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1Peter Grünberg Institut and Institute for Advanced Simulation,
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We compare three distinct computational approaches based on first-principles calculations within density
functional theory to explore the magnetic exchange and the Dzyaloshinskii-Moriya interactions (DMI) of a
Co monolayer on Pt(111), namely (i) the method of infinitesimal rotations of magnetic moments based on the
Korringa-Kohn-Rostoker (KKR) Green function method, (ii) the generalized Bloch theorem applied to spiraling
magnetic structures and (iii) supercell calculations with non-collinear magnetic moments, the latter two being
based on the full-potential linearized augmented plane wave (FLAPW) method. In particular, we show that
the magnetic interaction parameters entering micromagnetic models describing the long-wavelength deviations
from the ferromagnetic state might be different from those calculated for fast rotating magnetic structures, as
they are obtained by using (necessarily rather small) supercell or large spin-spiral wave-vectors. In the micro-
magnetic limit, which we motivate to use by an analysis of the Fourier components of the domain-wall profile,
we obtain consistent results for the spin stiffness and DMI spiralization using methods (i) and (ii). The calcu-
lated spin stiffness and Curie temperature determined by subsequent Monte Carlo simulations are considerably
higher than estimated from the bulk properties of Co, a consequence of a significantly increased nearest-neighbor
exchange interaction in the Co-monolayer (+50%). The calculated results are carefully compared with the liter-
ature.

I. INTRODUCTION

In recent years, non-collinear magnetic structures and in
particular skyrmions, have attracted a lot of interest due to
their peculiar properties and their technological perspective in
the field of information technology1. Typically these mag-
netic structures are stabilized by the competition between the
Heisenberg exchange, magnetic anisotropy and dipolar in-
teraction. Recently, the Dzyaloshinskii-Moriya interaction
(DMI)2,3 has emerged as a new key stabilization mechanism.
The DMI arises due to spin-orbit coupling (SOC) and is
present in every system, which lacks structural inversion sym-
metry. The presence of DMI explains the stabilization of
skyrmions in bulk B20 alloys such as MnSi4 or in thin films
of semiconductor Fe(1−x)CoxSi5 and in ultra-thin films at low
temperature such as in Fe/Ir(111)6 or Pd/Fe/Ir(111)7.

As skyrmions are becoming relevant for technological ap-
plications8, additional design goals for skyrmions have been
formulated9. For example, (i) they should be stable above
room temperature, (ii) skyrmions should not be too small
(& 5 nm diameter), (iii) skyrmions in ultra-thin films and
heterostructures thereof are preferred over skyrmions in bulk
samples, and (iv) preferably use materials that are simple
to integrate into current manufacturing processes. The lat-
ter brings Co/Pt(111) ultra-thin film into play, a material
that is well known and is used for perpendicular magnetic
recording10–12. Several recent studies focus on Co/Pt based
systems13,14 and explore the possibility to tune the mate-
rial parameters, e.g. through additional buffer layers15–17,
alloying18,19 or dusting20 with a third chemical element.

Obviously, it becomes crucial to understand the stabiliza-

tion mechanism of skyrmions, predict and design their prop-
erties in setups for technological use by theoretical models.
Ab initio spin-lattice models proved to be a very powerful ap-
proach to realistically describe non-collinear magnets, single
skyrmions and skyrmions lattices in experimentally realized
systems21–23. In such a model, magnetic moments are local-
ized at atomic sites and their interactions are described by pa-
rameters, typically the Heisenberg exchange constants, Jij ,
and the DMI vector, Dij , for two-site interactions (i and j
label magnetic sites), or the magnetic on-site anisotropy Ki.
The parameters for an ab initio spin-lattice model are obtained
directly from the total energy of the electronic structure by
density functional theory, and the magnetic ground state is
found for example by spin-dynamics or Monte-Carlo meth-
ods.

While this multiscale approach provides a very efficient
description of the energy landscape, the quality of the de-
scription depends crucially on the parameters obtained by the
mapping of the density functional description of the magnetic
states onto the model. In this respect it is important to no-
tice that almost all bulk and interface stabilized skyrmion sys-
tems are itinerant magnets, i.e. those electrons responsible for
the formation of magnetism also participate in the formation
of a complex Fermi surface and hop across the lattice. As a
consequence the magnetic interactions are typically not short
ranged, as it is often assumed in spin-lattice models. Addi-
tionally, the size of the magnetic moments, M , is not an inte-
ger multiple of the Bohr magneton, but depends on the details
of the electronic structure. Most importantly, and in differ-
ence to the basic assumptions of many spin models, the size
of the moments and the interaction parameters between them
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depend on their relative orientation. This effect increases with
the number of magnetic neighbors and is thus stronger for itin-
erant bulk magnets than for ultra-thin films. The effect of the
change of the magnetic moment for a spin-spiral state with
wave vector q imposed onto the bulk magnets Cr, Mn and Fe
was shown24. In the case of Ni, the magnetic moment can even
be completely quenched in the antiferromagnetic state which
leads to an overestimation of the total energy25. Similarly, the
magnitude of induced magnetic moments strongly depends on
the spin-configuration of neighboring strong moments26. As a
consequence the range of validity of the ab initio spin-lattice
model depends crucially on the initial spin configuration for
which the parameters entering the spin models have been cal-
culated. The choice of the spin-configuration depends then on
the purpose of the application of the spin-lattice model for ex-
ample to explore the ground states at low or high temperatures
or the excited states of small or large spin structures.

In case of the skyrmions, and in particular for skyrmions in
the Co thin films on 5d substrates12,27,28 or Co/Ru(0001)29,
one deals with relatively large non-collinear magnetic tex-
tures, with sizes in the order of 100 nm. In this case, the varia-
tion of the angle between magnetic moments is small from one
atom to the next and the ferromagnetic state (FM) is a good
initial state to determine the model parameters. Nevertheless,
it is interesting to know how sensitive the model parameters
are with respect to the initial state.

In this work, we compare three different approaches to
extract the model parameters, namely (i) by the method of
infinitesimal rotations based on the Korringa-Kohn-Rostoker
(KKR) Green function method, or by mapping the energies of
spin-spiral states which are calculated (ii) by using the gener-
alized Bloch theorem (gBT) or (iii) in a supercell geometry.
The latter two approaches employ the full potential linearized
augmented plane wave (FLAPW) method. We obtain con-
sistent results for the micromagnetic spin stiffness and DMI
spiralization in the long-wavelength limit (i.e. around the fer-
romagnetic state) between KKR and gBT calculations. For
larger spin-spiral vectors, the details of the computational pro-
cedure (e.g. whether flat or coned spin-spirals are used) be-
come relevant. As a consequence, relying only on one data-
point is to be taken with caution, as it is typically done in
supercell calculations. Our calculated spin-stiffness is consid-
erably higher (more than 50%) as compared to experimentally
determined values for Co-thicknesses below 1 nm. We also
find a considerably higher Curie temperature as compared to
an estimate based on the Curie temperature of bulk Co., which
we trace back to an increased nearest-neighbor exchange in-
teraction in the monolayer as compared to bulk Co.

The paper is structured as follows: in Section II we de-
scribe the structure of the Co/Pt(111) system that we study,
as well as the magnetic models for which we extract the pa-
rameters and detail the computational approaches used. In
Section III we present the results and discuss them in com-
parison to the existing literature, before we conclude in Sec-
tion IV. The Appendices investigate the dependence of the
predicted Curie temperature on the computational procedure
(Appendix A), give arguments why the micromagnetic limit
is the suitable one for Co/Pt based systems (Appendix B) and

investigate the importance of the induced Pt moments for the
spin-spiral energy dispersion (Appendix C).

II. METHODS AND COMPUTATIONAL DETAILS

We have studied a Co monolayer on Pt(111) in both fcc
and hcp stacking positions by means of density functional the-
ory (DFT) calculations. For all calculations, the calculated
in-plane lattice parameter of bulk fcc-Pt in local-density ap-
proximation (LDA)30 was used (afcc = 0.390 nm). We use
a two-dimensional setup, i.e. embedding a finite number of
layers between two semi-infinite vacuum regions.

A. Structural Relaxations

The structural relaxations were performed using the DFT
package FLEUR31 employing the full potential linearized
augmented plane wave (FLAPW) method. We used a mixed
density functional, which was introduced in Ref. 32 to treat
combined systems of 3d- and 5d-transition metals. It com-
bines the LDA in the muffin tin (MT) spheres of the 5d atoms
and the generalized gradient approximation (GGA)33 every-
where else. It was already used to obtain accurate descrip-
tion of surfaces and interfaces containing 3d and 5d materi-
als21,34. We used a cutoff parameter for the basis functions of
Kmax = 4.0 a−1

B and 72 k-points in one twelfth of the two-
dimensional Brillouin zone (BZ), where aB is the Bohr radius.
The symmetric slab was composed of five Pt layers and one
Co layer on each side. The positions of Co and the top Pt
layers were relaxed for both Co stacking positions. As shown
in Table I, the relaxed structural parameters are basically in-
dependent of the Co stacking. Our calculations suggest that
the ground state of a Co monolayer on Pt(111) is obtained for
the fcc stacking position. Hence, in the analysis presented in
Sec. III, we focus mostly on the fcc stacking position.

TABLE I. The used in-plane lattice parameter a and relaxed inter-
layer distances d for two different stacking positions of the Co mono-
layer on Pt(111). Distances are given in Å and total energies in
meV/(Co atom) relative to the fcc stacking position.

Co/Pt(111)

fcc hcp
a 2.76 2.76

dCo-Pt1 2.02 2.03
dPt1-Pt2 2.37 2.38

Total energy 0 134



3

B. Magnetic models

1. Extended Heisenberg model

Magnetic ultrathin films are well described by the general
atomistic extended Heisenberg Hamiltonian,

H = −
∑
i,j

Jij mi ·mj +
∑
i,j

Dij · (mi ×mj) (1)

+
∑
i

Ki (mz
i )

2

where mi and mj are the magnetic moments of unit length
at position Ri and Rj respectively, Jij are the magnetic
exchange parameters, Dij are the Dzyaloshinskii-Moriya
vectors and Ki is the onsite uniaxial magnetocrystalline
anisotropy.

The extended Heisenberg Hamiltonian associates magnetic
moments to atomic sites. It was a priori not designed to study
itinerant magnets. However, the inclusion of exchange and
DM energy parameters beyond the first nearest neighbor ap-
proximation allows for an accurate description of the energy
landscape of even frustrated 2-dimensional itinerant magnets
on Ir(111)6,21,35 and Ir(001)36 and on W(110) substrates37.

A particularly important subset of non-collinear magnetic
states are spin spirals,

mi = R(n̂)

 sin θ cos(q ·Ri)
sin θ sin(q ·Ri)

cos θ

 , (2)

with q being the spin-spiral vector, Ri is the position of site i,
the rotation matrixR(n̂) brings the local z axis to the rotation
axis n̂ of the spin spiral, and θ is the cone angle. For the
special value θ = π/2, we obtain flat spin spirals. Within the
spin-lattice model, Eq. (1), the Heisenberg and DM energy
contributions of flat spin-spirals are given by

ESS(q) =
∑
j

J0j [1− cos (q ·R0j)] (3)

EDM(q; n̂) =
∑
j

(n̂ ·D0j) sin (q ·R0j) , (4)

with R0j = Rj −R0.
One may calculate the Jij and Dij parameters in different

ways (see Sec. II C). In any case, Eq. (1) is only valid under
the condition that the size of all magnetic moments is constant.
In DFT, this constraint does not exist and particular care must
be taken in the extraction of magnetic exchange interactions if
this condition is not respected26,38.

2. Micromagnetic and effective model

The micromagnetic model employs a continuous vector
field, the magnetization m(r). In case of a thin-film geom-

etry, the micromagnetic energy is given by the functional

E[m] =

∫
d3r

{
A (∇m)2 −K (m · ẑ)2 (5)

+D [m(∇ ·m)− (m · ∇)m] · ẑ
}

with the exchange stiffness (also termed spin stiffness)A, uni-
axial anisotropy constant K and interfacial DMI constant (or
spiralization) D, and ẑ is the unit vector along the direction
perpendicular to the film. The material parameters A and D
are related to the parameters of the atomistic model by39

A =
1

2VΩ

∑
j

J0j

(
Rx0j
)2

(6)

D =
1

VΩ

∑
j

Dy
0j R

x
0j . (7)

Here, VΩ is the volume of the magnetic part of the unit cell,
i.e. in our case the Co monolayer. It may become difficult to
define the thickness of a layer in the presence of relaxations
(see e.g. the discussion in Ref. 16). Here, we take tCo =
0.2 nm as thickness of the monolayer (see Table I).

Finally, we can express the micromagnetic parameters as
effective parameters of a nearest-neighbor Heisenberg model
(see Eq. (1)),

Jeff =
2

3

VΩ

a2
A (8)

Deff =
1

3

VΩ

a
D , (9)

which is designed to reproduce the energy in the long-
wavelength limit, but deviations for other magnetic states are
expected.

C. Extraction of magnetic interaction parameters from DFT

TABLE II. Overview of and key differences between methods used
in this work for the extraction of magnetic parameters from DFT.

self-consistent perturbative

KKR FM state non-collinearity
FLAPW–gBT any spin-spiral q spin-orbit coupling

FLAPW–supercell large spin-spiral q —

In the next step, we describe how to extract the parame-
ters for a spin-lattice model from DFT calculations employing
three different approaches, which are briefly described here
and more detailed information is given in the rest of this sub-
section. A summary of main differences is presented in Ta-
ble II

1. (KKR) The first approach relies on the KKR method.
We perform self-consistent calculation for the ferro-
magnetic state, possibly including SOC. The change in
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total energy due to infinitesimal rotations of the mag-
netic moments is related to the Heisenberg exchange pa-
rameter Jij40 and DMI vectors Dij

41,42. This approach
is considered to give very accurate model parameters
for large non-collinear magnetic textures.

2. (FLAPW–gBT) Secondly, we work in reciprocal space
by means of spin-spiral states, Eq. (2), employing the
FLEUR code31 using the generalized Bloch theorem43

(gBT). Self-consistent calculations (without SOC) are
performed for any arbitrary spin-spiral wave-vector q.
We determine the Jij parameters from a fit to the spin-
spiral energies for various spin-spiral vectors q in the
whole Brillouin zone (or high-symmetry lines thereof).
The perturbative inclusion of SOC can be analogously
related to the atomistic Dij parameters. This method is
flexible in the sense that it allows to access both regimes
of slowly and fast rotating non-collinear magnetic struc-
tures more realistically through self-consistent calcula-
tions.

3. (FLAPW–supercell) The third approach is conceptually
similar to the FLAPW-gBT approach as it compares
the energy of different spiraling magnetic states, but
now in a supercell geometry. The direction of mag-
netic moments is fixed by constraining fields. In princi-
ple, no perturbative treatment of either SOC or the non-
collinearity is needed, but due to the fast increase of
computational costs with system size, this approach is
practically restricted to small supercell sizes and hence
large spin-spiral wave vectors q. We use two differ-
ent magnetic configurations in a (4 × 1) supercell, one
reproduces the setup of Yang et al.10, and the other em-
ploys small cone-angles to keep a nearly ferromagnetic
alignment of Co-moments.

The parameters A and D for a micromagnetic model are
either evaluated using Eqs. (6) and (7) in case of the KKR
method, or can be directly obtained from ab-initio calcula-
tions as quadratic and linear terms of the spin-spiral disper-
sion curve around the ferromagnetic state from FLAPW-gBT
calculations44–47.

In all approaches, we used the LDA exchange-correlation
functional in the parameterization of Vosko et al.30. For the
Co/Pt(111) system, we modeled the Pt substrate by 5 layers
taking the structural relaxations as described in Sec. II A.

1. The KKR method employing infinitesimal rotations

We use the full-potential Korringa-Kohn-Rostoker Green
function (FP-KKR-GF) method48,49 to converge the charge
and spin densities in scalar-relativistic approximation for the
ferromagnetic state using 30 × 30 k-points in the full Bril-
louin zone. In a next step, we obtain Heisenberg parameters
Jij and DM vectors Dij in real-space by relating the change
in energy of infinitesimal rotations of the magnetic moments
at lattice sites i and j40,42, including spin-orbit coupling only
in this step (one-shot SOC). Due to the infinitesimal rotations,

this approach should be best to obtain parameters for large
non-collinear structures, in particular skyrmions. We obtain
interactions for Co pairs up to a distance of seven in-plane lat-
tice constants and sample the full Brillouin zone by 160×160
k-points for this step. We truncate the expansion of the scat-
tering wave-functions into spherical harmonics at `max = 3.
The energy contour integration includes a Fermi-function with
an electronic temperature of 473 K, five Matsubara poles and
is sampled by 39 points.

This methods also yields interaction parameters between
strong Co moments and induced Pt moments. We can sim-
ply include these contributions in Eqs. (3), (4), (6) and (7)
which implicitly assumes that the size of the induced moments
is rigid. A more sophisticated treatment is described in Ap-
pendix C. As it turns out, the simple approach is sufficient for
our considerations.

Another advantage of this method is the possibility to in-
clude SOC self-consistently in all steps and obtain an even
more realistic set of parameters. However, the modification of
the DM vectors is small (less than 0.1 meV for the nearest-
neighbor interaction, D1) and therefore a perturbative treat-
ment of SOC is justified to obtain the DMI. We refer to Ap-
pendix C for details.

2. The FLAPW method employing spin-spiral states

The second approach employs the FLAPW method as im-
plemented in the DFT code FLEUR31 utilizing the general-
ized Bloch theorem (gBT)43. The main goal is to obtain the
total energy of spin-spiral states, Eq. (2), and extract param-
eters for a magnetic models thereof. By virtue of the gBT,
even long wave-length spin spirals meaning small values for
|q| (the spin-spiral period length is given by λ = 2π/|q|), can
be treated very efficiently in the chemical unit cell, i.e. without
the need of large supercells.

Depending on the fitting procedure, we can either extract
parameters for long wave-length magnon excitations (low-q
region) or for spin spiral ground states (large-q region). To
extract the Heisenberg Jij parameters, we converge the total
energy of spin-spiral states in scalar-relativistic approximation
using a 44×44 k-point mesh to an accuracy of 0.01 meV. The
size of the basis set was determined by Kmax = 4.3 aB

−1,
with the Bohr radius aB.

In a second step, we include spin-orbit coupling (SOC)
via first order perturbation theory46. The energy correction
∆ESOC is used to extract either the micromagnetic DMI
spiralization50 or the two-site DM vectors Dij for a spin-
lattice model.

It is important to notice that the dispersion curves scale with
the cone angle as by sin2 θ. Hence, the energies for coned
spin spirals as we use them later (θ = π/20) are a factor of
approx. 40 smaller as compared to flat spin-spirals, which re-
quires quite high computational cutoffs.
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FIG. 1. Side and top-view onto two clockwise-rotating non-collinear
spin configurations in a four-atom supercell (basis vectors are shown
in red), representing (a) a flat spin-spiral where the magnetic mo-
ments are fully contained in the xz plane and (b) a coned spin-spiral
with small cone angle, where only a small component of the mag-
netic moments is contained in the xz plane. In the latter case, the
magnetic moments are almost pointing along the y direction. The
direction of the spin-spiral vector q is indicated by a blue arrow.

3. The supercell method

Additionally, we perform supercell calculations using the
FLEUR code31 to extract the DMI. The supercell contains four
magnetic atoms and is spanned by the basis vectors u and v
(see Fig. 1). We then impose magnetic states onto the super-
cell:

1. We mimic a flat spin-spiral (see Eq. (2) with θ =
π/2), i.e. the direction of magnetic moments is given
by mi = (sin(iπ/2), 0, cos(iπ/2))T, where i ∈
{0, 1, 2, 3} labels the position of the magnetic atom
in the supercell. This choice reproduces the setup of
Yang et al. 10 and is shown in Fig. 1(a).

2. We extend these states to coned spin-spirals [see
Fig. 1(b)], where the direction of moments is given by

mi =

 sin(θ) sin
(
iπ2
)

cos(θ)
sin(θ) cos

(
iπ2
)
 , i ∈ {0, 1, 2, 3} (10)

where θ is the so-called cone-angle. The flat spin-spiral
is reproduced for θ = π/2, and all moments point along
the y direction for θ = 0.

In both cases, the lines of ferromagnetically aligned moments
are parallel to the v direction. This corresponds to spin-spiral
states described by q = ΓM/2 [see Fig. 1(a)].

A nearest neighbor DMI, Deff , is derived by comparing the
energies of right rotating [defined by Eq. (10)] and left rotating
magnetic structure [which is obtained by replacing i→ −i in
Eq. (10)],

∆EDMI = Eright−SS − Eleft−SS = 24Deff sin2 θ (11)

We note that the parameter Deff implicitly depends on the
choice of θ through the self-consistent charge and spin den-
sities which enter the Kohn-Sham Hamiltonian of DFT. On
the one hand, we expect little modifications of the densities
as compared to the FM state if θ � 1. This configuration is
very similar to a perturbative calculation in the vicinity of the

FM state. On the other hand, we expect larger changes for
θ = π/2.

Concerning the computational details, a basis-set cutoff of
Kmax = 4.1 a−1

B was chosen, and the Brillouin-zone was
sampled by 12×48 and 3×12 k-points for coned and flat spin-
spirals, respectively. The spin-orbit interaction was included
self-consistently in these calculations.

III. RESULTS

A. Spin stiffness and Heisenberg exchange

Our main results are displayed in Fig. 2 and summarized in
Table III. Let us first compare the non-relativistic spin-spiral
dispersion curves in Fig. 2(a-b): KKR and FLAPW data agree
very well in the parabolic region around the Γ point, i.e. in
the region of interest when large non-collinear magnetic tex-
tures are studied. We zoom into this regime and plot the data
as a function of q2 in Fig. 2(b) to obtain the spin stiffness
A (or effective Heisenberg exchange Jeff ). Fits to the data
of flat or coned spin-spirals yield the same spin stiffness of
about 44 pJ/m, which converts to Jeff = 32 meV (see Ta-
ble III). The KKR-derived values are 10% smaller as com-
pared to FLAPW results. To estimate the role of the induced
Pt moments for the energies from KKR, we switch their con-
tributions manually off and see basically no change in the spin
stiffness as compared to the full calculation. However, taking
only the nearest-neighbor interactions of Co into account un-
derestimates the spin stiffness by about 30% [see Fig. 2(b)].

As the q-vector approaches the Brillouin zone boundaries
at the M and K points, larger deviations of about 70 meV
in energy between flat spin-spirals from FLAPW-gBT calcu-
lations and KKR-deduced values occur [see Fig. 2(a)]. The
reason lies partly in a different electronic structure: a frozen
DFT effective potential from the ferromagnetic state (i.e. q=0)
is used in the KKR approach, whereas the potential for the
spin-spiral is subject to change during the self-consistency as
witnessed by a reduction of the Co moment (up to −10%)
and quenching of induced Pt-moments for large q (see Fig. 3).
In order to perturb the ferromagnetic state less, FLAPW-gBT
calculations with coned spin-spirals are preferable. Indeed,
the magnetic moments stay practically constant as function
of spin-spiral vector q, and the spin-spiral energies get cor-
rected to lower values towards the KKR result [see Fig. 2(a)],
but a rather large discrepancy (of about e.g. 30 meV at the
M-point) remains. In order to test whether technical differ-
ences between the KKR and FLAPW methods, such as the
division of space into Voronoi cells for KKR as opposed to
muffin-tin spheres and interstitial region for FLAPW, induce
such a discrepancy, we performed self-consistent KKR calcu-
lations for the M-point (i.e. the row-wise anti-ferromagnetic
state) in a simple (2 × 1)-supercell geometry. We obtain a
perfect agreement to the FLAPW result [compare the green
square on top of the blue star at the M point in Fig. 2(a)],
highlighting the consistency of the two methods if similar ap-
proximations are employed. We can finally speculate that the
energy difference of about 30 meV at the M-point between



6

M Γ K M
q vector

0

50

100

150

200

250

300
E S

S (
m

eV
)

(a)

0.00 0.01 0.02 0.03
q2 (4π2/a2)

0

10

20

30

40

50

60

E S
S (

m
eV

)

(b)

M Γ K M
q vector

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

E D
M
 (m

eV
)

(c)

M Γ
q vector

−8

−6

−4

−2

0

E D
M
 (m

eV
)

(d)

KKR
full calc.
excl. Pt
only Co n.n.

FLAPW - gBT
coned
flat

FLAPW - supercell
coned
flat
flat (1 shot SOC)
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FIG. 2. Energy dispersion of spin-spirals for a monolayer Co(fcc) on Pt(111). (a) Non-relativistic dispersion curves ESS(q) along the high
symmetry path of the first Brillouin zone. (b) Zoom into the parabolic region of (a) around the Γ point to obtain the spin stiffness. (c) Spin-
orbit induced antisymmetric correctionsEDM(q) to the energies along the high-symmetry path and (d) zoom onto the ΓM direction. Full lines
represent KKR-derived spin-spiral energies including all relevant interactions constants Jij (full calc.), exclude interactions between Co and
Pt (excl. Pt) or consider only the nearest-neighbor Co interactions (only Co n.n.). Dashed lines indicate the slopes in the limit q → 0 and
represent the (b) spin stiffness and (c-d) DMI spiralization. gBT = generalized Bloch theorem, 1 shot SOC = SOC included in last iteration
only. For better comparison, the energies of coned spin-spirals have been scaled by 1/ sin2 θ, where θ is the cone angle.

coned spin-spiral and KKR-deduced energies might be caused
by higher order magnetic exchange interactions, such as the
four-spin-three-site-interaction51, which are not captured by
the KKR approach based on infinitesimal rotations, but nat-
urally included in the self-consistent spin-spiral calculations.
If present, it leads to an effective renormalization of the Jij’s
(concretely, J1 would be increased by 30%), which also re-
flects in an increased Curie temperature as compared to KKR
(see Appendix A).

B. Dzyaloshinskii-Moriya interaction

Let us now turn to the DMI [see Figs. 2(c-d)]. We obtain a
very good agreement throughout the whole Brillouin zone be-
tween spin-spiral energies from KKR and FLAPW-gBT cal-
culations with coned spirals (compare blue line and purple
dots). Flat spin-spirals yield considerably higher DM-energies
for q-vectors in the middle of ΓK and ΓM, respectively. This
discrepancy is again a reflection of the different electronic
structure for large q-vectors and links directly to the changed
hybridization between Co and Pt52. We can conclude that it
might fail to take a single-point calculation from a rather large
q value and infer information about the low-q regime from
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TABLE III. Coefficients Ji andD1 of the extended Heisenberg model, Eq. (1), the micromagnetic exchange stiffnessA and DMI spiralization
D evaluated for a Co-thickness of 0.2 nm, and the parameters of the effective nearest-neighbor model, Jeff and Deff . The FLAPW-gBT results
are obtained from fits to the energy dispersion of coned and flat spin-spirals. The value for D1 from FLAPW-gBT (flat) has been published
in Ref. 21. Both stacking positions of Co on the Pt(111) substrate (fcc or hcp) are considered. KKR-values in parentheses are obtained by
an alternative evaluation method, which employs fitting of spin-spiral energies (see text and Ref. 16). For comparison, KKR results of Simon
et al.16 (see also Ref. 15) are included, where a factor 1/2 in Jeff and Deff has been included due to a different definition of the spin-lattice
Hamiltonian.

stacking J1 J2 J3 D1 A D Jeff Deff

position (meV) (meV) (meV) (meV) (pJ/m) (mJ/m2) (meV) (meV)
KKR Co(fcc) 19.9 1.7 0.4 1.1 40.9 (38.8) 17.6 (14.76) 29.5 (27.9) 1.75 (1.47)

Co(hcp) 20.8 1.5 0.2 1.0

FLAPW-gBT (coned) Co(fcc) 26.0 1.2 0.7 1.2 44.0 14.4 31.7 1.43
Co(hcp) 27.4 0.6 0.4 1.0

FLAPW-gBT (flat) Co(fcc) 27.8 2.5 -0.2 1.8 44.4 14.8 32.0 1.47

Ref. 16 Co(fcc) (39.86) (15.11) (27.2) (1.43)

M Γ K M
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FIG. 3. Magnetic moments (a) for Co-atoms and (b) for induced Pt
moments in the first substrate layer. The values from the ferromag-
netic state of KKR calculations are shown as horizontal full lines.
Induced Pt-moments as modeled by Eq. (C1) (see Appendix C) are
shown by the dashed line.

this point. In the micromagnetic limit, however, coned and
flat FLAPW-gBT spin-spiral calculations yield a similar DMI
of D = 14.4 mJ/m2 (which converts to Deff = 1.43 meV;
see dashed line). The KKR-obtained EDM data is also well
approximated by this line [see Fig. 2(d)]. If we carefully con-
verge the DMI spiralization from KKR according to Eq. (7)
with respect to the number of neighbors, we obtain a 20%
(10%) higher DMI as compared to FLAPW-gBT values in-
cluding (neglecting) the interactions between Co and induced
Pt moments. This enhancement is due to the fact that by eval-
uating Eq. (7), we calculate the exact (q → 0)-limit. Indeed,
if we perform a linear fit to the KKR-derived DMI energies in
an interval of |q| ≤ 0.1 2π

a , similarly to the procedure used for
FLAPW-gBT calculations, we obtain an identical spiraliza-
tion (up to two digits) as compared to the FLAPW-gBT cal-
culations. Simon et al.16 use an analogous fitting-procedure
with pair-interaction parameters as calculated by the KKR
method, employing a different code, and obtain a value in per-
fect agreement to our KKR-derived values (see Table III).

The fact that our DMI data exhibits the same slope from
Γ towards M and K, respectively, shows that the DMI spiral-
ization is isotropic, which is expected for a system with C3v

symmetry53. The positive sign of the slope corresponds to a
lowering of energies of magnetic states with left-handed (anti-
clockwise) chirality.

The effective model, which is obtained from the fits in the
low-q region, reproduces the energies from coned spin-spirals
and via KKR rather satisfactorily even for large q (see solid
black line in Fig. 2c). We observe pronounced deviations
from the simple sine-behavior in the middle of the Brillouin
zone for the KKR-obtained EDM curves, which stem from
contributions beyond the nearest neighbors. Near the K-point
(which represents the non-collinear 120◦ Néel state for a flat
spin-spiral), a qualitative change of the energy dispersion is
caused by interactions beyond nearest neighbors and cannot
be captured by the effective model. Similarly, a different slope
between effective model and KKR-derived energy curves ap-
pears near the M-point, highlighting the limitations of the ef-
fective model when extrapolating from the low-q region to ar-
bitrary q-vectors.

TABLE IV. DMI values as extracted from FLAPW supercell calcu-
lations using a coned or flat spin spiral, either treating SOC self-
consistently (scSOC) or including it in the last iteration only (1-
shot SOC). The Co-monolayer is in the fcc-stacking position on the
Pt(111) substrate. For comparison, results of Yang et al.10 (flat spi-
rals, scSOC, using the plane-wave code VASP) are included, where
a factor 1/2 in Deff has been included due to a different definition of
the spin-lattice Hamiltonian.

D Deff

(mJ/m2) (meV)
coned scSOC 20.3 2.02

flat scSOC 16.2 1.60
1-shot SOC 21.9 2.18

Ref. 10 19.0 2.17

Next, we discuss the Dzyaloshinskii-Moriya interaction as
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determined from supercell calculations and take the effec-
tive model with values as fitted from FLAPW-gBT calcula-
tions as reference. A coned supercell-spiral yields a DM en-
ergy very close to the corresponding FLAPW-gBT calcula-
tion at ΓM/2 [see Fig. 2(d)]. Despite this good agreement
for this single point (5.7 vs. 6.1 meV), the inferred Deff is
40% higher as compared to the values from fits in the low-
q region of FLAPW-gBT calculations (see Table IV), which
again emphasizes the difficulty of relying on only one data
point. The DMI coefficient of a flat supercell-spiral agrees
surprisingly well with our reference value (1.60 as compared
to 1.43 meV). However, the corresponding energy EDM is
considerably lower than the spin-spiral dispersion of FLAPW-
gBT calculations for this state [see Fig. 2(d)]. We can trace
this discrepancy back to the different treatment of SOC, which
is included self-consistently in the supercell calculations but
only in first-order perturbation theory in the FLAPW-gBT cal-
culations: if we include SOC in the supercell calculation by
a force-theorem approach, i.e. performing a single iteration
with SOC on top of a converged scalar-relativistic calcula-
tion and compare the sum of single-particle energies, the DM
energy agrees within 5% with the gBT calculation (6.5 vs.
6.8 meV). Similar findings have been reported for freestand-
ing Fe/Ir bilayers54. The energies of Yang et al.10 (taking
their values from Co(1)/Pt(3), where the number in paren-
theses denotes the number of atomic layers) are 35% higher
than our corresponding supercell calculation (compare 2.17 to
1.60 meV), probably due to the different number of substrate
layers and different relaxations of atomic positions, and about
50% higher as our reference value from the low-q regime. The
good agreement between the value of Ref. 10 and our 1-shot
SOC supercell calculation (see Table IV) is due to an acciden-
tal cancellation of errors. Note that the authors of Ref. 10 used
a different magnetic volume (corresponding to the volume an
atom in fcc-Pt) for the conversion between D and Deff (cf.
Eq. (9)), which leads to a different ratio of Deff/D as com-
pared to us.

C. Discussion

Overall, our results emphasize the compatibility of the
FLAPW-gBT and KKR methods in the relevant micromag-
netic limit, as well as the flexibility of the generalized Bloch
theorem approach as it can access states beyond the micro-
magnetic limit more realistically through self-consistent cal-
culations. Our findings regarding the DMI for the present case
of a Co monolayer on Pt(111) are in satisfactory agreement to
previous studies on this system10,16,20.

Comparing our value for the spin stiffness to the litera-
ture, it is considerably higher than most of the experimentally
determined values for Co: for bulk-Co a stiffness of about
15 pJ/m (fcc) and 30 pJ/m (hcp-Co) is measured by various
methods55, a value of 21 pJ/m was measured for 10 nm thick
Co-films56, and even smaller stiffnesses as low as 14 pJ/m
are reported for ultra-thin Co films down to thicknesses of
0.5 nm. The reported spin stiffness by Boulle et al.12 rep-
resents an exception to this trend, as they determine 27.5 pJ/m

for Co-thicknesses below 1 nm. Still, our results are nearly
50% higher than this value, and they are in line with previous
DFT calculations on a Co monolayer on Pt(111)15,16.

One possibility for the discrepancy between experiment
and theory might arise from the fact that experiments are
necessarily performed at finite temperatures, whereas the ab-
initio calculations neglect any spin-fluctuations. In simplest
approximation, the spin-stiffness A and DMI spiralization
D are renormalized by (M(T )/M0)2, where M(T ) is the
temperature-dependent magnetization and M0 the saturation
magnetization57. Inserting the values for M(T )/M0 at T =
300 K as deduced from Monte Carlo simulations [see Ap-
pendix A and Fig. 4(b)], we arrive at a renormalization factor
of 0.67 and a room-temperature spin-stiffness of 29.7 pJ/m
(using results based on parameters from FLAPW-gBT calcu-
lations), which is in much better agreement with the experi-
mentally determined spin-stiffnesses.

The critical temperature at which the magnetization van-
ishes, Tc, was also extracted from the Monte Carlo simula-
tions. Depending on the parameterization, these values are
ranging from 500 K to 620 K for the KKR and the FLAPW-
gBT parameterization, respectively. These critical tempera-
tures seem to be quite high for a two-dimensional (2D) sys-
tem: They are up to 40% higher than one would estimate
based on the Curie temperature of bulk Co, T (3D)

c = 1400 K,
as calculated by

T (2D,est.)
c =

2 T
(3D)
c

ln
(

3π
4
kB T

(3D)
c

K

) ≈ 440 K, (12)

with Boltzmann’s constant kB and uniaxial anisotropy K =
0.5 meV. Eq. (12) is based on an renormalization group anal-
ysis and assumes unchanged magnetic interaction parameters
when going from 3D to 2D (see Ref. 58 and references therein
for details). But we infer that J1 = 19.9 meV of a mono-
layer Co/Pt(111) is about 50% higher as compared to hcp-Co,
which we determined to J1 = 13 meV by the KKR method,
in very good agreement to 14.8 meV as determined by LMTO
calculations59. This increased J1 explains the discrepancy be-
tween Eq. (12) and Monte-Carlo simulations for the mono-
layer. This difference of the exchange interactions stems from
changes in the electronic structure and corrects the estimated
value to higher temperatures. Inserting in Eq. (12) the Co-bulk
Curie temperature of a hypothetical Co solid with an increased
Curie temperature of T̃ (3D)

c = (19.9/13) T
(3D)
c = 2140 K

corresponding to the nearest neighbor exchange interaction of
J1 = 19.9 meV we obtain an estimated T̃ (2D,est.)

c of 630 K.
Indeed, this corrected estimate and the Monte-Carlo deter-

mined values are well compatible to magneto-optical Kerr ef-
fect experiments on a monolayer Co on Pt(111)60: a finite
magnetization is present up to 623 K. However, the experi-
mental situation is more complex, as the formation of a CoPt
surface-alloy is observed above 500 K, and the reported 623 K
is an increased value compared to the ideal Co-monolayer
case60. Consequently, the critical temperature of the ideal
Co monolayer on Pt(111) lies in between 500–623 K. All
our Monte-Carlo-predicted critical temperatures are compat-
ible with the experiment, whereas T (2D,est.)

c estimated from



9

the bulk properties is not. This highlights that a prediction
of the Curie temperature of thin films purely from the knowl-
edge of bulk properties is to be taken with caution and pos-
sibly fails. Overall, our calculations confirm that the Curie
temperature of Co thin-films on Pt(111) lies far above room
temperature61,62, even for the monolayer.

Having obtained consistent values for the spin-stiffness and
DMI spiralization, and considering additionally the uniax-
ial anisotropy Ki = 0.5 meV (which converts to K =
6 MJ/m3), which we obtained by FLAPW calculations with
out-of-plane easy axis, we can determine the ground state.
Due to the rather strong magnetocrystalline anisotropy, we
obtain a ferromagnetic ground state63. We can in hindsight
check the validity of the micromagnetic limit by estimating
the domain-wall width

w = 2

√
A

K
= 5.4 nm (13)

and with the arguments presented in Appendix B, we are in-
deed in the micromagnetic limit ( q < 0.03 2π

a ). Our calcu-
lated domain-wall width is in perfect agreement with the ex-
perimental value of about 4 nm in monolayer Co/Pt(111) as
measured by spin-polarized scanning-tunneling microscopy
(SP-STM) at low temperatures64. Very recently, a domain-
wall width of 17.2 nm in slightly thicker (1.4 nm) epitaxial
Co layers on Pt(111) has been measured by SEMPA at room
temperature27.

Another characteristic length scale for spiraling magnetic
textures induced by DMI is set by LD = 4πA/D ≈ 40 nm,
taking the values from Table III, which is even an order of
magnitude larger than the domain-wall width and approxi-
mates the micromagnetic limit even more.

Finally, we have determined the magnetic interaction pa-
rameters for the spin-lattice model for the hcp stacking po-
sition of Co on Pt(111) and present them in Table III. The
changes are marginal as compared to the fcc stacking posi-
tion, in agreement to Ref. 15.

IV. CONCLUSION

We have determined the magnetic interaction parameters
for a Co monolayer on Pt(111) by three distinct approaches,
(i) performing infinitesimal rotations, (ii) using spin-spirals
employing the generalized Bloch theorem for various q vec-
tors, (iii) and constraining spin-spirals into a rather small su-
percell. We obtain consistent results for the spin stiffness and
the Dzyaloshinskii-Moriya interaction in the long-wavelength
(micromagnetic) limit around the ferromagnetic state using
methods (i) and (ii). When going to higher spin-spiral q vec-
tors, deviations through differences in the electronic structure
play a role for flat spin spirals. In order to still realize the
long-wavelength limit in the supercell approach, we propose
to use a coned spiraling structure with a small cone angle,
which leaves e.g. the magnetic moments unchanged as func-
tion of the spin-spiral q vector (being inversely proportional
to the supercell size). We found that the micromagnetic DMI
spiralization might not be accurately inferred by extrapolating

from one data point obtained for a large q-vector (i.e. small
supercell).
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Appendix A: Thermodynamical study of Co/Pt(111)
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FIG. 4. Calculation of the critical temperature of Co/Pt(111) for the
different parameterization of the extended Heisenberg Hamiltonian
from Monte Carlo simulations. (a) Averaged total energy, (b) mag-
netization, (c) specific heat and (d) magnetization susceptibility as a
function of temperature.

As discussed in the main text (see Sec. III A), the KKR as
well as FLAPW-gBT methods employing flat or coned spin-
spirals all leave the curvature of the spin-spiral dispersion
around the Γ-point unchanged. However, large changes occur
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for larger q-vectors corresponding to strongly non-collinear
magnetic textures. These states will only be present at high
temperature or after an exciting stimulus with high energy.
Therefore, to understand the consequences of the different
parameterizations of the Heisenberg Hamiltonian on these
states, we have performed atomistic Monte Carlo simulations
and calculated the critical temperature TC of a Co monolayer
in the fcc stacking position on Pt(111).

We took the parameterization of the extended Heisenberg
model as determined from KKR and FLAPW-gBT calcula-
tions (cf. Table III), and included an uniaxial anisotropy of
Ki = 0.5 meV which was determined by FLAPW calcula-
tions. Subsequent Monte Carlo simulations have been per-
formed using a 300× 300 supercell on 192 replicas of the su-
percell with temperatures geometrically spaced between 200
and 1400 Kelvin. During the Metropolis steps, we have av-
eraged over 600 steps the total energy 〈E〉 as obtained from
Eq. (2), the total magnetization 〈M〉 as well as the specific
heat C and the magnetization susceptibility χM .

Fig. 4 shows the results of the Monte Carlo simulations for
the three different parameterizations. The black, red and blue
curves correspond to the parameterization obtained with via
KKR and FLAPW-gBT methods employing coned and flat
spin spirals, respectively. Fig. 4(a) shows the averaged to-
tal energy as a function of temperature. All energies show
a smooth increase with a change of slope at around 500 K
which indicates a phase transition. As the total energy of the
magnetic lattice increases, the magnetization decreases as dis-
played in Fig. 4(b): The magnetization decreases linearly up
to the critical temperature and then drops abruptly down to
zero. The drop occurs at a temperature of 600 K for both
FLAPW-gBT parameterizations and at 500 K for the KKR
parameterization.

To characterize the phase transition in more detail, we cal-
culate the specific heat C and the magnetic susceptibility χM
[cf. Fig. 4(c) and (d), respectively] as explained in Ref. [65].
When DMI is present in a magnetic system, the phase dia-
gram shows an intermediate region between the paramagnetic
phase at high temperature and the long-range ordered phase
at low temperature. In this intermediate regime, the number
of skyrmions can fluctuate66,67 and may be used to nucleate
skyrmions in magnetic multilayers by current pulses68. This
region is present between the critical temperature extracted
from the location of the peak of the specific heat, TC , and the
critical temperature extracted from the peak of the magnetiza-
tion susceptibility, TM 65.

The specific heat curves show a peak at 600 K for the pa-
rameterization from KKR and at 740 K and 800 K for the ones
from FLAPW-gBT employing conical and flat spin spirals, re-
spectively. The subsequent phase transition to the long-range
ordered phase occurs at 500 K (KKR), 600 K (FLAPT-gBT
coned) and 620 (FLAPW-gBT flat). The predicted transition
temperatures from the KKR parameterization are lower than
the corresponding ones from FLAPW-gBT, with differences
of up to 200 K (or about 25%).

Appendix B: Arguments for the micromagnetic limit for Co/Pt
interfaces

In order to determine the relevant range of spin-spiral vec-
tors q for Co/Pt, we perform a power spectrum analysis of
the well known domain wall profile. The magnetization of
a Néel-type domain wall separating the ferromagnetic do-
mains m(x → ±∞) = (0, 0,±1)T is given by m(x) =
(cos Θ, 0, sin Θ)T, with

Θ(x) = arcsin tanh

(
x

w/2

)
, (B1)

where w is the domain-wall width.
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FIG. 5. Power spectrum of the magnetization profile for a Néel-type
domain wall. Vertical dotted lines indicate the interval that contains
90% of the components m̃x.

The Fourier transformation of themx component is directly
evaluated as

m̃x(q) =
1

2π

∫
dx mx(x) e−iqx =

w

4 cosh(πwq/4)
. (B2)

For the mz-component, we need to regularize the Fourier
transformation and obtain

m̃z(q) =
1

2π
lim
ε→0+

∫
dx mz(x) e−iqx e−εx (B3)

= −i w

4 sinh(πwq/4)
. (B4)

Both Fourier transformed components peak around q = 0 (see
Fig. 5), and are significant only for∣∣∣q πw

4

∣∣∣ ≤ 2.55. (B5)

This interval has been chosen such that it contains more than
90% of the components m̃x. Inserting a typical value for the
domain-wall width in Co/Pt based systems (w ≈ 5 nm) yields

|q| ≤ 0.03
2π

a
, (B6)

with the in-plane lattice constant of the Co/Pt(111) film, a =
0.276 nm. These very low q values justify the application of
the micromagnetic approach for Co/Pt based systems.
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Appendix C: Treatment of induced Pt moments in non-collinear
structures and self-consistent inclusion of SOC

The size of the induced Pt moment can vary strongly in non-
collinear structures, as shown by results for flat spin-spirals in
Fig. 3(b). To account for such a variation in the KKR cal-
culations, a scheme based on the non-local spin-susceptibility
was proposed26, where the size and direction of the induced Pt
moment MPt is determined by the orientation of the nearest-
neighbor Co-moments,

MPt = χCo-Pt
∑
j∈n.n

M j
Co , (C1)

χCo-Pt =
|MFM

Pt |∑
j∈n.n|M

j
Co|

. (C2)

The superscript ‘FM’ denoted the moment obtained for the
ferromagnetic state.

The induced Pt moment approximated in this way with a
values for |MFM

Pt | = 0.34 µB as calculated by KKR repro-
duces the results from flat spin-spiral calculations using the
FLAPW-gBT method rather well [compare the dashed line
and green squares in Fig. 3(b) in the main text]. Remaining
deviations are probably due to the variation of the size of the
Co moments in FLAPW-gBT calculations (see Fig. 3(a)].

M Γ K M
q vector

0

50

100

150

200

E S
S (

m
eV

)

(a)

M Γ K M
q vector

−4

−2

0

2

4

E D
M
 (m

eV
)

(b)

rigid Pt
+ scSOC

induced Pt
+ scSOC

FIG. 6. Energy dispersions for spin-spirals as evaluated with parame-
ters as obtained by the KKR method for (a) the exchange interaction
and (b) Dzyaloshinskii-Moriya interaction. The contributions from
interactions between Co and induced Pt moments are included as-
suming either rigid Pt moments or a variation according to Eq. (C1).

As a next step, we can evaluate the spin-spiral dispersion
curves by renormalizing the KKR-obtained parameters JCo-Pt

and DCo-Pt by |MPt|/|MFM
Pt |. However, this treatment does

not significantly change the energies, as shown in Fig. 6. In
particular, the relevant low-q regime around Γ is not affected.

We also tested whether the inclusion of SOC in the self-
consistent determination of the charge and spin-density affects
the Jij and Dij parameters as determined by infinitesimal ro-
tations. The resulting changes in A and D (or Jeff and Deff

are 3% at most, and derived spin-spiral energies are hardly dis-
tinguishable as compared to the (1-shot SOC)-procedure em-
ployed in the main text (compare dotted to full lines in Fig. 6).
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713 (2011).

7 N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,
K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

8 X. Zhang, M. Ezawa, and Y. Zhou, Scientific Reports 5, 9400
(2015).



12

9 A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031 (2017).
10 H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Phys.

Rev. Lett. 115, 267210 (2015).
11 C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F.

Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot,
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S. Blügel, and V. Langlais, Phys. Rev. B 75, 205432 (2007).
33 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).
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Rev. B 90, 115427 (2014).

48 www.judft.de.
49 D. S. G. Bauer, Development of a relativistic full-potential first-

principles multiple scattering Green function method applied to
complex magnetic textures of nano structures at surfaces, Ph.D.
thesis, RWTH Aachen (2013).
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