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We propose a real-space approach explaining and controlling the occurrence of edge-localized gap states
between the spectral quasibands of binary tight binding chains with deterministic aperiodic long-range order.
The framework is applied to the Fibonacci, Thue-Morse and Rudin-Shapiro chains, representing different struc-
tural classes. Our approach is based on an analysis of the eigenstates at weak inter-site coupling, where they
are shown to generically localize on locally reflection-symmetric substructures which we call local resonators.
A perturbation theoretical treatment demonstrates the local symmetries of the eigenstates. Depending on the
degree of spatial complexity of the chain, the proposed local resonator picture can be used to predict the oc-
currence of gap-edge states even for stronger couplings. Moreover, we connect the localization behavior of a
given eigenstate to its energy, thus providing a quantitative connection between the real-space structure of the
chain and its eigenvalue spectrum. This allows for a deeper understanding, based on local symmetries, of how
the energy spectra of binary chains are formed. The insights gained allow for a systematic analysis of aperiodic
binary chains and offers a pathway to control structurally induced edge states.

I. INTRODUCTION

Aperiodic systems with deterministic long-range order
have long been a subject of intense study, in the endeavor
to systematically bridge the gap between crystalline period-
icity and complete disorder1. While providing a powerful
concept in theoretically modeling the transition to disorder,
aperiodic order has become an established property of mat-
ter as well. A cornerstone of this was the actual observa-
tion of “quasicrystals”—non-periodic but space-filling struc-
tures surpassing the crystallographic restriction theorem—by
Shechtman2. In nature quasiperiodicity occurs e.g. in macro-
scopic constellations such as phyllotaxis1,3. Aperiodically or-
dered systems even play an important role in material sci-
ence and technology1,4. Owing to their long-range order,
they can display interesting physical properties such as a low
electrical and thermal conductance1,5, low friction5,6 and high
hardness6. Specific quasicrystalline systems have been shown
to enhance solar cells7, serve as a catalyst8 and could allow
for superconductivity9,10.

A general characteristic of aperiodic lattices is the cluster-
ing of Hamiltonian eigenvalues into so-called “quasibands”
resembling Bloch bands of periodic systems11. The corre-
sponding eigenstates generally neither extend homogeneously
across the system like Bloch states in regular crystals, nor
do they decay exponentially like in disordered systems, and
are therefore dubbed “critical”1,12–15. In specific cases, qua-
sibands have been shown to originate from the localization
of different eigenstates on similar repeated substructures in
the system yielding similar eigenenergies16–20. The forma-
tion of quasibands typically becomes less distinct with in-
creasing spatial complexity, which in turn can be classified
by the structure’s spatial Fourier transform—accordingly al-
tering from point-like to singular continuous to absolutely

continuous1,21–23. The Fourier spectrum can further be con-
nected to the system’s integrated density of states by the “gap
labeling theorem”24–28, which assigns characteristic integers
to the gaps between quasibands.

As ordered lattice systems are truncated in space into fi-
nite setups, they may support the occurrence of eigenstates
localized along their edges, energetically lying within spec-
tral gaps. In periodic systems, such edge states (or ‘surface
states’29) may or may not appear depending on how the un-
derlying translation symmetry is broken by the lattice trun-
cation, that is, where in the unit cell the system is cut off30.
In various types of periodic setups, edge states can also be
given a topological origin in terms of nontrivially valued in-
variants (winding numbers) assigned to the neighboring Bloch
bands31. This has boosted an intensive research activity in the
field of topological insulators32–34 and the quest for interesting
novel materials and applications35, including e. g. robust las-
ing via topological edge-states in periodic photonic lattices36.

Edge states may also be present between quasibands in ape-
riodic systems, as has been shown for binary 1D systems37–41

and recently demonstrated for 2D photonic quasiperiodic
tilings18. Notably, also here a topological character can be
assigned to the edge states in correspondence to the system’s
bulk properties. Indeed, a position-space based topological in-
variant, the so-called Bott index42, can be applied to aperiod-
ically structured18 or even amorphous systems43. Moreover,
for 1D quasiperiodic systems the winding of edge state eigen-
values across spectral gaps coincide with the gap labels men-
tioned above24,44–46, which have recently also been measured
in scattering47 and diffraction48 experiments. Remarkably,
edge modes occur also as scattering resonances in open sys-
tems with different types of deterministic aperiodic order in-
corporating long-range couplings between lattice constituents,
as demonstrated very recently in terms of the eigenmodes of
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full vectorial Green matrices49.

The ubiquitous presence of edge states in aperiodic systems
indicates that it derives primarily from the underlying geo-
metrical structure and not from model-specific assumptions.
Departing from periodicity, however, there is no translation
symmetry whose breaking (at the boundary) would provide
a mechanism for edge state formation. On the other hand,
aperiodic systems are imbued with local symmetries, that is,
different spatially symmetric substructures are simultaneously
present in the composite system which possesses many differ-
ent domains of local symmetries. Indeed, local “patterns” are
known to occur repeatedly in deterministic aperiodic systems,
as expressed by Conway’s theorem50. In the specific case
of 1D binary lattices, local reflection symmetry is abundantly
present and follows, at each scale, a spatial distribution closely
linked to the underlying aperiodic potential sequence51. The
encoding of such local symmetries into generic wave excita-
tions have recently been described within a theoretical frame-
work of symmetry-adapted nonlocal currents52, which obey
generalized continuity equations52–55 and whose stationary
form allows for a generalization of the parity and Bloch the-
orems to locally restricted symmetries56 as well as a classifi-
cation of perfect transmission57. In the context of finite, ape-
riodically ordered setups, an appealing question is whether a
real-space picture for the formation—and thereby control—of
edge states can be brought into connection with local symme-
tries.

In the present work we propose an intuitive real-space pic-
ture of the formation of quasibands and edge states in binary
aperiodic tight-binding chains. The approach is based on the
analysis of eigenstate profiles in the limit of weak inter-site
coupling. In this regime, eigenstates generically fragment,
i.e., have non-negligible amplitudes only on a small number
of sites, as we show by means of a perturbation theoretical
treatment. The amplitudes on these fragments are in almost
all cases locally symmetric and can be identified as local res-
onator modes (LRM), i.e., eigenmodes of local resonators em-
bedded into the full chain. Here, a resonator denotes a sub-
structure that can confine, at certain energies, the wavefunc-
tion within its interior. The LRMs can be used to classify
states, and those belonging to quasibands are composed of re-
peated LRMs hosted by resonators within the bulk, while edge
states are composed of unique LRMs occurring on the edge.
We further investigate the reasons for the formation of quasi-
bands by linking the energy ε of a state to that of its constitut-
ing LRMs, where the energy of an LRM is defined as its en-
ergy in the corresponding isolated resonator. From this find-
ing, we see that the multiple occurrence of identical resonator
structures automatically leads to the formation of quasibands
by their capability of hosting identical (and thus degenerate)
LRMs. We further use this energetical insight to move a given
edge state into a quasiband by performing tailored changes to
the corresponding resonators on the edge. The inference of
those properties to moderate inter-site coupling depends on
the type of aperiodic order used in the model. We here apply
the approach to the prominent representatives of three main
classes of structural complexity: Fibonacci, Thue-Morse, and

Rudin-Shapiro chains, featuring point-like, singular continu-
ous, and purely singular spatial Fourier spectra, respectively.

The paper is organized as follows. In Sec. II we introduce
our setup and show examples of quasibands and edge states
in Fibonacci chains. We then develop our approach to edge
states based on locally symmetric resonators and apply it to
Fibonacci chains in Sec.III, to Thue-Morse chains in Sec.IV A
and to Rudin-Shapiro chains in Sec. IV B. In Sec.V we com-
ment on the generality of our framework and on the connec-
tion to related work. We conclude our paper and give an out-
look in Sec. VI. A perturbative treatment demonstrating the
localization onto reflection-symmetric resonators is provided
in the appendix, together with further technical details includ-
ing proofs of major statements, complementary explanations,
and further comments.

II. PROTOTYPE QUASIPERIODIC ORDER: THE
TIGHT-BINDING FIBONACCI CHAIN

We consider a finite one-dimensional chain of N sites with
real next-neighbor hoppings hm,n described by the Hamilto-
nian

H =
∑
n

vn |n〉 〈n|+
∑

|m−n|=1

hm,n |m〉 〈n| (1)

where vn is the onsite potential of site n. In the basis of single
site excitations |n〉, the above Hamiltonian H can be written
as a tridiagonal matrix

H =



v1 h1,2 0 . . . 0

h1,2 v2 h2,3

. . .
...

0 h2,3

. . . . . . 0
...

. . . . . . . . . hN−1,N

0 . . . 0 hN−1,N vN ,


. (2)

Such a tight-binding chain is used in a plethora of interesting
model systems, examples including the Aubry-Andre58 model
relevant in the study of localization59 and the Su-Schrieffer-
Heeger model, a simple prototypical chain supporting a topo-
logical phase60. It also effectively describes one-dimensional
arrays of evanescently coupled waveguides61,62. We here fix
the hoppings to a uniform value h and restrict the onsite ele-
ments to be “binary”, that is, the sites are of two possible types
A and B, and the vn take on corresponding values vA and vB ,
with the contrast defined as

c =

∣∣∣∣vA − vBh

∣∣∣∣ . (3)

Without loss of generality we will set vA ≡ 0 and vB ≡ v
throughout, having a single control parameter c = |v/h| for a
given chain.

In the following, we will investigate the spatial profiles of
the eigenvectors |φν〉 =

∑
n φ

ν
n |n〉 of H in relation to their

eigenvalues εν , given by

H |φν〉 = εν |φ
ν〉 , (4)
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for chains with aperiodic order. Note that H represents a
generic finite tight-binding chain; the choice h < 0 corre-
sponds, e.g., to the kinetic energy of electrons on a lattice
with onsite potential vn, while h > 0 (made here) can be
used to model the coupling of photonic waveguides61,62 with
propagation constants vn. Our analysis remains qualitatively
unaffected by this choice.

We start by presenting the eigenstates and spectral prop-
erties of a finite binary chain following the Fibonacci
sequence22, a prototypical case of quasiperiodic order. This
will serve as an initial point motivating the development of
a local resonator approach at high contrast in the next sec-
tion. Starting with A, the sequence is constructed by repeat-
edly applying the inflation rule A → AB,B → A, resulting
in F = ABAABABAAB.... This sequence is then mapped
onto the onsite elements vn of the tight-binding chain. The
spectrum and eigenvectors of this chain are shown in Fig. 1
for a moderate contrast of c = 1.5 and N = 144 sites. De-
spite the lack of periodicity, the eigenvalues cluster into so-
called quasibands, owing to the long-range order present in
the Fibonacci chain63, and the spectrum attains a self-similar
structure of quasibands and gaps in the N → ∞ limit. For
presentation reasons, we have here chosen N large enough to
anticipate this spectral feature, though small enough to visu-
ally discern the spatial characteristics of the eigenmodes.

The quasibands are occupied by bulk eigenmodes that ex-
tend along the interior of the chain. Those are known as “crit-
ical states”, with a spatial profile lying between the exponen-
tial decay of modes in a randomly disordered chain and uni-
formly extending Bloch eigenmodes in periodic chains13–15.
Such modes have recently been shown to consist of locally
resonating patterns (i.e., characteristic sequences of ampli-
tudes) which occur on repeating segments of a quasiperiodic
structures and are characteristic for a given quasiband17,19,64.
This is particularly visible for the bulk modes of the upper-
most quasiband in Fig. 1. A close inspection reveals that
the bulk mode profiles tend to localize into locally reflection-
symmetric peaks (see black subregions of high amplitude for
a given mode). Those in turn follow the distribution of local
symmetry axes (or centers of “palindromes”65) which are hi-
erarchically present in the Fibonacci chain51, as seen by com-
parison with the bar plot on the top. Each bar shows the
maximal size Sn of a continuous domain of reflection sym-
metry centered at position n, where n can refer here to sites
(n = 1, 2, ...) or to links between sites (n = 1.5, 2.5, ...). For
instance, as the first few characters of F are

6 sites︷ ︸︸ ︷
ABA︸ ︷︷ ︸

3 sites

ABABAAB,

we have S3.5 = 6 and S5 = 3.
Within the gaps between quasibands there may appear spec-

trally isolated modes, reminiscent of gap modes localized on
defects within a periodic lattice66,67. For the example given in
Fig. 1, i.e., an unperturbed but finite Fibonacci chain, the gap
modes are known37,68,69 to be localized at the edges, decaying
exponentially into the bulk.

20 40 60 80 100 120 1400

max

0

Figure 1. Bottom: Eigenstate map of a N = 144-site Fi-
bonacci chain at contrast c = |v/h| = 1.5 (hopping h = 0.1):
Each horizontal stripe shows

√
|φνn| at sites n for an eigenstate φν

(ν = 1, 2, . . . , N ). The greyscale map is chosen such that it is pos-
sible to simultaneously observe the spatial features of edge as well
as those of bulk states. Superimposed are the eigenvalues εν (or-
ange circles) in arbitrary units, with indicated origin ε = 0. Edge
modes are distinguishable as partially white stripes, with the most
pronounced ones indicated by black horizontal bars on the left. Mid-
dle: Potential vn represented by a stripe with white (black) boxes
for vn = vA = 0 (vn = vB = v). Top: Distribution of local re-
flection symmerty domains, represented by maximal domain size Sn
centered at position n, as explained in the text.
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Phason flip

Gap-statesQuasibands

20 40 60 80 100 120 140

Figure 2. Spectrum in arbitrary units (orange) of a N = 144-site
Fibonacci chain for varying phason ϕ in Eq. (5) between the values
(chosen for presentation reasons) ϕ1 = 2.4097 and ϕ2 = 5.5513
for contrast c = 1.5, superimposed on the variation of the onsite po-
tential vn (vA:white, vB :light gray). Dark gray circles indicate local
flips AB ↔ BA in the chain. The inset shows a magnified view on
one representative flip. All together, there are 71 such flips between
ϕ1 and ϕ2. The flips indicated by green circles create/annihilate
(when close to the edge) or energetically shift (when further from
the edge) the gap state in the purple box.

The control of edge states by local changes in the underly-
ing potential sequence is a central aspect of this work. Our
approach is that, due to their localization, the occurrence and
spectral position of edge states can be influenced by local
modifications on the corresponding edge of the aperiodic lat-
tice. We demonstrate the feasibility of this approach in Fig. 2
by using the following representation47 of the Fibonacci po-
tential sequence:

vn =
vA + vB

2
+
vA − vB

2
signχn =

v

2
(1− signχn), (5)

χn(ϕ) = cos(2πτn+ ϕ+ πτ)− cos(πτ) (6)

where τ = 2/(1 +
√

5) is the inverse golden mean and the in-
teger site index n runs from 1 to N . By continuously varying
the so-called “phason” ϕ, localized flips AB ↔ BA are in-
duced at discrete values of ϕ, forming a two-dimensional pat-
tern in the (n, ϕ) plane, see Fig. 2. The finite chain of length
N constitutes a different segment (or “factor”) of the infinite
Fibonacci sequence after each flip47. This allows to investi-
gate different Fibonacci-like configurations while maintaining
a constant length N . In Fig. 2, we visualize the effect of these
flips on the energy spectrum, shown in orange. As one can
see, the gap states in the purple rectangle, which are local-
ized on the right edge (not shown here), are influenced only
by flips acting on this edge, marked by green circles. From
bottom to top, the green flips (i) create the edge state (ii) and
(iii) modify its energy and (iv) finally annihilate it. Note that
in general for processes of type (ii) and (iii), the energetical
change accompanying the change of the edge is stronger for a
flip near to the edge than for a flip more distant to the edge.

The occurrence of such edge-localized gap states in a fi-
nite 1D quasiperiodic potential was recently very elegantly
described within a scattering setting47,48 in a continuous sys-
tem as a consequence of a resonance condition when vary-
ing the phason ϕ. At the same time, the connection of the
winding of ϕ to invariant integers labeling the spectral gaps

of the quasiperiodic structure through the so-called “gap la-
beling” theorem70, renders the nature of the 1D edge states
topological46. On the other hand, the flip-induced edge state
creation/annihilation demonstrated in Fig. 2 suggests that their
origin could also be explained by viewing chain edges as a
generalized type of “defects” to the quasiperiodic long-range
order. In the following, we will develop this idea in terms of
the prototype Fibonacci chain. Our aim is to provide a sim-
ple and unifying real-space picture for the appearance of edge
states in the energy gaps of non-periodic structures. Contrary
to topological methods, as employed for one-dimensional sys-
tems in general e.g., in Refs. 24, 44–48, 71–75, our approach
does not rely on topology, but aims at connecting the real-
space structure of deterministic aperiodic binary chains and
their local symmetries to their quasibands and edge states.

III. EDGE MODES FROM TRUNCATED LOCAL
RESONATORS

The analysis of eigenstates at high contrast c [see Eq. (3)]
is at the heart of our approach, revealing structural informa-
tion that would remain hidden at lower contrast. Once this
information is retrieved, we leverage it to develop a generic
framework for the understanding and manipulation of quasi-
bands and edge states in binary tight-binding chains.

In the following, we will focus on a Fibonacci chain, choos-
ing a relatively small size for easier treatment and visualiza-
tion. The slight modifications needed for the treatment of
longer chains are commented on in Appendix E. We split the
presentation into three subsections, covering the concept of
fragmentation (Sec. III A), local resonator modes (Sec. III B),
the structural control of edge states (Sec.III C), and the behav-
ior at low contrast (Sec.III D).

A. Eigenstate fragmentation from degenerate perturbation
theory

Our starting point is an analysis of eigenstates at high con-
trast. Those are shown in Fig. 3 (a) for a 9th generation Fi-
bonacci chain (N = 55 sites) with relatively high contrast
c = 6. We see that each eigenstate is pinned to a small num-
ber of sites where it has non-negligible amplitude, practically
vanishing on the remaining sites. This is quite different from
the states at low contrast (like in Fig. 1) which are smeared out
along the whole chain. An impression of how the transition
between those two regimes takes place is given in Fig. 3 (b),
showing the amplitudes of a bulk (φ55) and edge (φ21) state
for varying contrast. When increasing the contrast, the spatial
profile of the bulk state becomes gradually fragmented: The
amplitudes on A-sites become suppressed, and a characteris-
tic remnant of the initial distribution appears on a subset of
B-sites. Fragmentation with increasing contrast c also occurs
for the edge state, with the difference that here the amplitudes
on B sites become suppressed, and that there is only a single
fragment remaining; in the present case the A-site on the left
edge.
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Figure 3. (a) Eigenstate map, potential, and local symmerty distri-
bution (bottom to top) like in Fig. 1 but for anN = 55-site Fibonacci
chain of contrast c = 6, and with density |φνn|

2 color-coded by the
signs of φνn shown in the eigenstate map. Horizontal lines separate
the eigenstates into groups according to quasibands and gap states,
with corresponding characteristic local resonator modes (LRMs) vi-
sualized on the right. The green box indicates the correspondence
of the state φ53 to the LRM A|BAB|A (see text). The three edge
modes of the setup are marked by colored circles. (b) Amplitudes of
states φ55 (extended in the bulk) and φ21 (localized at the left edge)
for different contrast values. (c) Absolute values of amplitudes of
the three edge states φ13, φ21, φ22 with corresponding localization
lengths 0.37, 0.43, 0.49, obtained by fitting a line (orange) to local
maxima (orange dots) on a logarithmic scale.

The fragmentation at high contrast can be understood by
means of a quantitative perturbation-theoretical treatment pro-
vided in Appendix C, applying to generic binary tight-binding
chains. In the following, we outline the main steps of this
analysis. In order to apply perturbation theory, the Hamilto-
nian is written as H0 + h ·HI , where H0 solely contains the

diagonal part of H , i.e., isolated sites, while HI has 1’s only
on the first sub- and superdiagonal. For convenience, we then
rescale H ′ = H/v = H ′0 + 1/c · HI , changing only the en-
ergies εν → εν/v, but leaving all eigenstates unaffected. For
large contrast c, HI then acts as perturbation to H0, and we
can expand an eigenstate |φ〉(i) (1 ≤ i ≤ N) of H ∈ RN×N

as well as its energy ε(i) as

|φ(i)〉 = |φ(i)〉0 + λ |φ(i)〉1 + λ2 |φ(i)〉2 + . . . (7)

ε(i) = ε
(i)
0 + λε

(i)
1 + λ2ε

(i)
2 + . . . , (8)

which, inserted into the Schrödinger equation, yields the per-
turbation series. Due to the binary nature of H0, the only two
eigenvalues of H0, 0 and 1, are highly degenerate. In particu-
lar, before any higher-order state correction can be computed,
the so-called “correct zeroth-order states”76,77

|φ(i)〉0 = lim
λ→0
|φ(i)〉 (9)

must be found. Although these are superpositions of the
known eigenstates of H0, the corresponding expansion co-
efficients are in general unknown at the beginning of the
treatment76,77. In degenerate perturbation theory76,77, the cor-
rect zeroth-order states can be found by diagonalizing a se-
ries of recursively77 defined matricesH1,H2, . . . . More pre-
cisely, the matrices Hn are constructed from the perturbation
series up to n-th order by demanding that the correct zeroth-
order states fulfill certain consistency requirements. One then
has to solve

〈φ(i)|Hn|φ
(j)〉0 0 = δi,jε

(i)
n , ∀ i, j ∈ gn (10)

up to the order n in which all degeneracies are lifted, where
|φ(gn)〉 is the set of states which are degenerate up to n-th or-
der. Now, contrary to simple examples where the degeneracy
is resolved in first order (whereH1 is simply given byHI ), the
degeneracy of binary chains are usually completely resolved
only in higher orders. As a result, the procedure of obtaining
the correct zeroth-order states is rather complex76,77.

In Appendix C, we explicitly follow this procedure of find-
ing the correct zeroth-order states up to third order and in-
vestigate the first-order state corrections as well. This proce-
dure provides a high degree of understanding of how binary
chains, their local symmetries, the fragmentation of eigen-
states as well as their symmetries are connected. In partic-
ular, it is shown that each |φ(i)〉0 (1 ≤ i ≤ N), with N
being the length of the chain, has non-vanishing amplitudes
either only on either A-sites or only on B-sites (see State-
ment 2 of Appendix C). Thus, we can assign each |φ(i)〉0 a
type T ∈ {A,B}, depending on the sites on which it has
non-vanishing amplitudes. The spatial distribution of the non-
vanishing amplitudes can be further specified by introducing
the concept of maximally extended blocks of potentials of the
same kind (MEBPS). An example for such MEBPS are

1

AB
1

2

AAB
1

1

AB
1

3

AAA
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where MEBPS of type A (B) are marked by over (under)
brackets, with respective length denoted by integers. An
important conclusion of the analysis is that a given correct
zeroth-order state |φ(i)〉0 of type T can have non-vanishing
amplitude on MEBPS of type T and of individual length
l1, l2, . . . , ln only if there exist integers 1 ≤ kj ≤ lj , 1 ≤
j ≤ n such that (see Statement 2 of Appendix C)

k1

l1 + 1
=

k2

l2 + 1
= . . . =

kn
ln + 1

.

As one can easily show, for lj ≤ 6, this is possible only if
all lj are identical or if all lj are odd. As a consequence, for
the Fibonacci setup, where lj ≤ 2, any |φ(i)〉0 can simulta-
neously have non-vanishing amplitudes only on MEBPS of
length 1 or of length 2, but not on both. As a result, any state
|φ(i)〉0 has vanishing amplitudes on a large number of sites,
ultimately leading to its fragmentation. A closer evaluation
reveals that this fragmentation usually persists under inclusion
of the first-order state corrections |φ(i)〉1: If |φ(i)〉0 has non-
vanishing amplitudes only on A (B) sites, then |φ(i)〉1 will
have non-vanishing amplitudes only on a small number of B
(A) sites. As, at high contrast, |φ(i)〉 ≈ |φ(i)〉0 + |φ(i)〉1, our
perturbation theoretical treatment thus explains the origin of
the fragmentation of eigenstates in binary tight-binding chains
in a rigorous quantitative way. Compared to the renormaliza-
tion group approach which has been used68,78–81 to explain
the fractal nature of the spectrum of the Fibonacci chain and
which needs to be tailored to the system of interest, we stress
that our perturbation theoretical approach is much broader and
can be used to treat all binary chains where fragmentation oc-
curs. We demonstrate this generality by further analyzing the
spatial details of those fragmented states and connecting them
to the local symmetries of the chain and their environment
(neighboring sites) in Appendix C (see Statements 3 and 4 as
well as following text).

B. Local resonator modes and local symmetry

Relying on the above perturbation theoretical results, we
now promote an intuitive picture for the cause of fragmen-
tation, where a chain is viewed as a collection of local res-
onators. The eigenvalues of this chain are then approximately
given by the union of the eigenvalues of the individual res-
onators. As a consequence, each eigenvector of the full chain
with energy ε then has very small amplitude on resonators
whose energy differs strongly from ε. A local resonator is
here a discrete substructure which, at high contrast, confines
the wavefunction within its interior for a certain eigenenergy.
The simplest case consists of a three-site structure B|A|B,
where the vertical lines demarcate the resonator “cavity” (the
inner part A) from its “walls” (the outer parts B). The res-
onator character of this particular substructure is analyzed in
more detail in Appendix A. Two such resonators can be com-
bined to form a double resonator B|ABA|B, formed by over-
lapping one wall of each B|A|B. Note that, for a substructure
to function as a local resonator, either (i) the resonator wall

and its next-neighboring site in the cavity must be of different
type or (ii) the resonator wall must coincide with one of the
edges (|X or X|, with X = A,B).

We now link the resonator concept to the eigenstate frag-
mentation seen in Fig. 3 (a). As an example, each fragment
of φ55 (indicated by orange rectangles in Fig. 3 (b)) is local-
ized on the B’s of the local resonator A|BAB|A. We denote
this fact as A|BAB|A, which represents an eigenmode of the
isolated resonator A|BAB|A and which we will call a local
resonator mode (LRM). The overlines here indicate sites with
equally signed and relatively much higher amplitude than non-
overlined sites; see Appendix A. At high contrast the state φ55

can thus be seen as a collection of identical, non-overlapping
LRMsA|BAB|A (one on each fragment) with negligible am-
plitudes on the parts in between. In the same manner, each
eigenstate shown in Fig. 3 (a) is composed of identical LRMs.
In particular, we notice that all states in a given quasiband are
characterized by the same resonator mode, different from that
of other quasibands. This is shown on the right side of the fig-
ure, where LRMs are depicted schematically. Here, overlines
and underlines in an LRM such as A|BAB|A denote ampli-
tudes of opposite sign. Contrary to the bulk states of quasi-
bands, edge states feature unique resonator modes which are
not repeated elsewhere in the chain, with the underlying res-
onators located at (one of) the chain edges. We thereby dis-
tinguish these two types of LRMs as bulk and edge LRMs
(b-LRMs and e-LRMs, respectively).

The fact that each quasiband is characterized by a single
resonator mode can be understood as follows. If a given eigen-
state of energy ε is composed of K non-overlapping LRMs
such that |φ〉 has very low amplitude on the next-neighboring
sites of the corresponding resonators, then each of the energies
εk=1,2,...,K of those LRMs (that is, their eigenenergies in the
isolated underlying local resonator) must fulfill εk ≈ ε. This
statement is proven rigorously in Appendix D. Now, applying
the perturbative treatment of Appendix C to the chain of Fig. 3
shows that for any two LRMs to be nearly degenerate energet-
ically they must be identical. Thus, each quasiband—having
quasidegenerate modes at high contrast—is characterized by
a single LRM.

A similar reasoning explains why bulk states of quasibands
are more spatially extended compared to edge states lying
in spectral gaps. Indeed, due to the quasiperiodicity of the
Fibonacci chain, any local resonator (that is, a binary sub-
structure) in the bulk occurs repeatedly (though not periodi-
cally) along the chain—specifically, at spacings smaller than
double its size. This is a general result known as Conway’s
theorem50. Thus, a b-LRM hosted by a given local resonator
will also be correspondingly repeated along the chain. If the
b-LRM has energy εk, then a state with energy ε ≈ εk is al-
lowed to simultaneously occupy all copies of this b-LRM, and
is accordingly spatially extended. Edge states, on the other
hand, consisting of e-LRMs at high contrast, correspond to
local resonators induced by the presence of an edge, which
breaks the quasiperiodicity. Due to this truncation at the edge
(e. g. of the type · · · | · · ·X| with X = A,B at the right edge,
compare Fig. 3 (a)), the e-LRM generally does not match the
energy of any b-LRM, and therefore cannot occupy multiple
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local resonators in the bulk: The eigenstate is confined to the
edge, lying energetically isolated in a gap. This is visualized
by the marked edge states in Fig. 3 (a).

A remarkable observation in Fig. 3 (a) is that each local res-
onator hosting a b-LRM is reflection symmetric, such that all
isolated b-LRMs have definite parity; see schematic on the
right. This means that, at high contrast, the fragments (oc-
cupied local resonators) of quasiband eigenstates feature, to a
very good approximation, local parity with respect to local re-
flection symmetries of the chain. The positions and sizes of all
such local symmetries are shown in the top panel of Fig. 3 (a).
An example is given by the state φ53 which is locally symmet-
ric around, e. g., the position n = 48, and corresponds to the
b-LRM A|BAB|A, as indicated by the green boxes. This be-
havior is predicted by the degenerate-perturbative treatment
of Appendix C. There, we rigorously show that each |φ(i)〉0
is locally parity symmetric individually on each MEBPS (see
Statement 1 of Appendix C), which itself is by definition a
locally symmetric structure. While an MEBPS usually com-
prises only a few sites, we explicitly give examples for cases
where |φ(i)〉0 is locally symmetric also in larger domains.
One of this examples explains the local symmetry of LRMs
such as A|BAB|A (see Statement 3 of Appendix C). Overall,
the perturbation theoretical treatment demonstrates the crucial
role of local reflection symmetries in the eigenstate localiza-
tion profiles of binary aperiodic chains. A promising direc-
tion of research would thus be to treat this class of systems
within the recently developed theoretical framework of local
symmetries52,53,56.

C. Structural control of edge states

Having understood the real-space mechanism for the for-
mation of edge-localized gap states in Fibonacci chains, we
can now utilize this insight to systematically manipulate these
states. In particular, let us show how structural modifications
at the edges of a Fibonacci chain can selectively “annihilate”
a given edge mode. Note that whether or not one considers a
particular state localized (near or on) the edge to lie in an ener-
getical gap is obviously a question of the scale under consider-
ation. This is due to the fact that any finite chain naturally has
a discrete spectrum, for which, strictly speaking, no continu-
ous energy-bands are defined. In the remainder of this work,
we will solely consider states as gap-edge ones provided that,
at a contrast of c = 6, they lie in a clearly visible energeti-
cal gap. This simplifies our treatment, and in Appendix E we
comment on the extensions of this simplification.

For definiteness, we consider the edge state φ21 (orange cir-
cle) of the chain in Fig. 4 (a) which simply focuses on states
ν = 13 to 22 of Fig. 3 (a). This state corresponds to the
the e-LRM |A|B (see right side of Fig. 3 (a)) and is expo-
nentially localized, as shown in Fig. 3 (c). The underlying
resonator |A|B is a left-truncated version of the resonator
B|A|B, which hosts the b-LRM B|A|B characterizing the
quasiband below (states 14 to 20). Now, as shown in Fig. 4 (b),
if we complete the resonator |A|B into B|A|B by attaching a
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Figure 4. Selective annihilation of edge states of the Fibonacci chain
in Fig. 3 (a); see text for details. (a) Original chain and excerpt of the
state map (states 13–22), with edge states marked by colored circles.
(b) Annihilation of left edge state (orange) by attaching a B site to
the left of the chain. (c) Complete annihilation of edge states by
removing (adding) an A (B) site on the left (right) end of the chain.
Color coding of each subfigure is as in Fig. 3.

B site to the left end of the chain, then the edge can accom-
modate the b-LRM B|A|B instead of the e-LRM |A|B. Con-
sequently, the edge mode is replaced by a bulk mode of the
quasiband. In other words, the edge state is “absorbed” into
a quasiband by converting the e-LRM of the former to the
b-LRM of the latter through a structural modification at the
edge. This intuitive procedure can be applied similarly for the
other two pronounced edge states (green and purple circles)
in Fig. 4 (a), by completing the corresponding edge local res-
onator into a bulk one. Thus, the selective control of a specific
edge state is possible.

Let us note, however, that in most cases such a selective
annihilation of one edge state leads to the creation of one (or
more) other edge state(s) located elsewhere in the spectrum,
as a result of the edge modification. For example, the left
edge of the modified chain in Fig. 4 (b) features the resonator
|BAB|A, which is a truncated version of A|BAB|A host-
ing the b-LRMA|BAB|A, thus yielding a new gap-edge state
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(not shown).
Interestingly, in special cases this issue can be overcome by

exploiting the local symmetry of bulk resonators, as we now
explain using the example shown in Fig. 4 (c). Here, an A
site is attached to the right edge, which formerly hosted the
e-LRMs B|ABA| and B|ABA| (cf. Fig. 4 (a)), correspond-
ing to the edge states φ13 (green) and φ22 (purple), respec-
tively. In the modified chain, the right edge features a local
resonator B|AA|. The key point now is that this resonator
supports two LRMs, B|AA| and B|AA|, which are degen-
erate to the b-LRMs B|AABAA|B and B|AABAA|B, re-
spectively, due to the reflection symmetry of the underlying
resonator B|AABAA|B. This symmetry-induced degener-
acy is shown rigorously in Appendix B. As a result of their
degeneracy, the respective e- and b-LRMs can combine lin-
early to compose quasiband states, as seen in Fig. 4 (c); see
states in first and third quasiband from bottom with marked
edge resonators. The same procedure can be performed on the
left edge by removing an A site from it, leaving the edge res-
onator |B|A hosting |B|A which is degenerate to A|BAB|A
(see state in top quasiband with orange marked left edge res-
onator in Fig. 4 (c)). Note that both (right and left) edge mod-
ifications above are consistent with the Fibonacci order: The
resulting chain is simply obtained from the former one by a
single-site shift to the right along the infinite Fibonacci chain.
We thus have a case of finite Fibonacci chain with no edge-
localized gap states.

From the above it is clear that edge states in binary
quasiperiodic chains can now be rigorously understood and
manipulated within the framework of local resonators. Struc-
tural creation and annihilation represents a first fundamental
step in edge state control. Indeed, once an edge state is estab-
lished, its energetic position within a gap can further be tuned
by allowing for non-binary (freely varying) potentials at the
edges, while leaving the quasibands intact.

D. Behavior at low contrast

The local understanding and controllability of edge states at
high contrast levels raises the question if these properties are
retained also at lower contrast. To address this, in Fig. 5 (a)
we show the eigenvalue spectrum of the original Fibonacci
chain studied previously [Fig. 3 (a)] for varying contrast c. As
we see, gap states (localization on edges not shown here) are
clearly distinguished for all contrast levels. Figure 5 (b) shows
the spectrum of the modified Fibonacci chain of Fig. 4 (c)—
where all edge states were annihilated at high contrast—for
the same contrast values. Also here the structure of the spec-
trum is retained with varying c. In particular, a real-space
analysis (not shown here) confirms that all quasiband states
in the modified chain remain extended in the bulk for varying
c. The effect of lowering the contrast is merely a reduction
in the fragmentation of the eigenstate profiles which become
more smeared out into regions between the LRMs defined at
high contrast.

This finding indicates that the mechanism of edge state for-
mation via truncated local resonators based on an analysis at
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Figure 5. Eigenvalue spectrum for different values of the contrast c
(a) for the original Fibonacci chain of Fig. 3 (a), with the three gap
modes indicated by horizontal stripes, and (b) for the modified chain
of Fig. 4 (c). The ellipses highlight the removal of gap modes by the
modification, for all contrast levels.

high contrast, remains valid also for lower contrast, though
“hidden” due to the spatial smearing of the states. In other
words, the contrast parameter can be used as an intermedi-
ate tool to manipulate edge states in binary aperiodic model
chains: It is first ramped up to reveal the eigenstate structure
in terms of LRMs subject to modifications, and then ramped
down again with the bulk/edge-state separation retained.
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IV. APPLICATION TO NON-QUASIPERIODIC CHAINS

Featuring a point-like spatial Fourier spectrum (rendering
it, by definition, a quasicrystal1,21), the Fibonacci chain stud-
ied above represents the class of lowest structural complex-
ity when departing from periodicity towards disorder, as men-
tioned in Sec. I. The question naturally arises whether the lo-
cal resonator framework developed in Sec. III, distinguish-
ing edge from bulk states via LMRs, applies also to other
classes of aperiodic chains. In the following, we will demon-
strate the generality of our approach by applying it two cases
of qualitatively different structural character, the Thue-Morse
and Rudin-Shapiro chains. We thereby essentially go though
the same analysis steps as in Sec.III—identification of LRMs,
edge state control, and low contrast behavior—and assess the
particularities of each structural case.

A. Singular continuous Fourier spectrum: Thue-Morse chain

A well-studied case of aperiodic order which is not
quasiperiodic is the Thue-Morse sequence1, produced by
the inflation rule A → AB,B → BA yielding T =
ABBABAABBAAB · · · . Its Fourier spectrum is singular
continuous, and from this viewpoint it is considered82 closer
to the disorder limit (with absolutely continuous spectrum83)
than quasiperiodic order (with point-like spectrum). On the
other hand, a subset of eigenstates of the Thue-Morse chain
strongly resemble those of periodic chains84. The eigenstates
of a N = 144-site Thue-Morse chain85 are shown in Fig. 6.
Indeed, while some bulk states are more strongly localized
into subdomains than in the Fibonacci chain for equal con-
trast c = 1.5 (compare to Fig. 1), others are more extended
along the chain. As we see in Fig. 6, in spite of the quasiband
structure being more fragmented, there occur well distinguish-
able states within gaps which are localized on one of the chain
edges.

Local resonator modes. Like in Sec. III, we consider a
smaller chain of N = 55 sites to visually facilitate the de-
tailed spatial analysis. Its eigenstates are shown in Fig. 7 (a)
for contrast c = 6, together with the distribution of local re-
flection symmetries in the chain (top). As we see, the bulk
state profiles are fragmented in a well-defined manner for dif-
ferent quasibands: Like in the Fibonacci case, each bulk state
is composed of copies of a b-LRM characterizing the corre-
sponding quasiband, as indicated schematically on the right
of the figure. In contrast, the three occurring prominent edge
states (marked by colored circles) consist of non-repeated e-
LRMs at one of the chain ends. Like before, the local res-
onators underlying the e-LRMs can be identified as truncated
local resonators underlying the b-LRMs. This demonstrates
that our LRM-based framework for the formation of edge
states applies also for this class of aperiodic order. Notably,
also here the b-LRMs have definite local parity under reflec-
tion, and are present in the eigenstates following the local
symmetry axes shown in the bar plot (top of Fig. 7 (a)). This
is indeed predicted by the perturbation theory of Appendix C.

max

0
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Figure 6. Like in Fig. 1 but for a N = 144-site Thue-Morse chain.

We thus see that also for the Thue-Morse chain its local sym-
metries essentially provide the regions of localization of the
eigenstate fragments at high contrast.

Edge state control. The original Thue-Morse chain con-
tained three edge states, which were exponentially localized86

as shown in Fig. 7 (b). Edge states in Thue-Morse chains were
also demonstrated very recently in terms of the eigenmodes
of full vectorial Green matrices49, albeit localized according
to a power-law. Now, following the same principle as in the
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Figure 7. (a) Like in Fig. 3 (a) but for a N = 55-site Thue-Morse
chain, with three edge states marked by colored circles. (b) Absolute
values of amplitudes of the three edge states φ9, φ19, φ28 with local-
ization lengths 0.61, 0.61 and 0.6, obtained by fitting a line (orange)
to local maxima (orange dots) on a logarithmic scale. (c) Absorpion
of the two right edge states into quasibands (green and purple rect-
angles) and creation of a new right edge state (blue circle, lying be-
tween quasibands as indicated by × in (a)) by attaching a B site to
the right chain end, as explained in the text. Color coding of subfig-
ures (a) and (c) is as in Fig. 3.

Fibonacci case, Fig. 7 (c) shows how two edge states (marked
by green and orange circles in Fig. 7 (a)) are annihilated by at-
taching a B site to the right end of the original chain. Indeed,
those edge states were localized on the truncated resonator
B|AA| which is completed to B|AA|B and can thus host the

b-LRMs B|AA|B and B|AA|B, so that the edge states are
“absorbed” into the corresponding quasibands. However, the
right edge of the modified chain now features a new edge state
(marked by blue circle) with resonator modeA|B (its previous
absence is indicated by a× in Fig. 7 (a)). It lies, energetically,
in the gap just below the quasiband with b-LRMA|B|A. Note
that, as expected from our real-space local resonator picture,
the left edge state (orange circle) remains unaffected by the
present modification on the right edge of the chain, since it is
localized on the opposite edge.

Contrast variation. Finally, we investigate how edge states
and quasibands behave for lower contrast in the Thue-Morse
chain. Figure 8 (a) shows the spectrum of the chain of Fig. 7
(a) for varying contrast, starting from c = 3. As we see, the
three edge modes in the spectral gaps are clearly visible also
at lower contrast levels. The spectrum of the modified chain
(with left-attached B site) for varying c is shown in Fig. 8
(b). As is highlighted by the black circle and the ellipse, the
two former edge states are absorbed into the neighboring qua-
sibands (as shown in Fig. 7 (a)) for all considered contrast
levels. Also, the left edge state as well as the modification-
induced right edge state (orange and blue in Fig. 7 (c)) remain
in their gaps as the contrast is varied. Overall therefore, the
impact of the modifications persists at lower contrast levels.

B. Absolutely continuous Fourier spectrum: Rudin-Shapiro
chain

Taking a step towards higher structural complexity, we
finally investigate the case of a Rudin-Shapiro chain in
terms of our local resonator framework. The Rudin-Shapiro
sequence87 R is obtained by the inflation rule AA→ AAAB,
AB → AABA, BA → BBAB, BB → BBBA, yield-
ing R = AAABAABAAAABBBAB · · · for an initial
seed AA. Its Fourier spectrum is absolutely continuous, a
property shared with completely disordered chains83. Fur-
ther, there are indications that the tight-binding Rudin-Shapiro
chain has both exponentially and weaker-than-exponentially
localized eigenstates13,88–90, while even extended ones have
been shown to exist at low contrast. The different charac-
ter of the Rudin-Shapiro states compared to the Fibonacci or
Thue-Morse chain can be anticipated from the eigenstate map
shown in Fig. 9. As we see, at this low contrast (c = 1.5)
there is now no clear distinction between bulk and edge states.
Moreover, no clear energetic clustering into well-defined qua-
sibands is present. Note also that the distribution of local re-
flection symmetries along the chain (see top of figure) is much
less structured than in the Fibonacci or Thue-Morse chains (cf.
top of Figs. 1 and 6), with overall smaller symmetry domains
present. At the same time, there is clustering of symmetry
axes with gaps in between, caused by the occurrence of larger
contiguous blocks of single type (up to four A or B sites in a
row) along the sequence. In the following we show that there
is still a strong link of the eigenstates and spectral features of
the Rudin-Shapiro to the presence of locally symmetric res-
onators.

Local resonator modes. For the high-contrast analysis, we
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Figure 8. Eigenvalue spectrum for different values of the contrast c
(a) for the original Thue-Morse chain of Fig. 7 (a), with gap modes
indicated by horizontal stripes, and (b) for the modified chain of
Fig. 7 (c). The black circle and the ellipse highlight the removal of
selected gap modes by the modification, for all contrast levels.

consider a Rudin-Shapiro chain of N = 87 sites. The size is
now chosen slightly larger in order to better reflect the struc-
tural properties of Rudin-Shapiro sequence. Indeed, in ac-
cordance with its higher complexity, a given substructure will
here repeat at relatively larger distances along the sequence.
It may thus occur only once in a too short chain, thereby ob-
scuring its long-range order. Figure 10 (a) shows the eigen-
state map of the considered chain at contrast c = 6. We see
that also here the eigenstates fragment onto locally symmet-
ric substructures, and are again composed of b-LRMs corre-
sponding to clustered eigenvalue quasibands, as shown on the
right. The difference is now that there are many more differ-
ent identified b-LRMs compared to the Fibonacci and Thue-
Morse chains. This is because the increased number of con-
tiguous block sizes allows for a higher diversity of local res-

20 40 60 80 100 120 1400

max

0

Figure 9. Like in Fig. 1 but for a N = 144-site Rudin-Shapiro
chain.

onator substructures, with larger resonators additionally host-
ing a larger number of different LRMs each. In turn, there
is a higher possibility that different b-LRMs have (nearly)
the same energy, since the different resonators may have par-
tially overlapping individual eigenspectra. Therefore, it may
now more easily occur that different LRMs participate in the
same eigenstate (to which they are quasidegenerate; see Ap-
pendix D). An example of this are the states indicated by the
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Figure 10. (a) N = 87 site binary chain corresponding to a trun-
cated Rudin-Shapiro sequence at contrast c = |v/h| = 6 (hopping
h = 0.1). To the right, the grouping of eigenstates into resonator
modes as explained in the text is shown. To simplify the figure, res-
onator modes are only shown explicitly if they are shared by at least
two states. The two states marked by a green ellipse localize on
non-locally symmetric structures. The two states marked by orange
ellipses are examples for states with different resonator modes but
nearly equal energy, as explained in the text. (b) The result of an
extension of the chain by adding a B to the right. Due to this modifi-
cation, the resonator A|BB| on the right edge is completed, and the
purple marked states in (a) are energetically shifted towards the cor-
responding states localizing on the A|BB|A resonator located near
the right edge. Color coding of subfigures (a) and (b) is as in Fig. 3.
(c) Absolute values of amplitudes of the edge states φ9, φ14, φ31,
φ
38 and φ45.

green ellipse in Fig. 10 (a): Each of them consists of a A|B|A
on the left and two A|BBB|A on the right, consecutively
overlapping by one A site. The emergence of such modes
is explained in detail by means of perturbation theory in Ap-

pendix C. Further, edge states appear which localize on cor-
responding e-LRMs. Those are now, however, energetically
not as clearly distinct from the clustered eigenvalues of quasi-
bands as in the Fibonacci and Thue-Morse cases. For exam-
ple, the states marked by blue circles are localized on the left
edge, but are composed of the e-LRMs (from top to bottom)
|AAA|B, |AAA|B, |AAA|B, which are nearly degenerate to
the b-LRMs of the corresponding quasibands (see right side of
figure). Nevertheless, there are also well-distinguished edge
states lying in gaps (though close to gap edges) marked by
purple circles.

Edge state control. Contrary to the Fibonacci and Thue-
Morse cases, the edge states are not exactly exponentially lo-
calized, but have different localization lengths in different sec-
tions, as shown86in Fig. 10 (c). The amplitude of state φ31,
though overall decaying, even rises again at around n ≈ 20
and n ≈ 70. Unaffected by this different localization be-
havior compared to the previously treated examples, we now
manipulate the two states marked by purple color which are
localized on the right edge. These localize on the truncated
resonatorB|AA|, and their energy is different from the energy
of states localized on the complete resonator B|AA|B which
occurs twice in the bulk. In (b) we add a B on the right edge
of the chain, completing this resonator. Due to this comple-
tion, the two former gap-edge states move into the respective
energy cluster (or quasiband).

Contrast variation. In Fig. 11 (a) we investigate the eigen-
values of the Rudin-Shapiro chain of Fig. 10 (a) for varying
contrast. Compared to the case of the Fibonacci chain pre-
sented in Fig. 5 or the Thue-Morse chain presented in Fig. 8,
the energetic clusters form only at high contrast values. This
already indicates that modifications to the chain done at high
contrast can not directly be traced to energetic changes at low
contrast as was the case for the Fibonacci and Thue-Morse
chain. This can also be seen for the two edge states marked
by horizontal lines in Fig. 11 (a). At high contrast, these are
caused by a truncated resonator B|AA| on the right edge. In
Fig. 10 (b) we have completed this resonator, causing the two
edge states to move (at high contrast) closer to the nearest
eigenvalue cluster. As can be seen in Fig. 11 (b), this ma-
nipulation is only effective at high contrast. For low contrast,
the eigenvalue structure is nearly unchanged compared to the
original chain shown in Fig. 11 (a).

In conclusion, we have applied our local-symmetry based
resonator strategy to the Thue-Morse and the Rudin-Shapiro
chain. The results show that our approach can be used to ex-
plain and control gap-edge states of the Thue-Morse chain. At
high contrast the gap-edge states of the Rudin-Shapiro chain
are likewise explained. However, our approach can not be
used to make qualitative predictions at low contrast.

V. APPLICABILITY AND RELATION TO OTHER
APPROACHES

Let us briefly comment on the limitations of applicability
of the developed framework and its connection to similar ap-
proaches in the literature. The presented methodology essen-
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Figure 11. (a) Evolution of the eigenvalue spectrum of the Rudin-
Shapiro chain shown in Fig. 10 (a) for various values of the contrast
c. The two gap states φ14,38 are denoted by horizontal lines. (b)
Same as (a), but now for the modified Rudin-Shapiro chain shown
in Fig. 10 (b). For high contrast of c = 6, the two gap states are
removed. However, they reappear, though at slightly different posi-
tions, already at a contrast c = 3, as shown in the insets.

tially relies on the fragmentation of eigenstates at high con-
trast and can thus only be applied onto chains featuring such a
behavior of eigenstates. A perturbation theoretical treatment
of binary tight-binding chains which serves as basis for our
methodology, see Appendix C, indicates that at high contrast
the fragmentation of eigenstates is indeed the generic case.
However, the necessary conditions for this behavior still need
to be determined in order to clarify the range of applicability.

The connection between local resonators and quasibands
in quasiperiodic setups has been commented on in Ref.
18, 20, and 91. For the Thue-Morse sequence, a similar anal-
ysis has been achieved in Ref. 84. However, to the best of
our knowledge, there is no systematic framework bringing to-
gether the three concepts of LRMs, quasibands and edge states
into a unified context. An approach related to ours is the renor-
malization group flow analysis. For the tight-binding chains,
this method aims at understanding the energetic behavior of
a chain through a series of size reductions68. At each step,
the size of the system is decreased, and the behavior of the
decreased one is linked to the bigger one by a renormaliza-
tion procedure, usually done in terms of perturbation theory.
The renormalization group flow is a powerful method, and has
been successfully used to explain the fractal nature of the Fi-
bonacci spectrum68,78–81. However, it needs to be tailored to
the system of interest, and as stated in Ref. 81, finding an ap-
propriate renormalization group flow for a general quasiperi-
odic chain is not easy. This stands in contrast to the very gen-
eral method proposed in this work, which was shown to be
applicable to a broad range of different setups.

VI. CONCLUSIONS AND OUTLOOK

We have presented a systematic approach to the analysis
of aperiodic binary tight-binding chains regarded as a com-
bination of different resonator-like subsystems rather than a
single bulk unit. For low inter-site coupling, each eigenstate
is seen to be composed of spatially non-overlapping local res-
onator modes of these resonator structures. This viewpoint,
supported by a rigorous perturbation theoretical treatment, al-
lows for an intuitive explanation of the emergence of both
quasibands and gap-edge states in such chains. We demon-
strate the power of our approach by applying it to Fibonacci,
Thue-Morse and Rudin-Shapiro chains and show how gap-
edge states occurring in these chains can be manipulated.

A repeating motif in our analysis of eigenstates at high con-
trast is the fact that most resonator modes share the local sym-
metries of the underlying systems. This strong impact of local
symmetries is remarkable, especially as it is hidden at lower
contrast levels by a substantial background in the eigenstate
profiles. In this work we have given an explanation for this
finding at high contrast, and we believe that the study of lo-
cal symmetries in complex setups is a very promising field
with rich perspectives and potential applications. The recently
established framework of local symmetries52,53,56,57,92,93 pro-
vides dedicated tools for this purpose, and extensions of it are
of immediate relevance. In this line, our work may enable the
local-symmetry assisted design of novel optical devices that
support desired quasiband structures and strongly localized
edge states at prescribed energies, offering exciting opportu-
nities to control light-matter coupling in complex aperiodic
environments.
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Figure 12. All 16 eigenstates of the chain (depicted above)BA . . . B
with 14 A-sites at a contrast of c = 20. All but the eigenstates in the
last row localize on the A-sites.
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Appendix A: Discrete resonators

The aim of this appendix is to justify viewing substruc-
tures embedded in a larger binary aperiodic lattice as local
resonators. To this end, we investigate the behavior of the
simplest case of such a structure, BAB, in more detail. Its
Hamiltonian is

H =

vB h 0
h vA h
0 h vB

 , (A1)

with the (unnormalized) eigenstates

φ1 =

−1
0
1

 , φ2,3 =

 1
−δ±
√

8+δ
2

2
1

 . (A2)

where δ = (vA − vB)/h, with c = |δ|. For high contrast c,
φ3 ≈ (1,−δ, 1)T localizes on the central site. The idea now
is to view BAB at high contrast as a resonator, where the site
A effectively plays the role of a cavity, while the outer sites B
play the role of cavity walls. The resemblance to a resonator
becomes clearer for a larger structure with more modes be-
tween the resonator walls, like the structure in Fig. 12. As one
can see, all but two eigenstates extend nearly exclusively on
the internalA sites, and the wave-like character of these states
is well recognizable. Two states exclusively localize on the
outer two B sites. The setup thus acts as an extended cavity
consisting of 14 A sites, with two B sites playing the role of
the cavity walls. The smaller structure BAB is of the same
nature, albeit with a cavity of only a single site A. Notation-
ally, we will divide the actual cavity and the cavity walls of a
resonator by a vertical line, writing e.g. B|A . . . A|B. Sim-
ilarly, we also view the “inverse” structure A|B . . . B|A as a
resonator with resonator modes of higher energy, assuming
vB � vA. Moreover, closely neighboring resonators of the
form

B|A|B|A|B, B|AA|B|AA|B, . . . (A3)

can be seen as coupled resonators. To indicate the composite
character of such resonators, we omit the inner vertical lines,
i.e., B|ABA|B, B|AABAA|B, . . . .

Appendix B: Symmetry argument for the absence of edge states

Here we explain the absence of edge states in Fig. 4 (c) us-
ing the concept of local symmetry. The underlying symmetry
concept is very general and not limited to the Fibonacci chain,
as we demonstrate in the last paragraph of this appendix. Let
us denote an arbitrary sequence of A’s and B’s by X , its re-
verse ordered counterpart by X−1, and by Y a single site A
or B. Then

σ([X]) ⊂ σ([X−1Y X]) (B1)

where σ denotes the eigenvalue spectrum and [X] the tridi-
agonal Hamiltonian representing X . In words, the eigen-
value spectrum of a resonator [X] is completely contained
in that of the reflection-symmetric resonator [X−1Y X]. For
example, if X = AB and Y = B, then X−1 = BA and
σ([AB]) ⊂ σ([BABAB]).

To prove the above statement, we note that the Hamiltonian
[X−1Y X] reads

H =

[X−1] C 0

CT [Y ] D

0 DT [X]

 (B2)

where [X−1], [X] ∈ Rm×m. The matrices C =

(0, . . . , 0, h)T ∈ Rm×1 and D = (h, 0, . . . , 0) ∈ R1×m con-
nect the central site [Y ] to [X] and [X−1], respectively. Now,
using the “equitable partition theorem” from Ref. 94, we can
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transform H by a similarity transform into a block-diagonal
form

H ′ =

 [X−1]
√

2C 0√
2CT [Y ] 0
0 0 [X]

 . (B3)

The similarity transform conserves σ, and since H ′ is block-
diagonal, we have

σ(H) = σ(H ′)⇒ σ([X]) ⊂ σ(H) = σ([X−1Y X]) (B4)

which proves Eq. (B1). Moreover, again using the equitable
partition theorem, one can show that the eigenvalues of [X]

belong to eigenstates of [X−1Y X] with negative parity with
respect to the central site Y .

Let us now apply the above statement to Fig. 4 (c). Here,
for each resonator mode at the edge, there exists one resonator
mode within the bulk possessing a similar energy:

ε(|B|A) ≈ ε(A|BAB|A) (B5)

ε(A|BB|) ≈ ε(A|BBABB|A) (B6)

ε(A|BB|) ≈ ε(A|BBABB|A) (B7)

where ε(R) denotes the energy of the resonator mode R. In
the limit of high contrast, where the resonators present in
Eqs. (B5) to (B7) are disconnected from the remainder of the
system, the approximations become equalities, and the edge
state eigenenergies are thus “absorbed” into the correspond-
ing quasiband.

In a similar manner, the energetic near-equivalence of res-
onator modes

ε(|AAA|B) ≈ ε(B|AAABAAA|B)

ε(|AAA|B) ≈ ε(B|AAABAAA|B)

ε(|AAA|B) ≈ ε(B|AAABAAA|B)

at high contrast as occurring in Fig. 10 (a) can be explained.

Appendix C: Perturbation theoretical treatment

In this section, we give an explanation for the fragmenta-
tion of eigenstates at high contrast in terms of a perturbation
theoretical analysis. This will also show why the dominant
entries of the eigenstates are in almost all cases obeying local
symmetries. Before we start, we note that a degenerate per-
turbation theoretical treatment of binary chains has been done
in the past to retrieve its eigenenergies95. The main focus in
the following, however, lies on the behavior of eigenstates.

To apply perturbation theory, we write the Hamiltonian
Eq.(2) as

H = H0 + λHI ∈ RN×N , (C1)

where H0 solely contains the diagonal part of H , i.e., isolated
sites, while HI connects them, i.e., contains the off-diagonal

elements of H . By means of λ, an eigenstate |φ〉(i) , 1 ≤ i ≤
N of H as well as its energy ε(i) are expanded as

|φ(i)〉 = |φ(i)〉0 + λ |φ(i)〉1 + λ2 |φ(i)〉2 + . . . (C2)

ε(i) = ε
(i)
0 + λε

(i)
1 + λ2ε

(i)
2 + . . . . (C3)

Inserting Eqs. (C2) and (C3) into the Schrödinger equation
H |φ(i)〉 = ε(i) |φ(i)〉 yields the perturbation series which is
assumed to converge and thus solved order by order in λ.

At zeroth order, the perturbation series reduces to the eigen-
value equation for the unperturbed H0. Since it is binary,
the N eigenstates of H0 are highly degenerate and form two
groups, satisfying

H0 |ψ
(α)〉 = vA |ψ

(α)〉 , 1 ≤ α ≤ gA
H0 |ψ

(β)〉 = vB |ψ
(β)〉 , gA + 1 ≤ β ≤ gA + gB = N

where gA,B denote the number of sites with potentialA,B, re-
spectively. The so-called “correct” zeroth-order states which
fulfill

|φ(g)〉0 = lim
λ→0
|φ(g)〉, g = {α, β} (C4)

and which occur in Eq. (C2) and thus also in the perturbation
series are linear superpositions of the |ψ(g)〉. In the following,
we will always denote the two sets {α, β} by g and simple
call the |φ(g)〉0 the zeroth-order states.

At the start of the perturbation theoretical treatment, the
|ψ(i)〉 , 1 ≤ i ≤ N are known, but the |φ(i)〉0 are usually
not, and the |φ(i)〉1,2,... can not be directly be determined.
However, it can be shown76 that already the knowledge of the
|ψ(i)〉 is sufficient to obtain a series of particular solutions
to the 1, 2, . . . , n-th order perturbation equation, yielding the
energy-corrections ε(i)1 , . . . , ε(i)n as a byproduct. Provided that
the degeneracy of a given state |φ(j)〉 , 1 ≤ j ≤ N is lifted at
k-th order, then the corresponding correct-zeroth order state
|φ(j)〉0 can be obtained by diagonalizing a R|j

′|×|j′| matrix
which can be derived from the (k − 1)-th order perturbation
equation76. Here, |j′| is the number of states |φ(j

′
)〉 which

are degenerate with |φ(j)〉 up to order k − 1. Then, at order
k+1, . . . , k+l, the state correction |φ(j)〉1 , . . . , |φ

(j)〉l can be
obtained. Note that for the problem at hand, all degeneracies
are guaranteed to be lifted at a finite order, since the eigen-
values of tridiagonal matrices with strictly non-vanishing sub-
and superdiagonals (such as the one here) are distinct96 (i.e.,
non-degenerate). Though all degeneracies will eventually be
lifted, the order at which this happens is in general different
for different states. In many textbooks, all degeneracies are re-
solved already at first order, and the zeroth-order states |φ(i)〉0
are the ones that diagonalize the matrix 〈ψ(i)|HI |ψ

(i)〉 in the
corresponding degenerate subspace. This results in simple ex-
pressions for the higher-order corrections for both the states
and the energy. For our binary H0, however, degeneracies are
usually resolved only at very high order, and the process be-
comes complex. For Fibonacci chains, all degeneracies are
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resolved at 4-th order for generation g = 7, at 5-th order for
g = 8, at 6-th order for g = 10 but only in 8-th order for
g = 12.

In the following, we will first show the feasibility of de-
generate perturbation theory by means of the Fibonacci chain,
showing that for high contrast already the zeroth-order states
are sufficient to explain the fragmentation of states. Next, we
will show the process of determining the zeroth-order states
in the first three orders, allowing for an intuitive picture of
the emergence of fragmentation and locally symmetric am-
plitudes. We have numerically observed convergence of the
perturbation series if the contrast is larger than roughly 5, de-
pending on the exact chain.

Application onto the Fibonacci chain

Figure 13 demonstrates the applicability of degenerate per-
turbation theory to a 9-th generation Fibonacci chain [the
same as shown in Fig. 3 (a)] at a contrast c = 6. In subfigure
(a), at each site the difference

δ(i) = |φ(i)〉 −
(
|φ(i)〉0 + |φ(i)〉1

)
, 1 ≤ i ≤ N = 55

is shown. Note that the differences δ(i) are rather small, and
in Fig. 13 (b), a detailed picture is given for the uppermost
state |φ(55)〉. In Fig. 13 (c) and (d), the full state |φ(55)〉 and
|φ(55)〉0+|φ(55)〉1 are shown, respectively. As one can see, al-
ready the zeroth-order state matches the fragmentation behav-
ior of the full state quite well, up to the two double resonator
modes A|BAB|A on the left half of the chain. In Fig. 13 (e),
we include the first-order correction |φ(55)〉1. As one can see,
the resulting state |φ(55)〉0 + |φ(55)〉1 is very close to the full
state |φ(55)〉 shown in Fig. 13 (c). Although we have here only
shown the 55-th state (i.e., uppermost) state in detail, the be-
havior for all other states is similar. This shows that already
the first-order state corrections yield very good results.

If one goes to even higher contrast, already the zeroth-order
states |φ(i)〉0 are sufficient to get a full picture of the fragmen-
tation of a given state. This is demonstrated in Fig. 14 for a
comparatively very high contrast of c = 20. Subfigure (a)
shows the difference |φ(i)〉 − |φ(i)〉0 at each site. The sub-
figures (b) and (c) show the complete state |φ(55)〉 and the
zeroth-order state |φ(55)〉0, for which the main features (the
resonator modes) are visible very well. Again, this behavior is
the same for all other states, indicating that already the zeroth-
order states give a good representation of the localization pat-
terns occurring in the full state. Before we explicitly show
the computations for the first three orders in degenerate per-
turbation theory, let us comment on the connection between
the symmetry of the underlying potential sequence and that of
the non-negligible amplitudes of a given eigenstate by means
of Fig. 14 (c). As can be seen, the zeroth-order state is locally
parity symmetric individually within the two domains S1,2.
However, as a whole this state |φ(55)〉0 is not locally reflec-
tion symmetric w.r.t. an axis denoted by α. As we will outline
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Figure 13. (a) Above: Distribution of axes of local symmetry do-
mains and potential sequence, which is identical to that in Fig. 3
(a), i.e., corresponds to a ninth generation Fibonacci chain. Below:
At each site, the map shows the difference between the full eigen-
state |φ(i)〉 and the sum of the zeroth-order state and the first-order
correction at a contrast of c = 6. (b) Detailed view on these differ-
ences for the uppermost state. The sign of amplitudes is color coded,
red for positive and blue for negative values. (c) The amplitudes of
the eigenstate |φ(55)〉. Note that this particular state does not contain
any negative amplitudes. (d) The amplitudes of the zeroth-order state
|φ(55)〉0. (e) The amplitudes of the zeroth-order state |φ(55)〉0 plus
that of the first-order state correction |φ(55)〉1 (not normalized).

in the following, the reason for this is that the environment of
the two domains S1,2 is different, where environment includes
not only next-neighboring sites but also the ones located fur-
ther away (we will explain the notion of “further away” in
more detail below). In Fig. 14 (d), we change the environ-
ment of the right domain such that it matches that of the first
domain up to the first five neighbors. As a result, the zeroth-
order state is now symmetric w.r.t. a reflection through the
axis α. In the following, we will investigate the connection
between local symmetries of the underlying chain and that of
the zeroth-order states in more detail. Finally, we will inves-
tigate the first-order state corrections and their relation to the
fragmentation of eigenstates.
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Figure 14. (a) Same as in Fig. 13 (a), but now at a contrast c = 15

and without the first-order correction |φ(i)〉1. (b) The uppermost
eigenstate |φ(55)〉. (c) the zeroth-order state |φ(55)〉0. Within S1,2

the state is locally symmetric w.r.t. a reflection at the respective cen-
ters of these domains (indicated by dotted lines). However, the state
is asymmetric w.r.t. a reflection through the axis α. (d) The environ-
ment of S1,2 has been made symmetric by adding the sites ABAA
on the right-hand side. As a result, the zeroth-order state |φ(55)〉0
(and also, albeit only approximately, the corresponding complete
state, though not shown here) is locally symmetric w.r.t. a reflection
through α.

Emergence of localization patterns and their locally symmetric
character

We will now show the procedure of finding the zeroth-order
states, as can be found e.g. in Refs. 76 and 97. Since this pro-
cedure is quite technical, to help the reader we have visualized
the process in a concise form in Fig. 15 for the easily traceable
case of H0 = diag(B,B,A,A,B,A,A).

As stated above, |φ(g)〉0 can in general not be determined
before its degeneracy is not completely lifted. At higher or-
ders, the states |φ(g)〉 degenerate at zeroth order may split into
subsets |φ(g1)〉 , |φ(g2)〉 , . . . which are degenerate up to first
order, each of which can subsequently split into subsets of
states |φ(g1,1)〉 , |φ(g1,2)〉 , . . . , |φ(g2,1)〉 , |φ(g2,2)〉 , . . . which
are degenerate up to second order, and so on. The determina-
tion of the zeroth-order states can be done by means of recur-
sively defined auxiliary states76,97

|φ(g)〉0,0 = |ψ(g)〉 (C5)

|φ(g[k])〉0,1 =
∑

1≤l≤|g|

b
(G)(k)
l |φ(g[l])〉0,0 (C6)

|φ(gi[k])〉0,2 =
∑

1≤l≤|gi|

b
(Gi)(k)
l |φ(gi[l])〉0,1 (C7)

|φ(gi,j [k])〉0,3 =
∑

1≤l≤|gi,j |

b
(Gi,j)(k)

l |φ(gi,j [l])〉0,2 (C8)

... (C9)

appearing on the left-hand side of the above equations, where
g[k] denotes the k-th element of the set g and k can run from
1 to the number of elements |g| within the set. The index G
is equal to A if g ∈ α and equal to B if g ∈ β. Each ex-
pansion coefficient b(S)(k)

l is the l-th component of the vector
|b(S)(k)〉 , S ∈ {G,Gi, Gi,j , . . . } defined as

V
(G)
1 |b(G)(k)〉 = ε

(g[k])
1 |b(G)(k)〉

V
(Gi)
2 |b(Gi)(k)〉 = ε

(gi[k])
2 |b(Gi)(k)〉

V
(Gi,j)
3 |b(Gi,j)(k)〉 = ε

(gi,j [k])
3 |b(Gi,j)(k)〉

...

where the matrices V (G)
1 , V

(Gi)
2 , . . . are obtained by a recur-

sive process76,97. Explicitly, for the first three orders they are(
V

(G)
1

)
k,j

= 〈φ(g[k])|HI |φ
(g[j])〉0,0 0,0(

V
(Gi)
2

)
k,j

= 〈φ(gi[k])|HIR
(g)HI |φ

(gi[j])〉0,1 0,1(
V

(Gi,j)
3

)
k,l

= 〈φ(gi,j [k])|U (gi)|φ(gi,j [l])〉0,2 0,2

where

U (gi) = HIR
(g)HIR

(g)HI +HIR
(g)HIR

(gi)HIR
(g)HI
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Figure 15. Visualization of the process of finding the zeroth-order states for H0 = diag(B,B,A,A,B,A,A).
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with HI = HI − ε
(gi)
1 and

R(g) =
∑
k/∈g

|ψ(k)〉 〈ψ(k)|
ε
(g)
0 − ε(k)

0

, R(gi) =
∑
k∈gj
j 6=i

|φ(k)〉0,1 〈φ(k)|0,1

ε
(gi)
1 − ε(k)

1

.

The above recursive process does the following: At the
start, we have |φ(g)〉0,0 = |ψ(g)〉. These are then superposed

according to Eq. (C6), obtaining |φ(g)〉0,1. Within each de-
generate subspace gi, these are again superposed according to
Eq. (C7), obtaining |φ(gi)〉0,2. Again, within each degenerate
subspace gi,j , these are superposed according to Eq.(C8), ob-
taining |φ(gi,j)〉0,3, and so on. Provided that the degeneracy

of a given state |φ(k)〉 , 1 ≤ k ≤ N is solved at n-th order,
the degenerate subspace for this state at orders l > n contains
only one state, so that naturally |φ(k)〉0,l = |φ(k)〉0,n and76

|φ(k)〉0 = |φ(k)〉0,n.

In the following, we will prove that the |φ(i)〉0 , 1 ≤ i ≤ N
simultaneously localize on one or more maximally extended
blocks of potentials of the same kind (MEBPS) [Statement 1]
and determine on which such blocks a given state can simulta-
neously localize (Statement 2). Each MEBPS is the cavity of
a resonator, thus giving reason for the localization of states
on resonators. Statement 1 also shows that the |φ(i)〉0 are
locally parity symmetric individually on each MEBPS, and
Statements 3 and 4 further deal with longer-range symmetries
of the zeroth-order states. Out of the many possible choices of
|ψ(i)〉 (due to its high degeneracy), in the following we chose
them such that |ψ(α[k])〉 [|ψ(β[k])〉] is solely localized on the
k-th site with potential A [B] (counted from the left).

Statement 1. Each state |φ(i)〉0 , 1 ≤ i ≤ N simultaneously
localizes on one or more maximally extended blocks A . . . A
or B . . . B of potentials of the same kind (MEBPS) and is lo-
cally parity symmetric on each of these blocks.

Proof. The proof is done in three steps. Firstly, we show that
V

(G)
1 , G ∈ {A,B} is block-diagonal, where each block is

related to exactly one MEBPS. Secondly, we show that the
eigenvectors |b(G)(k)〉 , 1 ≤ k ≤ |g| of V (G)

1 are locally parity
symmetric and subsequently the |φ(g)〉0,1 are locally symme-
try on each MEBPS. Thirdly, we show that any higher-order
states |φ(g)〉0,n with n > 1 show this local symmetry as well,

and thus the zeroth-order states |φ(g)〉0 are locally symmetric
as well.

We start by proving the following. For the case that HI

contains only next-neighbor couplings (as is the case here)
the V (G)

1 become block-diagonal, i.e., can be written as

V
(G)
1 =

D
(G)
1

. . .
D(G)
nG

 (C10)

where nG denote the number of blocks occurring in V (G)
1 and

each block

D
(G)
i =


0 h

h
. . . . . .
. . . . . . h

h 0

 , 1 ≤ i ≤ nG (C11)

is a tridiagonal Toeplitz matrix. To prove that V (G)
1 is of the

above form, we note that by the definition of V (G)
1 and HI ,

two states |ψ(j)〉 , |ψ(k)〉 , 1 ≤ j, k ≤ N are coupled to each
other by any of the two matrices V (G)

1 provided that (i) the
single sites on which they localize are direct neighbors and
(ii) they have the same zeroth-order energy, i.e., they must be
localized on states with identical on-site potential. If (i) and
(ii) are fulfilled for |ψ(j)〉 , |ψ(k)〉 , j 6= k with j, k ∈ g and
g[l] = j1, g[m] = j2, then the corresponding matrix element
(V

(G)
1 )l,m = h due to the definition of these states. As a

result, for each MEBPS A . . . A [B . . . B] containing n sites,
there is one tridiagonal n × n block of the form Eq. (C11)
present in V (A) [V (B)].

We now show that the |φ(g)〉0,1 are locally parity symmetric
on each MEBPS. To this end, we use the fact that the eigen-
vectors of the block-diagonal matrix V (G) are

|b(G)(k)〉 =




{w1,G}
0d2,G
0d3,G

...
0dnG

,G

 ,


0d1,G
{w2,G}
0d3,G

...
0dnG

,G

 , . . . ,


0d1,G
0d2,G
0d3,G

...
{wnG,G

}




with 1 ≤ k ≤ |g| and where 0di,G is the di,G × 1 vector
with identical zero entries and {wi,G} denotes the set of di,G
eigenvectors of D(G)

i ∈ Rdi,G×di,G . All vectors in a given
set {wi,G} have non-vanishing components only on one max-
imally extended block of potentials of the same kind and is
parity-symmetric w.r.t. a reflection through the center of this
block. The latter is due to the fact that the D(G)

i are real and
bisymmetric, and such matrices have definite parity98 (in the
case of degeneracies, the eigenvectors can be chosen accord-
ingly). A matrix is bisymmetric if it is symmetric both around
the main and the anti-diagonal. Since we have ordered the
state |ψ(g[k])〉 , 1 ≤ k ≤ |g| such that it has non-vanishing
amplitude on the k-th site with potential G, one can easily
show that each of the |φ(g)〉0,1 has definite parity on each
MEBPS.

For second order degenerate perturbation theory, the states
|φ(gi)〉0,1 which are degenerate up to first order are super-

posed to obtain |φ(gi)〉0,2. Now, since all states in a given
set {wj,g}, 1 ≤ j ≤ nG have distinct eigenvalues, the states
|φ(gi)〉0,1 are constructed such that for each set gi there is at
most one state possessing non-vanishing amplitudes on any
given MEBPS. Thus, |φ(gi)〉0,2 , . . . will keep the local par-
ity symmetry, and it is trivial to show that the zeroth-order
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states |φ(g)〉0 are locally parity symmetric on each MEBPS as
well.

Due to its maximal extension, each MEBPS is directly
neighbored either by potentials of the same kind on one or
on both sides, with the former being the case if the MEBPS
forms one edge of the chain. Thus, the |φ(g)〉0 are seen
to localize on resonators. We now show that a given state
|φ(i)〉0 , 1 ≤ i ≤ N can only simultaneously localize on res-
onators fulfilling certain conditions.

Statement 2. A given zeroth-order state |φ(i)〉0 , 1 ≤ i ≤ N
can simultaneously localize on a set of MEBPS with individual
lengths l1, l2, . . . , ln only if the following conditions are met.
(i) All the MEBPS must have potentials of the same kind. (ii)
There exist integers 1 ≤ kj ≤ lj , 1 ≤ j ≤ n such that

k1

l1 + 1
=

k2

l2 + 1
= . . . =

kn
ln + 1

. (C12)

Proof. By definition, the zeroth-order state |φ(i)〉0 is formed
by superpositions of a subset of the states |φ(gj)〉0,1, with
i ∈ gj . Thus, a necessary condition to allow for the local-
ization on multiple MEBPS is that among |φ(gj)〉0,1, for each
MEBPS there is one state localized on this MEBPS. By def-
inition, the set |φ(gj)〉0,1 contains states with pairwise iden-

tical zeroth-order ε(gj)
0 and pairwise identical first-order en-

ergy corrections ε(gj)
1 . The first condition is fulfilled if all the

MEBPS have the same potential. To prove the second condi-
tion, we use the fact that the first-order energy corrections ε(g)1

can be given analytically. A block matrix D(G)
i ∈ Rli×li oc-

curring in V (G)
1 is of tridiagonal Toeplitz form, and its eigen-

values are thus99 given by

λ
D

(G)
i

k = 2|h| cos

(
πk

li + 1

)
, k = 1, . . . , li. (C13)

Thus, two blocks D(G)
1 , D

(G)
2 with size l1, l2 only share com-

mon eigenvalues provided that the integer-equation

k1

l1 + 1
=

k2

l2 + 1
(C14)

is fulfilled for some 1 ≤ k1 ≤ l1 and 1 ≤ k2 ≤ l2. Gener-
alizing the above to the case of n blocks with corresponding
length l1, . . . , ln directly yields Eq.(C12).

For many combinations of l1 6= l2 (especially for small
l1,2), Eq.(C14) can not be fulfilled, with the prominent excep-
tion of l1,2 both being odd numbers. In this case, there exist
states |φ(i)〉0,1 which localize on two resonators of different

kind, and usually this behavior is kept also for |φ(i)〉0 as well
as the corresponding complete states |φ(i)〉. This is the expla-
nation for the emergence of the two states in Fig. 10 (a) which
are marked by green ellipse.

We now show how the local symmetries of the zeroth-order
states can be explained by means of that of the underlying

potential sequence. Due do the complexity of binary tight-
binding chains, we only show two explicit cases, but stress
that the process can easily be applied to any given chain.

Statement 3. If H0 contains one or more of the substructures

[. . . ]AABAB
S1

AA[. . . ] (C15)

or

[. . . ]AABAB
S1

A (C16)

(where [. . . ] denotes a possibly larger extension of the chain)
then all zeroth-order states |φ(β)〉0 respect the local symmetry
S1 on each of these structures.

Proof. We label the sites of the substructure AABABAA
from left (s1) to right [s7 for Eq.(C15) and s6 for Eq.(C16)],
where the small s indicates a possible embedding of the cor-
responding substructure into a greater system. Among the N
states |φ(i)〉0,1 , 1 ≤ i ≤ N of this system, all but the two

states |φ(jk)〉0,1 , 1 ≤ k ≤ 2 with 1 ≤ jk ≤ N, j1 6= j2
have non-vanishing amplitudes on both of the sites s3 and s5.
Moreover, |φ(j1)〉0,1 has non-vanishing amplitude only on site

s3, while |φ(j2)〉0,1 has non-vanishing amplitude only on site

s5. We denote the set |φ(g1)〉 to contain all states which are de-
generate with |φ(jk)〉 up to first order. As can be shown, V (G1)

2

(just as V (G)
1 ) is block-diagonal, and only states that are de-

generate up to first order and which are localized on MEBPS
which are separated by exactly one site are coupled to each
other. Thus, the two states |φ(j1)〉0,1 , |φ

(j2)〉0,1 , j1, j2 ∈ g1

are not coupled to the other |φ(g1)〉0,1 by means of V (g1)
2 , but

only to each other. If g1[1] = j1 and g1[2] = j2, then the
submatrix(

V
(G1)
2

)
l,m

=
h2

vB − vA

(
2 1
1 2

)
, 1 ≤ l,m ≤ 2 (C17)

which is real-valued and bisymetric. Its eigenvectors are thus
parity-symmetric. As can be easily shown, thus |φ(jk)〉0,2 are
parity symmetric within S1, i.e., respect this domain of local
symmetry. The matrix in Eq.(C17) has non-degenerate eigen-
values referring to ε(jk)

2 , and thus the two states |φ(jk)〉 are
no longer degenerate to each other at second order. Since
|φ(jk)〉0,1 are the only ones out of the |φ(β)〉0,1 with non-
vanishing amplitudes within S1, one can easily show that all
zeroth-order states |φ(β)〉0 must respect S1.

The above is of relevance for the first and third quasiband
from top in Fig. 3 (a). By means of another example, we in-
dicate the importance of the environment of a domain S such
that the zeroth-order states respect it.

Statement 4. If the right edge of H0 is given by

[. . . ]BAABABA
S1

(C18)
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(where [. . . ] denotes a possibly larger extension of the chain)
then the zeroth-order states |φ(α)〉0 do not respect the local
symmetry S1. However, if the right edge of H0 is given by

[. . . ]BAABABA
S1

B (C19)

then all zeroth-order states |φ(α)〉0 respect the local symmetry
S1.

Proof. We label the sites of the substructure BAABABA
from left (s1) to right [s7 for the first and s8 for the second
statement]. Among the N states |φ(i)〉0,1 , 1 ≤ i ≤ N of

this system, all but the two states |φ(jk)〉0,1 , 1 ≤ k ≤ 2 with
1 ≤ jk ≤ N, j1 6= j2 have non-vanishing amplitudes on both
of the sites s5 and s7. Moreover, |φ(j1)〉0,1 has non-vanishing

amplitude only on site s5, while |φ(j2)〉0,1 has non-vanishing

amplitude only on site s7. We denote the set |φ(g1)〉 to contain
all states which are degenerate with |φ(jk)〉 up to first order.
Again, due to the block-diagonal character of V (g1)

2 , the two
states |φ(j1)〉0,1 , |φ

(j2)〉0,1 , j1, j2 ∈ g1 are not coupled to the

other |φ(g1)〉0,1 by means of V (G1)
2 , but only to each other. If

g1[1] = j1 and g1[2] = j2, then the submatrices(
V

(G1)
2

)
l,m

=
h2

vB − vA

(
2 1
1 1

)
, 1 ≤ l,m ≤ 2 (C20)

for [. . . ]BAABABA and(
V

(G1)
2

)
l,m

=
h2

vB − vA

(
2 1
1 2

)
, 1 ≤ l,m ≤ 2 (C21)

for [. . . ]BAABABAB. Both Eqs. (C20) and (C21) are real-
valued, but the former is not bisymmetric, while the latter
is. As can be easily shown, for the first case, the |φ(jk)〉0,2
are also not parity symmetric within S1, i.e., do not respect
this domain of local symmetry. The matrix in Eq. (C20) has
non-degenerate eigenvalues referring to ε(jk)

2 , and thus the two
states |φ(jk)〉 are no longer degenerate to each other at second
order. Since |φ(jk)〉0,1 are the only ones out of the |φ(α)〉0,1
with non-vanishing amplitudes within S1, one can easily show
that no zeroth-order state |φ(α)〉0 respects S1. For the second
case, the line of argumentation essentially is the same with
the difference that, due to the bisymmetry of Eq. (C21), the
|φ(jk)〉0,2 are parity symmetric within S1, and thus all |φ(α)〉0
respect S1.

The reason for the non-bisymmetry of Eq. (C20) is the dif-
ferent environment of s5 and s7. In this particular case, the
environment is made up by the next-neighboring sites, but for
higher orders it comprises many more sites left and right to the
given domain. The fact that |φ(55)〉0 in Fig. 14 (c) is not lo-
cally symmetric w.r.t. a reflection through α is due to the fact
that the environment of S1,2 is not symmetric w.r.t. a reflec-
tion through α in a sufficiently large radius, while in Fig. 14
(d) it is, so that |φ(55)〉0 is locally symmetric w.r.t. a reflection
through α.

First-order state corrections and eigenstate fragmentation

In the above, we have seen how the correct zeroth-order
states are related to the local symmetries of the underlying
potential. In particular, we have argued that each of the |φ(i)〉0
is fragmented, since it has non-vanishing amplitudes only on
one kind of site. We have further seen that, already at contrast
c = 6, |φ(i)〉0 + |φ(i)〉1 ≈ |φ

(i)〉. In the following we show
that, in general, the |φ(i)〉0 + |φ(i)〉1 are fragmented as well.

Contrary to the non-degenerate case, where the first order
state corrections are given by

|φ(i)〉1 =
∑
j 6=i

|φ(j)〉0 〈φ
(j)|0

ε
(i)
0 − ε

(j)
0

HI |φ
(i)〉0 ,

the corresponding expression in degenerate perturbation the-
ory depends on the order in which the degeneracy of |φ(i)〉 is
completely resolved. A full, recursive expression for |φ(i)〉1
can be found in Ref. 77. In this context, we only need the
easily provable fact that

〈ψ(ḡ[j])|φ(g[k])〉1 =
〈ψ(ḡ[j])|HI |φ

(g[k])〉0
ε
(g[k])
0 − ε(ḡ[j])0

(C22)

where ḡ denotes the set of sites which are not elements of g.
In other words, if |φ(i)〉0 “lives” on, say, sites with potential
A, then |φ(i)〉1 will have non-vanishing amplitudes only on
directly neighboring B sites, but not on those further away.
As a result, if |φ(i)〉0 has non-vanishing amplitudes on a small
number of sites (which we have observed for Fibonacci, Thue-
Morse and Rudin-Shapiro chains), then |φ(i)〉0 + |φ(i)〉1 is
fragmented.

Appendix D: Discrete Energy-localization theorem and
approximation of eigenvalues by sub-Hamiltonians

We here extend a theorem of Ref. 100, connecting the local-
ization of a state to its eigenenergy, to discrete Hamiltonians:

Theorem. The following equation holds

‖ |φ〉 ‖∂D
‖ |φ〉 ‖D

≥ min
εk

|ε− εk|
|h|

(D1)

where |φ〉 is an eigenvector of H with energy ε and εk are
eigenvalues of H restricted to the domain D which is a sim-
ply connected subdomain of the whole system. ‖ |φ〉 ‖D is
the norm of |φ〉 on D and ‖ |φ〉 ‖∂D the norm of |φ〉 on next-
neighbors of D.

Proof. If D contains ND sites, define the ND × ND matrix
HD constructed from the corresponding matrix elements of
the complete Hamiltonian H . In other words, HD is the re-
striction of H onto D. Similarly, we further define |i〉 as the
ND × 1 vector constructed from the full eigenvector |φ〉 by
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taking the interior elements of D. If we now let HD act on
|i〉, one can easily show that

HD |i〉 = ε |i〉 − h |∂φ〉 . (D2)

where ε is the eigenvalue of the complete state |φ〉. Here,
h denotes the next-neighboring hopping of H (as defined in
Eq. (2)) and |∂φ〉 denotes a ND × 1 vector with zeros every-
where but on the first and last entry. These two non-vanishing
entries are constructed by taking the corresponding two ele-
ments of |φ〉 within ∂D̄. If ND = 1, then we define the only
entry of |∂φ〉 as the sum of the two amplitudes of |φ〉 within
∂D̄.

To make the notation introduced above more explicit, let us
assume that

H =

v1 h 0 0
h v2 h 0
0 h v3 h
0 0 h v4

 , |φ〉 =

abc
d

 . (D3)

IfD would denote the central two sites, then |i〉 = (b, c)T and
|∂φ〉 = (a, d)T .

Eq. (D2) can be interpreted as follows: Provided that |φ〉
is identically zero on the next-neighboring sites of D, |i〉
would be an eigenstate to HD. However, |φ〉 usually has
non-vanishing amplitudes on sites neighboring to D, and thus
|∂φ〉 6= 0. Thus, this correction must be included in Eq.(D2).

We now proceed with our proof of Eq. (D1). Multiplying
from the left with 〈φk|, i.e., the k-th eigenstate of HD, we get

h · 〈φk|∂φ〉 = (ε− εk) · 〈φk|i〉 . (D4)

Multiplying this expression by its complex conjugate, sum-
ming over k and taking the square root of the result, we get

|h|

(∑
k

| 〈φk|∂φ〉 |
2

)1/2

=

(∑
k

(ε− εk)2 · | 〈φk|i〉 |
2

)1/2

.

(D5)
Since the |φk〉 are a complete orthonormal basis set, the left-
hand side can be simplified by using the definition of the
norm, getting

|h|

(∑
k

| 〈φk|∂φ〉 |
2

)1/2

= |h|‖ |φ〉 ‖∂D. (D6)

The sum on the right-hand side can be estimated as∑
k

(ε− εk)2 · ‖ 〈φk|i〉 ‖
2 ≥ min

εk
(ε− εk)2 ·

∑
k
′

‖ 〈φk′ |i〉 ‖
2.

(D7)
Again, due to the definition of the norm, we can thus write
Eq.(D5) as

|h|‖ |φ〉 ‖∂D ≥ min
εk
|ε− εk|‖ |φ〉 ‖D. (D8)

which directly yields Eq.(D1).
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Figure 16. (a) Shown is the third quasiband from top for the 9-th
generation Fibonacci chain at contrast c = 3. b The three minor
quasibands and their respective LRMs. (c) The third quasiband from
top for a L = 55 sites truncated Thue-Morse chain at contrast c = 3.
d The two minor quasibands as well as the gap-edge state and their
respective LRMs.

Roughly speaking, the theorem states the following. As-
sume that an eigenstate |φ〉 has a high integrated density on
some domainD, with low amplitudes on the next-neighboring
sites left and right of the domain. Then, the energy ε of this
eigenstate is approximately equal to the energy of one of the
eigenstates |φk〉 of the local Hamiltonian HD. If D is a res-
onator and |φ〉 represents an LRM of HD within D and suit-
ably small amplitudes on next-neighboring sites of D, then
ε ≈ εi, where εi is the energy of the LRM.

Appendix E: Comments on the application to longer chains

We now comment on how the treatment of longer chains
or the investigation of the subband structure can be pursued.
To this end, the core element of our approach, the analysis of
states in terms of their constituting LRMs needs to be slightly
changed by extending the class of resonators taken into ac-
count. The process of finding the constituting LRMs of a
given state |φ〉 with energy ε is then as follows. Starting from
a domainD exclusively containing sites with very high ampli-
tudes, one forms a simplify connected domainD′ by the union
of D and its surrounding sites (not limited to next-neighbors)
such that |φ〉 has very low amplitude on next-neighbors ofD′.
Then, [guaranteed by Eq.(D1)], one eigenstate of the Hamilto-
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nian HD
′ has nearly the same energy ε ≈ εi and is (up to nor-

malization), within D′, nearly equal to |φ〉 and thus forms an
LRM. As the maximum deviation between εi and ε is bounded
by means of Eq.(D1) and generally becomes smaller for larger
D′, its size should thus be chosen large enough to achieve the
accuracy needed for an explanation of the sub-quasibands and
gap-edge states present, but as small as possible in order not
to lose the local character of the treatment. If the LRM ob-
tained by the above process does not explain all fragments of
|φ〉, then one needs to repeat it for each of the remaining frag-
ments until all constituting LRMs of |φ〉 are found.

We now exemplify in Fig. 16 some possible results of such a
deeper analysis. Subfigure (a) shows the third quasiband from
top of the 9-th generation Fibonacci chain [the one shown in
Fig. 3 (a)], but now at a lower contrast of c = 3. At this

contrast, the energetical substructure of the band becomes ap-
parent, denoted by the two dashed lines in Fig. 16 (b). There
are three minor quasibands, comprising the three uppermost,
the two central and the three lowermost eigenstates within this
quasiband. The above process then yields the LRMs shown
on the right-hand side of this subfigure. Another example is
demonstrated in Fig. 16 (c) and (d), showing the third quasi-
band from top for a truncated L = 55 site Thue-Morse chain
[as shown in Fig. 7 (a)] at contrast c = 3. Here, the main qua-
siband features the resonator mode A|BB|A, but again fea-
tures a substructure as shown in subfigure (d). Each minor
quasibands is made up of two nearly degenerate LRMs, with
the underlying resonators having resonator walls each consist-
ing of two sites. The state in-between these minor bands con-
sists of the edge-LRM ¦A|BB|AB, where the ¦ indicates the
edge of the chain.
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79 F. Piéchon, M. Benakli, and A. Jagannathan, “Analytical Results
for Scaling Properties of the Spectrum of the Fibonacci Chain,”
Phys. Rev. Lett. 74, 5248 (1995).

80 Y. Liu and W. Sritrakool, “Branching rules of the energy spec-
trum of one-dimensional quasicrystals,” Phys. Rev. B 43, 1110
(1991).

81 Q. Niu and F. Nori, “Renormalization-Group Study of One-
Dimensional Quasiperiodic Systems,” Phys. Rev. Lett. 57, 2057
(1986).
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