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Hidden-order phases that occur in a number of correlated f-electron systems are among the most elusive
states of electronic matter. Their investigations are hindered by the insensitivity of standard physical probes,
such as neutron diffraction, to the order parameter that is usually associated with higher-order multipoles of
the f-orbitals. The heavy-fermion compound Ce3Pd20Si6 exhibits magnetically hidden order at subkelvin
temperatures, known as phase II. Additionally, for magnetic field applied along the [001] cubic axis, another
phase II′ was detected, but the nature of the transition from phase II to phase II′ remained unclear. Here we
use inelastic neutron scattering to argue that this transition is most likely associated with a change in the
propagation vector of the antiferroquadrupolar order from (111) to (100). Despite the absence of magnetic
Bragg scattering in phase II′, its ordering vector is revealed by the location of an intense magnetic soft mode
at the (100) wave vector, that is orthogonal to the applied field. At the II-II′ transition, this mode softens and
transforms into quasielastic and nearly Q-independent incoherent scattering, which is likely related to the
non-Fermi-liquid behavior recently observed at this transition. Our experiment also reveals sharp collective
excitations in the field-polarized paramagnetic phase, after phase II′ is suppressed in fields above 4 T.

PACS numbers: 71.27.+a 75.25.-j 75.30.Mb 78.70.Nx

I. INTRODUCTION

Hidden-order phases that are found in f -electron systems
have intrigued scientists for several decades [1–5]. The term
“hidden order” was initially coined to describe the myste-
rious ordered phase in URu2Si2 below T0 = 17.5 K, which
precedes the onset of superconductivity at Tc = 1.5 K [1].
Nowadays it commonly refers to nondipolar order parame-
ters in both f - and d-electron systems [2–7] that have clear
signatures in bulk thermodynamic or transport properties
but, unlike conventional dipolar order, produce no magnetic
Bragg scattering in neutron diffraction. This significantly
complicates our understanding of the structure and micro-
scopic origins of such “hidden” order parameters. Some
of the well known and most studied examples, apart from
URu2Si2, are the multipolar ordered phases in NpO2 [2–4]
and CeB6 [5, 8–13].

The cage compound Ce3Pd20Si6, which is the subject of
this work, is remarkable in that it hosts two distinct types
of hidden order that presumably originate from antiferro-
quadrupolar (AFQ) ordering of Ce 4 f moments [14–17]. In
zero magnetic field, its ground state is antiferromagnetic
(AFM), with a Néel temperature of TN ≈ 0.23 K [14–18]
and a propagation vector
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[19, 20], which is referred
to as phase III. In a narrow temperature range above TN,
a hidden-order phase II sets in, which is further stabilized
in moderate magnetic fields [14–16]. We have previously
identified this phase as a slightly incommensurate AFQ or-
der by the appearance of field-induced magnetic satellites
near the (111) Bragg peak, whose incommensurability in-
creases continuously with the applied field [20]. These
magnetic peaks become visible to neutrons because of the
field-induced dipolar moments that inherit the underlying
AFQ structure, and the theoretically proposed AFQ ordering

of O0
2 -type quadrupoles, suggested for phase II [18], is fully

consistent with such field-induced moments [9–11].
For the field directions [110] or [111], phase II persists

up to rather high fields of at least 10 T. However, if the field
is applied along the [001] cubic axis, phase II is only present
up to about 2 T, where it gives way to another hidden-order
phase known as II′ [14–17]. When phase II is suppressed, the
field-induced magnetic Bragg peaks disappear, as we have
previously demonstrated in Ref. [20], leaving no signatures
in the elastic scattering channel that could help us clarify
the microscopic nature of the enigmatic phase II′. This
suppression of Bragg intensity has been associated with a
change in the type of the ordered quadrupole from O0

2 in
phase II to Ox y in phase II′ [18, 20]. Indeed, it is known that
the latter type of quadrupole is not expected to produce any
field-induced peaks for B ‖ [100], because no field-induced
dipolar moments are allowed by symmetry [9–11]. The
Ox y -type quadrupoles are expected to acquire an induced
dipolar moment for some other field directions, yet for those
directions phase II′ itself is absent. In this respect, phase II′

in Ce3Pd20Si6 represents a true example of a hidden-order
phase that cannot be revealed by elastic neutron scattering,
unlike phase II that is hidden only in the absence of an
applied field.

Then, in even stronger magnetic fields B ‖ [100] that are
above 4 T, the AFQ order is suppressed completely, and a
field-polarized paramagnetic phase (phase I) is stabilized.
Remarkably, pronounced non-Fermi-liquid (NFL) behavior
associated with quantum criticality has been observed in
transport and thermodynamic measurements both at the III-
II and II-II′ phase transitions, but not at the high-field bound-
ary of phase II′ [17]. To understand these essential qualita-
tive differences between the successive field-driven phase
transitions, it is important to reveal the associated changes in



Fig. 1. Schematic graphical representation of the experimental
setups listed in Table I. The cube represents the Brillouin zone,
the scattering plane is marked with light blue. Field direction is
shown with an arrow. Large/small red dots show the location of
the allowed/suppressed (111) magnetic peaks. The (100) and
(010) wave vectors, where soft modes develop in phase II′, are
marked correspondingly with white dots. Green and blue dots
mark (001) and (110) wave vectors that are discussed in the text.

No. Instrument Neutron Scattering Magnet Field
energy plane direct.

1 4F2 @ LLB Ef = 3.50 meV (HH L) vert. 9 T [110]
2 FLEXX @ HZB Ef = 3.50 meV (HH L) horiz. 4 T [001]
3 IN5 @ ILL Ei = 1.94 meV (HK0) vert. 2.5 T [001]
4 CNCS @ SNS Ei = 1.55 meV (HK0) vert. 6 T [001]

Table I. Experimental INS setups used in the present work. For
schematic graphical representation of the corresponding geome-
tries, see Fig. 1.

the magnetic excitation spectrum as it evolves with increas-
ing field. This question is addressed in our present study.

Before we begin with the presentation of our neutron-
scattering data, it appears useful to recollect what this ex-
perimental technique actually measures when it comes to
materials with complex multipolar order parameters. This
will help us emphasize that even in the case of a multipolar
order that is “hidden” to magnetic diffraction, its magnetic
excitations can still possess a nonzero structure factor, offer-
ing an additional source of information about the ordered
phase from inelastic neutron scattering (INS). In the elas-
tic channel, magnetic neutron scattering on a crystal with
inversion symmetry would generally reveal only those or-
dered moments that are odd under time reversal, i.e. those
characterized by the odd-rank magnetic multipolar moments
(such as dipole, octupole, etc.), in contrast to the even-rank
electric multipoles (quadrupole, hexadecapole, etc.) that
should remain invisible [21–23]. At short scattering vectors,
|Q| → 0, only dipolar moments contribute to the neutron
scattering intensity according to the dipole approximation,
whereas at higher |Q| higher-order multipoles should also
be considered. This gives an opportunity to distinguish
between Bragg scattering from dipolar and octupolar or-
der parameters by analyzing the momentum dependence
of the elastic-scattering form factor across several Brillouin

zones. Dipolar magnetic scattering results in a form factor
that monotonically decreases with |Q|, whereas higher-order
multipoles have non-monotonic form factors that vanish at
Q= 0 and then start to increase until reaching a maximum
at some finite momentum transfer [4, 24–26]. Because the
theory of neutron scattering beyond the dipolar approxima-
tion is very involved [27, 28], its applications remain very
scarce and limited only to Bragg scattering. In particular, we
are not aware of any spin-dynamical calculations that would
consider the multipolar expansion beyond the standard dipo-
lar scattering cross-section of INS for any compound with a
multipolar-ordered phase.

Nevertheless, even multipolar order possesses dipolar ex-
citations that couple to the orbital degrees of freedom via
spin-orbit interaction, so that they become visible in INS
experiments. In such a case, any realistic calculations of the
dipolar response function χ(Q,ω), whose imaginary part
determines the scattering function S(Q,ω) that is measured
by INS, even within the dipolar approximation are already
much more demanding than for a conventional magnetic
order. Such a theory has been developed, for example, for
the AFQ state of the well studied cubic hidden-order com-
pound CeB6 by Thalmeier et al. [29]. It uses random phase
approximation (RPA) to compute the field dependence of
magnetic excitations and their intensities. To simplify the
calculations, RKKY-type interactions between the multipoles
were restricted to nearest neighbors only, and the competing
dipolar AFM phase that replaces the AFQ ground state in
weak magnetic fields was neglected completely. In spite of
these simplifications, the results demonstrate the existence
of dispersive magnon-like modes in the AFQ phase that have
finite intensity even in the absence of an applied field, when
no elastic Bragg scattering is observed. This offers an alter-
native possibility to understand the microscopic nature of
the hidden-order phase by analyzing its excitation spectrum,
which remains the only option when no information from
the elastic scattering channel is available.

II. EXPERIMENTAL RESULTS

To reveal the structure of phase II′ and to understand
the origins of the reported NFL behavior at the II-II′ phase
transition, we measured the magnetic excitation spectrum
of Ce3Pd20Si6 by INS as a function of magnetic field over
the whole Brillouin zone and for different field directions.
The measurements were performed at four different instru-
ments: The cold-neutron triple-axis spectrometers (TAS)
4F2 at the Laboratoire Léon Brillouin (setup 1) and FLEXX
at the Helmholtz-Zentrum Berlin (setup 2), as well as the
time-of-flight (TOF) spectrometers IN5 at the Institut Laue-
Langevin (setup 3) and CNCS at the Spallation Neutron
Source of the Oak Ridge National Laboratory (setup 4). The
TAS measurements were carried out with a fixed final neu-
tron wave vector kf = 1.3 Å−1, and a cold beryllium filter
was placed between the sample and the analyzer to sup-
press higher-order contamination of the neutron beam. The
sample was mounted in a dilution refrigerator inside cryo-
magnets according to the configurations listed in Table I and
schematically sketched in Fig. 1.

We start the presentation of our results with the data
taken using setup 1 at T = 70 mK for the field applied
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Fig. 2. (a) Magnetic-field dependence of the INS signal measured in the vicinity of the (111) wave vector in various fields applied along
the [110] axis. The inset shows a change in the fitted peak position as a function of field. (b) Momentum dependence of the INS signal at
a constant field of 4.25 T. The peak positions resulting from the fits (solid lines) are listed in the legend.

along the [110] axis. According to our earlier results [20,
30], the maximum of diffuse magnetic scattering in zero
field occurs in the vicinity of the (111) wave vector, which
corresponds to the corner of the Brillouin zone for the simple-
cubic sublattice of Ce2 ions occupying the 8c Wyckoff site of
the Fm3m space group. For B ‖ [110], the system remains
in phase II over a broad range of magnetic fields, which lets
us probe the field dependence of the INS intensity within
this phase. The results are summarized in Fig. 2. In zero
field, the signal represents a Lorentzian line with a width
limited by the Kondo temperature of TK ≈ 1 K, centered at a
small but finite energy transfer of ∼ 0.2 meV [30]. First, we
observe that a small field of 0.8 T, that is just sufficient to
suppress the AFM phase at a field-induced quantum phase
transition [18], pushes the spectral weight down towards
the elastic position, resulting in a quasielastic line shape
as shown in Fig. 2 (a). This is consistent with our earlier
results on CeB6, where the spin gap vanished over the entire
Brillouin zone upon suppression of the AFM phase either
by temperature [31, 32] or magnetic field [33, 34]. Such
a behavior naturally follows from the spin-exciton model
proposed by Akbari and Thalmeier [35], where low-energy
excitations are treated as spin excitons inside the charge gap
that opens due to the Fermi-surface reconstruction imposed
by AFM order, so that they become overdamped as soon as
this order parameter is suppressed.

As the field is increased further, a clear inelastic peak
occurs within phase II. Its energy follows a linear field de-
pendence as shown in the inset, corresponding to an effective
g-factor of ∼ 2.2(1), that is somewhat higher than for a free
electron. For comparison, g-factors of both zone-center [31]
and R-point [32] resonances in the previously studied CeB6
lie significantly below the free-electron value [33, 34]. In
Fig. 2 (b) we also compare the spectra measured at different
points in the Brillouin zone at the same field value of 4.25 T.
While the signal is most intense in the vicinity of the (111)
wave vector, it can be also seen at other wave vectors, where
it is weaker and shifted to higher energies. It therefore rep-
resents a dispersive magnon excitation whose minimum in
dispersion at Q= (111) coincides with the propagation vec-

tor of phase II that has been directly established from elastic
neutron scattering [20].

A much more complex behavior of the field-induced
magnon modes is observed for magnetic field applied par-
allel to the [001] cubic axis, in which both hidden-order
phases, II and II′, are traversed as one increases the field at
the base temperature. In the TOF measurements performed
with vertical-field magnets (setups 3 and 4), we were re-
stricted to the (HK0) scattering plane and could not reach
the (111) wave vector. We therefore had to supplement
our TOF data with additional TAS measurements using a
horizontal 4 T magnet (setup 2), in order to cover the whole
reciprocal space for this field direction.

First, we discuss the TOF data measured in the low-field
range (setup 3), which are presented in Fig. 3. The shown
cuts along the (1+H 1−H 0) direction were obtained by
integrating the INS intensity within±0.1 r.l.u. in both orthog-
onal momentum directions and within 0.08meV ≤ }hω ≤
0.25meV in energy. The same data are also presented in

Fig. 3. Magnetic-field dependence of the diffuse INS peak at the
(110) wave vector, which represents the tail of the two broad (111)
and (111) peaks located above and below the (HK0) scattering
plane. The data are symmetrized with respect to the mirror plane
of the cubic Brillouin zone. Solid lines are Gaussian fits, showing
the suppression of intensity towards the boundary of phases II and
II′. A schematic field-temperature phase diagram with the positions
of the measured data points is shown to the right.

– 3 –



B = 0.0 T

 In
te

ns
ity

 

 5

20

0.25

0.0

0.5

1.0

1.5

2.0
H

 in
 (

H
 0

 0
)

H
 in

 (
H

 0
 H

)

 (HK0)

 (HKH)

 (H0L)

ħω = [0.08 0.25] meV

 T = 50 mK, B // [001]

0.5 0.0

K in (0 K 0)

0.5 1.0 1.5

L in (0 0 L)

2.0

B = 0.4 T

 In
te

ns
ity

 

 5

20

0.25

0.0

0.5

1.0

1.5

2.0

H
 in

 (
H

 0
 0

)
H

 in
 (

H
 0

 H
)

 (HK0)

 (HKH)

 (H0L)

ħω = [0.08 0.25] meV

 T = 50 mK, B // [001]

0.5 0.0

K in (0 K 0)

0.5 1.0 1.5

L in (0 0 L)

2.0

B = 0.8 T

 In
te

ns
ity

 

 5

20

0.25

0.0

0.5

1.0

1.5

2.0

H
 in

 (
H

 0
 0

)
H

 in
 (

H
 0

 H
)

 (HK0)

 (HKH)

 (H0L)

ħω = [0.08 0.25] meV

 T = 50 mK, B // [001]

0.5 0.0

K in (0 K 0)

0.5 1.0 1.5

L in (0 0 L)

2.0

B = 1.2 T

 In
te

ns
ity

 

 5

20

0.25

0.0

0.5

1.0

1.5

2.0

H
 in

 (
H

 0
 0

)
H

 in
 (

H
 0

 H
)

 (HK0)

 (HKH)

 (H0L)

ħω = [0.08 0.25] meV

 T = 50 mK, B // [001]

0.5 0.0

K in (0 K 0)

0.5 1.0 1.5

L in (0 0 L)

2.0

B = 2.1 T

 In
te

ns
ity

 

 5

20

0.25

0.0

0.5

1.0

1.5

2.0

H
 in

 (
H

 0
 0

)
H

 in
 (

H
 0

 H
)

 (HK0)

 (HKH)

 (H0L)

ħω = [0.08 0.25] meV

 T = 50 mK, B // [001]

0.5 0.0

K in (0 K 0)

0.5 1.0 1.5

L in (0 0 L)

2.0

B = 2.5 T

 In
te

ns
ity

 

 5

20

0.25

0.0

0.5

1.0

1.5

2.0

H
 in

 (
H

 0
 0

)
H

 in
 (

H
 0

 H
)

 (HK0)

 (HKH)

 (H0L)

ħω = [0.08 0.25] meV

 T = 50 mK, B // [001]

0.5 0.0

K in (0 K 0)

0.5 1.0 1.5

L in (0 0 L)

2.0

Fig. 4. Constant-energy maps, measured at different magnetic field values using setup 3. Each panel was obtained after integration of the
TOF data within the energy range from 0.08 to 0.25 meV. In orthogonal momentum directions with respect to each plane, integration was
done within ±0.1 r.l.u. The initial data were symmetrized about the natural mirror planes of the reciprocal space (H0L), (0KL), (HK0),
and (HH L). Then, in order to plot full (HK0) scattering plane, the available data were mirrored with respect to the (HH L) plane. The
cuts along the (1+H 1−H 0) direction shown in Fig. 3 were obtained by integrating these data along the diagonal.

the form of color maps in Fig. 4. One can see that in the
absence of a magnetic field, the tails of the broad diffuse
peaks centered at the (111) and (111) wave vectors reach
the scattering plane, resulting in a maximum of intensity
at the (110) wave vector [30]. Increasing magnetic field
rapidly suppresses this intensity, suggesting that the (111)
peak is also suppressed upon reaching the border of phase II.

To understand where the corresponding spectral weight is
transferred as a result of this suppression, in Fig. 5 we show
the complete spectra along all high-symmetry directions in
the same scattering plane, measured using setup 4 in fields
up to 5.5 T. In Figs. 5 (a,e) and Fig. 6 (left column), one
can see that at 1.7 T, that is, right before the suppression
of phase II, the magnetic spectral weight is spread all over
the momentum space with no pronounced maxima of in-
tensity. Then, with further increase in field, an intense soft
magnon mode develops at the (100) wave vector, gradually
shifting to higher energies with increasing field [Fig. 5 (b,c)].
Several other sharp magnon branches can be recognized
in these figures, evidencing dispersive field-induced collec-
tive excitations that are characteristic of phase II′ and the
field-polarized phase above it. However, among all these
modes, the absolute minimum of the dispersion is reached
only at the (100) wave vector, as evidenced by a single
commensurate peak in the constant-energy cut in Fig. 5 (f)

that is taken at low energies immediately above the elastic
line. Our data cover not just the whole (HK0) plane, but
also a rather thick slice of the reciprocal space (±0.3 r.l.u.)
above and below this plane, as shown in the side segments
of Fig. 5 (e,f) and Fig. 6. The data are 4-dimensional and
therefore cannot be shown fully in the figures, yet we have
analyzed the whole data set to ensure that no additional min-
ima in the dispersion were missed. This strongly suggests
that the QII′ = (100) wave vector represents the previously
unknown ordering vector of phase II′. The observed soft
mode can be then viewed as a corresponding Goldstone
magnon that emanates from the propagation vector of the
hidden-order phase, developing a small energy gap due to
the spin-space anisotropy imposed by the applied field. In
our 3.8 T dataset, this gap is only about 0.13 meV [see also
Fig. 8 (a)], reaching a twice higher energy already at 4.25 T.

Spin-dynamical calculations in the AFQ phase on a cubic
lattice with only nearest-neighbor interactions were per-
formed earlier in relationship to CeB6 [29] and are expected
to apply at least qualitatively also in our case. In particular,
the monotonic “rigid band” shift of spin-wave energies in
Figs. 5 (b–d) is in agreement with these calculations that pre-
dict a nearly field-independent magnon band width, while
the bands are rigidly shifted upwards with an increasing
field [29]. Furthermore, according to these results, the struc-
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Fig. 5. (a–d) Energy-momentum cuts through the high-symmetry directions in the (HK0) scattering plane, measured at different magnetic
fields as indicated in (g) with crossed circles: (a) within the AFQ phase II, (b) within the AFQ phase II′ near the phase boundary, (c,d) in the
field-polarized paramagnetic phase I. (e,f) Constant-energy cuts through the 1.7 and 3.8 T datasets, respectively, showing the appearance
of intensity maxima at QII′ = (100) in phase II′. The corresponding integration windows in energy, given above the panels, are marked
with ‘a’ on the vertical axis in panels (a) and (b), respectively. Additional constant-energy cuts from the same data are also shown in Fig. 6
below. (g) A schematic field-temperature phase diagram, showing the field and temperature values of the presented datasets.

Fig. 6. Constant-energy maps, measured at different magnetic
field values using setup 4. Each panel was obtained by integrating
the TOF data within the energy range as indicated in every panel.
The corresponding integration windows of each row are marked
with ‘a’, ‘b’, and ‘c’ on the vertical axis of the energy-momentum
cuts in Fig. 5 (a–d). In orthogonal momentum directions with re-
spect to each plane integration was done within ±0.08 r.l.u. The
initial data were symmetrized about the natural mirror planes
of the reciprocal space (H0L), (0K L), (HK0), and (HH L), there-
fore in order to plot full (HK0) scattering plane the available
data were mirrored with respect to the (HH L) plane.
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Fig. 7. The difference of elastic scattering intensity (integrated within ± 0.05 meV), obtained by subtracting the CNCS data sets measured
at (a) 3.8 and 1.7 T and (b) 5.5 and 1.7 T. The absence of elastic scattering intensity at the (100) and (010) wave vectors in the first data
set confirms the absence of field-induced magnetic Bragg peaks within phase II′. The presence of positive magnetic intensity around
(200) and (020) structural reflections in the second data set indicates the presence of ferromagnetic correlations in the field-polarized
paramagnetic phase I.

ture factor of low-energy dipole excitations that are probed
by INS can be generally different from that of the magnetic
Bragg peaks, resulting in intense Goldstone magnons even
if the underlying magnetic reflections in the elastic chan-
nel are “hidden”. Apparently, this scenario is realized in
Ce3Pd20Si6, offering us a chance to reveal the propagation
vector of the magnetically hidden order by observing its
low-energy excitations. It has to be noted, however, that the
momentum resolution of such a method is inferior to that
of conventional neutron diffraction, because the broadness
of inelastic features in the spectrum would not allow us to
resolve small incommensurabilities of the order parameter.
Strictly speaking, we can only conclude that the propaga-
tion vector of phase II′ lies in the vicinity of the (100) wave
vector.

Note that as soon as phase II′ is suppressed, giving way
to the field-polarized paramagnetic phase I in the phase
diagram [see Fig. 5 (g)], a new minimum in the dispersion
develops near the zone center, which can be interpreted as
the paramagnetic resonance [36]. Simultaneously, the (100)
mode shifts to higher energies, as can be seen in the 5.5 T
data in Fig. 5 (d). These changes happen monotonically
as a function of field, unlike at both III-II and II-II′ phase
transitions, where the spin gap fully closes. Remarkably, we
observe that the sharp dispersive magnon modes persist in
the spin-polarized phase I, which can be explained by the
presence of field-induced ferromagnetic correlations in this
phase that are evidenced by the elastic-scattering intensity
maps in Fig. 7 that show an increase in the Bragg intensity on
top of the structural reflections at 5.5 T as compared to 1.7 T,
while no such increase is found at 3.8 T. The dispersion of
corresponding excitations has some qualitative differences
to phase II′. In particular, out of the two field-induced modes

at the (110) point, the lower-energy one is stronger in phase
II′, whereas the upper mode gets more intense in the field-
polarized phase I.

As our measurements were so far restricted to the (HK0)
scattering plane that is orthogonal to the field direction, it
still remains to be shown that no other soft modes appear
at other points in the Brillouin zone above or below the
scattering plane at energies smaller than that of the (100)
magnon. We should note that the external field breaks the
cubic symmetry of the system, and therefore within the field-
induced phase II′ we can no longer assume the equivalence of
the (100) and (001) reciprocal-space directions. Therefore,
to claim that the absolute minimum of the dispersion is
indeed reached at (100) or (010), we first have to ensure
that the magnon energy is higher both at the (001) wave
vector (which would be equivalent to them in the absence
of magnetic field) and at the (111) wave vector that was the
ordering vector of phase II.

Using experimental setup 2 with a horizontal-field mag-
net, we were able to access the (HH L) scattering plane with
the magnetic field applied along [001]. In this configuration,
previously inaccessible wave vectors that have a finite pro-
jection on the field direction can be probed. However, due
to the strict constraints imposed by the magnet geometry,
we could not reach the (001) and (111) positions in the
first Brillouin zone. Instead, equivalent wave vectors (003)
and (331) at a larger |Q| had to be measured, where the
magnetic intensity is drastically reduced due to the magnetic
form factor. In addition, we also measured the (330) wave
vector orthogonal to the field to ensure the consistency of our
results with the measurements at (110) in the first Brillouin
zone with a vertical-field magnet. To subtract the relatively
high background produced by the magnet, we repeated ev-
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Fig. 8. (a) Constant-Q cuts through the TOF data at B = 3.8 T (setup 4), taken at the (100) and (110) points. The (100) dataset is shifted
upwards by 1 unit for clarity. (b–d) The low-temperature TAS spectra at B = 3.8 T (setup 2), reference background spectra (T = 70 K,
B = 0), and their corresponding subtractions at three different wave vectors: (330), (003), and near (331), respectively. The subtracted
data in panel (b) are shifted down by 30 units for clarity. Arrows mark fitted peak positions. Black horizontal bars indicate energy
resolution defined as the full width at half maximum of the elastic line.

ery TAS measurement at the base temperature of 0.05 K in
a magnetic field of 3.8 T and at an elevated temperature
of 70 K in zero field, and then subtracted the two datasets
from each other. The results are presented in Figs. 8 (b–d).
The temperature dependence of the quasielastic line shape
has been studied earlier [30], and in fitting the difference of
the TAS data as shown by solid lines, we assumed that the
high-temperature line shape (at 70 K) remains quasielastic.
We therefore used a fitting function that represents a differ-
ence of one or two Lorentzian peaks at inelastic positions
(black arrows) that describe the low-temperature magnetic
signal and a broad quasielastic Lorentzian line, the width of
which is fixed at the value measured in our earlier work [30],
that describes the high-temperature magnetic contribution.
For comparison, in Fig. 8 (a) we show constant-Q cuts at
the (100) and (110) wave vectors, extracted from the TOF
data in Fig. 5 (b) that were measured at the same value of
magnetic field.

The TAS data at Q = (330) [Fig. 8 (b)] show a peak
at 0.19(2) meV, in perfect agreement with the energy of
0.21(4) meV of the same excitation, seen at the equiva-
lent (110) point in Fig. 8 (a). This represents a consistency
check for the two measurement configurations. At the (100)
wave vector, we see two peaks at }hω1 = 0.13(1) meV and
}hω2 = 0.42(7) meV, which we should compare with the
(003) and (331) datasets. Note that the (331) dataset was

measured with a small offset from the commensurate po-
sition to eliminate the contamination from the structural
Bragg peak, which should not affect that inelastic spectrum
beyond our experimental error. We see that at both wave vec-
tors, the lowest-lying excitation is found at higher energies
than the one at (110): 0.36(3) and 0.28(3) meV, respec-
tively. This result confirms that the soft magnon mode at the
(100) point realizes the absolute minimum of the magnon
dispersion in the whole Brillouin zone. It also demonstrates
the broken equivalency of the (100) and (001) spectra in the
external magnetic field. The magnon spectrum in phase II′

should be therefore described using a tetragonal symmetry.

III. DISCUSSION AND CONCLUSIONS

To summarize, we have presented evidence for the ex-
istence of a Goldstone mode at the (100) wave vector in
the hidden-order phase II′ of Ce3Pd20Si6. It strongly sug-
gests that the ordering vector of this so far enigmatic field-
induced phase is located at QII′ = (100)⊥ B and is therefore
distinct from the slightly incommensurate QII = (1 11±δ)
propagation vector of phase II. The analysis of the magnetic
excitation spectrum herein allowed us to suggest a possible
ordering wave vector of a hidden-order phase in spite of
the absence of magnetic Bragg scattering. This conclusion
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is based on the natural assumption that the lowest-energy
mode visible in the spin excitation spectrum in the ordered
state represents the Goldstone mode of the corresponding or-
der parameter. However, a critical reader may note that our
data do not strictly speaking exclude a more exotic scenario,
in which the actual Goldstone mode is located at another
wave vector and is invisible due to the vanishing structure
factor, whereas what we see as a minimum in the dispersion
is something else, unrelated to phase II′, which is located
somewhat higher in energy than the true Goldstone mode.
There are several reasons to discard this alternative scenario
as very unlikely. First, it would contradict Occam’s razor
principle, as it assumes a very complex spectrum that has a
Goldstone mode and “something else” of unknown origin,
with different structure factors, in coexistence. As long as
sharp dispersing modes of magnetic origin are observed in
the ordered state, it appears reasonable to classify them as
collective excitations of this particular order independently
of the exact nature of its order parameter. Second, in this
imaginary scenario the change in the minimum of the dis-
persion upon crossing the II-II′ phase boundary would be
just a coincidence. Finally, the energy of the (100) peak at
3.8 T is 0.13 meV. If the mode is gapless at the boundary
between phases II and II′, with the g-factor of∼ 0.12 meV/T
implied by the inset to Fig. 2, the mode energy should go
up to approximately 0.2 meV after the field is increased by
1.8 T. The observed energy of 0.13 meV is already below
this value, which can be due to g-factor anisotropy between
(001) and (110) directions and to the fact that within the or-
dered phase the field dependence does not have to be linear.
Nevertheless, an assumption that some other excitation with
zero intensity exists below 0.13 meV at some other wave
vector appears unreasonable, as it would require a g-factor
that is at least twice smaller than the one measured in the
(110) direction of the field. In other words, this putative
mode would have to be suspiciously field-independent.

Furthermore, we observed a rich spectrum of field-induced
collective excitations both within phase II′ and in the field-
polarized phase I at higher magnetic fields that can be inter-
preted as multipolar spin-wave modes, i.e. dipolar excita-
tions on top of a multipolar-ordered ground state, similar
to those calculated in Ref. [29]. Their proper theoretical
description, which is so far unavailable to the best of our
knowledge, would enable a quantitative estimation of the
effective magnetic interactions between the Ce3+ multipolar
moments, as routinely done for conventional ordered mag-
nets using linear spin-wave theory. At the same time, similar
calculations for systems with multipolar order parameters
still face many obstacles and lack quantitative accuracy even
in structurally simpler compounds, such as CeB6, in spite
of very detailed experimental data that became available in
recent years [5, 31–34]. A realistic spin-dynamical model
would need to consider long-range RKKY interactions be-
tween the dipoles and various multipoles that can be either
treated as tunable parameters or calculated from band struc-
ture theory. Such calculations have just recently become
available for CeB6 [37], but still remain beyond reach for
more complex Ce compounds such as Ce3Pd20Si6. Further,
the available calculations [29] take AFQ order into account,
but completely neglect competing order parameters, such
as AFM order, that may reconstruct the Fermi surface and

change the spectrum of magnetic excitations considerably.
Our work should therefore motivate future theoretical ef-
forts to reproduce the experimental spectrum of multipolar
excitations in spin-dynamical calculations and thereby im-
prove our understanding of spin dynamics in systems with
nondipolar order parameters. It also provides an illustrated
recipe for establishing the nature of hidden-order phases in
correlated electron systems in general.

Another important observation of our present study is
the destruction of coherent collective modes and the clos-
ing of the spin gap at the transition between phases II and
II′. This is fully consistent with the recently reported NFL
behavior at this transition [17]. NFL behavior may result
from the low-energy spin fluctuations in the proximity to a
quantum critical point, when the spin gap in the excitation
spectrum vanishes. Here we observe an analogous situation,
as the spin gap closes at the transition, as can be seen in
Fig. 5 (a), resulting in low-energy fluctuations that can nat-
urally explain the reported NFL signatures in transport and
thermodynamic measurements. Interestingly, in contrast to
other magnetic quantum critical points where critical fluc-
tuations are peaked at the ordering wave vector [38, 39],
in Ce3Pd20Si6 the magnetic spectral weight becomes fully
incoherent and essentially Q-independent, which might be
related to the observed field-driven change of the ordering
vector across the transition.
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