h∗∗

A1 =
3S

2(S + 1)
h∗

A1, (A19b)

h∗∗

c =
gµBHc

SJ2
, (A19c)

where the last expression is for the reduced critical
field hc discussed in the following Sec. II. Using
Eqs. (A19), the normalized energy in Eq. (A18) becomes

En

S2J2
=

1

2

[

J02 + J12µ̂n · (µ̂n+1 + µ̂n−1) (A20a)

+ µ̂n · (µ̂n+2 + µ̂n−2)
]

−
[

h∗∗

A1

(

1− µ̄2
nz

)

+ µ̄nxh
∗∗

x

]

.

Thus a nonzero out-of-plane component µ̄nz of a moment
unit vector µ̂n in Eq. (A1d) increases the energy of that
moment, as expected for XY anisotropy. However, we
find below that the negative contribution of the h∗∗

x term
can offset the former positive contribution, leading to a
net decrease in the normalized average energy per mo-
ment

Eave

S2J2
=

1

nλ

nλ
∑

n=1

En

S2J2
, (A20b)

where nλ is the integer number of moment layers per com-
mensurate wavelength that is assumed for the in-plane
helix.
In order to compare the value of Eave/(S

2J2) with that
calculated at T = 0 for an in-plane helix/fan for the same
h∗∗

x [15], in Eq. (A20a) we set

J12 = −4 cos(kd) (A21a)

according to Eq. (A14), where

kd = 2πm/nλ (A21b)
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is the turn angle in Fig. 1 between adjacent layers of
a helix in zero applied field with integer m < nλ, and
is assumed to be independent of both the applied and
anisotropy fields. For this comparison, we also set

J02 = 0. (A22)
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