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In the presence of spin-orbit coupling two branches of the energy spectrum of 2D electrons get
shifted in the momentum space. Application of in-plane magnetic field causes the splitting of
the branches in energy. When both, spin-orbit coupling and Zeeman splitting are present, the
branches of energy spectrum cross at certain energy. Near this energy, the Landau quantization
becomes peculiar since semiclassical trajectories, corresponding to individual branches, get coupled.
We study this coupling as a function of proximity to the topological transition. Remarkably, the
dependence on the proximity is strongly asymmetric reflecting the specifics of the behavior of the
trajectories near the crossing. Equally remarkable, on one side of the transition, the magnitude
of coupling is an oscillating function of this proximity. These oscillations can be interpreted in
terms of the Stückelberg interference. Scaling of characteristic detuning with magnetic length is
also unusual. This unusual behavior cannot be captured by simply linearizing the Fermi contours
near the crossing point.

PACS numbers:

I. INTRODUCTION

It is known for more than 60 years that, in a metal, the
period of the resistance oscillations with magnetic field
as well as the period of the oscillations of diamagnetic
moment reflect the geometry of its Fermi surface.1,2 This
relation originates from the fact that, by virtue of the
Landau quantization, the areas of the cross-sections of
the Fermi surface by the planes perpendicular to mag-
netic field are discrete. These areas are encircled in the
course of semiclassical motion of the electron wave pack-
ets in magnetic field and contain half-integer number of
the flux quanta.

In particular situations when energy gaps, correspond-
ing to neighboring energy bands, are anomalously small,
interband tunneling becomes possible. This tunneling,
known as magnetic breakdown,3–6 couples the Fermi sur-
faces from different bands and modifies the quantization
condition to
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where S± are the areas encircled by the contacting semi-
classical trajectories, corresponding to the energy, E, and
l is the magnetic length. Parameters TE and ϕE are, re-
spectively, the amplitude and the phase of the coupling
coefficient between the contacting trajectories. The tun-
nel probability, |TE |2, assumes an appreciable value at
energies when the separation of the Fermi surfaces in the
momentum space becomes comparable to l−1. Analytical
form of TE was established3 using the effective mass ap-
proximation, within which the band dispersion near the
touching point has the form

ε(k) =
~2k2

x

2mx
−

~2k2
y

2my
, (2)

where mx and my are the in-plane effective masses (mag-

netic field is directed along z). As E crosses from negative
to positive values, the connectivity of the Fermi surface,
ε(k) = E, changes. In magnetic field, the tunneling prob-
ability between the states kx → −∞ and kx →∞ reduces
to the transmission through the “inverted parabola” po-

tential, − ~2

2(mxmy)1/2

[
(x−kyl2)

l2

]2
, the result for which, ob-

tained in a celebrated paper by Kemble,7 reads

|TE |2 =
1

exp (−πµE) + 1
, (3)

where the parameter µE is proportional to energy and is

given by µE = 1
~2 (mxmy)

1/2
El2.

Quantization condition Eq. (1) describes topologi-
cal transitions for spinless electrons with scalar wave-
functions. An alternative scenario of this transition8–12

unfolds in type-II Weyl semimetals predicted recently13

and realized experimentally, for review see Refs. 14, 15.
In these materials, the contacting contours of the Fermi
surface belong to electron and hole pockets, see e.g.
Ref. 16. The corresponding states are the eigenfunctions
of the matrix Hamiltonian, the simplest version of which
has the form8

ĤW = akxσ0 +
∑
i

vikiσi, (4)

where σ0 is a unit matrix and σi are the Pauli matrices.
Two branches,

E±(k) = akx ±

[∑
i

vik
2
i

]1/2

, (5)

of the spectrum defined by the Hamiltonian Eq. (4) touch
at the point k = 0. The difference between the spectra
Eq. (2) and Eq. (5) manifests itself in the expression for
the transmission probability. For type-II Weyl semimet-
als it takes the form8
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|TW |2 = exp (−2πµW ) , (6)

where µW is proportional to the square of minimum sep-
aration between the contours and to the square of mag-
netic length. The origin of the difference between Eqs.
(3) and (6) is that the Hamiltonian Eq. (4) allows the
Klein tunneling between the electron and hole states.
With linear dispersion Eq. (5), the calculation of the
tunnel probability reduces to the Landau-Zener problem.

In Ref. 17 it was noted that the topological transi-
tion in the geometry of two Fermi contours can be real-
ized for purely two-dimensional electrons subject to in-
plane magnetic field and in the presence of spin-orbit cou-
pling. The origin of crossing of the two branches of the
spectrum is the interplay of the Zeeman and spin-orbit
splittings.18 The eigenfunctions corresponding to the two
crossing branches are spinors. Then it was concluded in
Ref. 17 that the semiclassical Landau quantization is
governed by Eq. (1) with tunnel probability given by
Eq. (6), similarly to the type-II Weyl semimetals.

In the present paper we study in detail the evolution
of the 2D Fermi contours in the vicinity of the topolog-
ical transition emerging in the presence of Zeeman and
spin-orbit couplings. We show that, linearizing of the
spectrum in the very vicinity of crossing is insufficient
to describe the transition probability. Magnetic field de-
pendence of T as well as its dependence on detuning, is
governed by the curvature of the Fermi contours.

II. EVOLUTION OF THE FERMI CONTOURS
NEAR THE CROSSING

We start with a 2D Hamiltonian

Ĥ =
~2k2

2m
+ α (kxσy − kyσx)−∆σy, (7)

where the first term is a free-electron Hamiltonian, while
the second and the third terms describe spin-orbit cou-
pling and Zeeman splitting in an in-plane magnetic field,
respectively.

Two branches of the spectrum of the Hamiltonian
Eq. (7) are given by

E±(k) =
~2(k2

x + k2
y)

2m
±
[

(∆− αkx)
2

+ α2k2
y

]1/2
. (8)

The branches cross at the point

kx =
∆

α
, ky = 0, (9)

which corresponds to the energy

E = E0 =
~2∆2

2mα2
. (10)
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FIG. 1: (Color online) Evolution of the Fermi contours, de-
fined by Eq. (12), with the ratio, ν, of the spin-orbit and
Zeeman energy shifts [Eq. (13)]; (a), (b), (c), and (d) corre-
spond to ν = 2, ν = 1.5, ν = 1, and ν = 0.5, respectively.
As ν decreases, the inner contour grows. The Fermi energy is
chosen to be E = 1.1E0 in all panels. Thus, strictly speaking,
the separation between the inner and the outer contours is
finite at qy = 0. This separation can be distinguished in (a)
and (b), but cannot be distinguished in (c) and (d).

To analyze the behavior of the Fermi contours, E±(k) =
E , we introduce the dimensionless variables

kx =

(
∆

α

)
qx, ky =

(
∆

α

)
qy, (11)

and rewrite Eq. (8) in the form

E
E0

= q2
x + q2

y ± ν
[

(qx − 1)
2

+ q2
y

]1/2
, (12)

where we have introduced a dimensionless parameter

ν =
2mα2

~2∆
, (13)

which measures the ratio of the energy shifts due to the
spin-orbit and Zeeman couplings.

Near the crossing point (E − E0) � E0 and qy � 1
Eq. (12) can be simplified to[
qx− 1− 2 (E − E0)

E0 (4− ν2)

]2

−

(
ν2

4− ν2

)
q2
y =

[
ν (E − E0)

(4− ν2) E0

]2

.

(14)
We see that the behavior of the Fermi contours is different
for ν > 2 and for ν < 2. For ν > 2 Eq. (14) describes an
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FIG. 2: (Color online) Evolution of the Fermi contours, de-
fined by Eq. (12), with energy. Panels (a), (b), (c), and (d)
correspond to energies E = 1.1E0 , E = 1.5E0, E = 1.75E0,
and E = 2E0, respectively. We chose ν = 1 in all panels. It is
seen that in panel (c) the outer contour is vertical at qy = 0
in accordance to Eq. (18).

ellipse, i.e. there is only one Fermi contour. For ν < 2
two Fermi contours correspond to the two branches of a
hyperbola. There is a real crossing at E = E0, namely,

qy = ±
(
4− ν2

)1/2
ν

(qx − 1). (15)

Evolution of the Fermi contours with ν is illustrated in
Fig. 1. It is seen that, as ν decreases below ν = 2, the
inner contours grows. The behavior of the outer contour
is quadratic near qy = 0 and also at two finite values ±q̃y.
To find these values, we differentiate Eq. (12) keeping E
constant and obtain

∂qx
∂qy

= −
qy

{
2
[

(qx − 1)
2

+ q2
y

]1/2
± ν

}

2qx

[
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2
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y

]1/2
± ν(qx − 1)

. (16)

The sign “−” corresponds to the outer branch. At
q = q̃y the derivative turns to zero, which, together with
Eq. (12), yields

qx = q̃x =
1

2

(
1 +

ν2

4
+
E
E0

)
, (17)

Substituting this value back into Eq. (12), we find

q̃y =
1

2

[( E
E0

+
ν2

4
+ν−1

)(
− E
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− ν

2

4
+ν+1

)]1/2

. (18)

We see that at energy E
E0 = 1 + ν − ν2

4 the outer Fermi

contour is vertical at points (q̃x, ±q̃y), as illustrated in
Fig. 2. At small ν this energy is close to the crossing
point of the contours. In magnetic field, this peculiar be-
havior manifests itself in the coupling between the semi-
classical trajectories as we will see in the next Section.

III. TUNNELING BETWEEN THE
SEMICLASSICAL TRAJECTORIES

Incorporating magnetic field in the z-direction
amounts to replacing kx by kx − y

l2 . Then the system
of equations for the components of the spinor, (Ψ1, iΨ2),
takes the form

EΨ1 −
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∂y2
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, (19)
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∂y
. (20)

Upon introducing new functions

Φ1 = Ψ1 + Ψ2, Φ2 = Ψ1 −Ψ2, (21)

and a dimensionless variable

u =
∆

α

(
y − kxl2

)
(22)

the system can be rewritten as

E
E0

Φ1 +
∂2Φ1

∂u2
−

[( α
∆l

)4(
u+

∆

~ωc

)2

−
(ν2

4
+ ν
)]

Φ1

= ν
∂Φ2

∂u
, (23)

E
E0

Φ2 +
∂2Φ2

∂u2
−

[( α
∆l

)4(
u− ∆

~ωc

)2

−
(ν2

4
− ν
)]

Φ2

= −ν ∂Φ1

∂u
. (24)

Here ~ωc = ~2

ml2 is the cyclotron energy. Equations (23)
and (24) are obtained by adding and subtracting Eqs.
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(19) and (20). Square brackets in Eqs. (23) and (24) can
be viewed as effective potentials for the functions Φ1 and
Φ2. These potentials, sketched in Fig. 3 are parabolas
shifted horizontally and vertically These potentials cross
at

u = uc =
ν~ωc
2∆

(
∆l

α

)4

=

(
∆l

α

)2

. (25)

The value of potential at u = uc is equal to

δ =
E − E0
E0

. (26)

Parameter δ is the dimensionless measure of the proxim-
ity to the crossing. Semiclassical quantization procedure
is valid when the Landau levels, corresponding to E = E0,
are high. Quantitatively, this condition can be expressed
as

E0
~ωc

=
1

2

(
∆l

α

)2

� 1. (27)

If the above condition is satisfied, derivation of the equa-
tion similar to Eq. (1) for the semiclassical energy lev-
els can be outlined as follows. In the absence of the
right-hand sides in Eqs. (23), (24), the solution of (23)
represents a wave, incident from the left, which is fully
reflected at the turning point (see Fig. 3). The condi-
tion that the solution decays to the right from the turning
point defines the conventional phase shift, 2× π

4 , between
the incident and reflected waves. If the presence of the
right-hand side in Eq. (24), there are two channels of re-
flection: in addition to the reflected-wave solution of Eq.
(23), the incident wave can give rise to the solution of (24)
propagating to the left, see Fig. 3. If the amplitude of
the incident wave is 1, then the amplitude of this second
reflected wave should be identified with TE , the coupling
coefficient in the quantization condition Eq. (1). Calcu-
lation of TE is our main goal. To achieve this goal, it is
convenient to analyze the system Eqs. (23), (24) in the
momentum space.

In the vicinity of u = uc the system (23), (24) takes
the form

δΦ1 −F1u1Φ1 +
∂2Φ1

∂u2
1

= ν
∂Φ2

∂u1
,

δΦ2 −F2u1Φ2 +
∂2Φ2

∂u2
1

= −ν ∂Φ1

∂u1
,

(28)

where u1 = u− uc. The slopes F1, F2 are defined as

F1 = 2
( α

∆l

)2(
1 +

ν

2

)
, F2 = 2

( α
∆l

)2(
1− ν

2

)
. (29)

Upon performing the Fourier transformation in Eq. (28),
we arrive to the system of coupled first-order differential
equations for the transformed functions Φ1 and Φ2

FIG. 3: (Color online) Without the right-hand sides, Eqs.
(23) and (24) are decoupled and describe the electron motion
in parabolic potentials (blue and red, respectively). The po-
tentials cross at u = uc. Without coupling, the incident wave,
i, see inset is fully reflected into the wave, r1, propagating in
the red parabola. With right-hand sides caused by spin-orbit
coupling, another channel of reflection into the wave r2 prop-
agating in the blue parabola emerges. The corresponding
reflection probability should be identified with transmission
probability |TE |2.

δΦ̃1 − iF1
∂Φ̃1

∂κ
− κ2Φ̃1 = iνκΦ̃2,

δΦ̃2 − iF2
∂Φ̃2

∂κ
− κ2Φ̃2 = −iνκΦ̃1. (30)

To analyze this system, it is convenient to “antisym-
metrize” it by eliminating the symmetric phase. This
is achieved by introducing instead of Φ̃1, Φ̃2 the new
functions defined as

Υ̃1,2(κ) = Φ̃1,2(κ) exp

[
− i
(
δκ− κ3

3

)
F1 + F2

2F1F2

]
. (31)

Then the system Eq. (30) assumes the form

iF1
∂Υ̃1

∂κ
+
F1 −F2

2F2

(
δ − κ2

)
Υ̃1 = iνκΥ̃2,

iF2
∂Υ̃2

∂κ
− F1 −F2

2F1

(
δ − κ2

)
Υ̃2 = −iνκΥ̃1. (32)

The product νκ in the right-hand sides describes the cou-
pling between the semiclassical trajectories. We will first
assume that the coupling is weak and find the transmis-
sion coefficient perturbatively. In the zeroth order we
neglect the right-hand side in the first equation, so that

Υ̃1(κ) = exp

[
i
F1 −F2

2F1F2

(
δκ− κ3

3

)]
. (33)

Substituting Υ̃1(κ) into the second equation and solving

for Υ̃2(κ) we find

|Υ̃2(∞)|2 =
ν2

F2
2

∣∣∣∣∣
∞∫
−∞

dκ κ exp
[
i
F1 −F2

F1F2

(
δκ− κ3

3

)] ∣∣∣∣∣
2

.

(34)
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FIG. 4: (Color online) Illustration of the asymmetry of the
Fermi-contours with respect to the sign of detuning, δ. In the
left panel the contours are shown for δ = 0.3, while in the
right panel for δ = −0.3. Parameter ν is chosen to be 0.4 for
both panels. Despite the seemingly small difference between
the two panels, the transmission coefficient, |TE |2, in the right
panel is much smaller than in the left panel.

The meaning of |Υ̃2(∞)|2 is the power transmission co-
efficient, |TE |2, analogously to Eq. (3).

It is easy to see that only the imaginary part of the
exponent contributes to the integral. Then the integral
reduces to the derivative of the Airy function, Ai(z). Us-
ing the expressions for F1, F2 we rewrite the final result
in the form

|TE |2 = 4π2
(ν

2

)2/3
(

∆l

α

)4/3
∣∣∣∣∣Ai′

[
−δ
(ν

2

)2/3
(

∆l

α

)4/3
] ∣∣∣∣∣

2

.

(35)
Our prime observation is that the coupling is an asym-
metric function of the detuning, δ. This, actually, reflects
the asymmetry of the Fermi-contours’ arrangement with
respect to the sign of δ. The situation is illustrated in
Fig. 4, where the Fermi contours are plotted for δ = 0.3
and δ = −0.3. At negative δ the transmission probability

falls off with |δ| as exp
[
− 2

3 |δ|
2/3ν

(
∆l
α

)2]
. Note that, by

contrast to Eqs. (3) and (6), characteristic δ scales with
magnetic field as l−4/3, instead of l−2 and l−1, respec-
tively.

It is seen from Eq. (35) that at positive δ the transmis-
sion coefficient oscillates with δ. Unfortunately, Eq. (35)
obtained perturbatively, is not applicable in this domain.
This is because it predicts that |TE |2 exceeds 1 at large
positive δ. For this reason, in the next Section we turn
to numerics.

IV. NUMERICAL RESULTS

For numerical calculations it is convenient to perform
a rescaling, κ = Gz, in the system Eq. (32), where the
parameter G is equal to

G =

(
2

ν

)1/2 ( α
∆l

)
=

~ωc
∆

. (36)

Then the system assumes the form

iΥ̃′1 +
1

2

(
δ

G
−Gz2

)
Υ̃1 = izΥ̃2,

iΥ̃′2 −
1

2

(
δ

G
−Gz2

)
Υ̃2 = −izΥ̃1. (37)

We see that, effectively, the transmission coefficient de-
pends only on two parameters, detuning δ and the di-
mensionless magnetic field, G2. For numerical purposes
it is convenient to get rid of the fast oscillations of Υ̃1

and Υ̃2 by introducing new variables

ρ1,2 = Υ̃1,2 exp

[
∓ i

2

(
δ

G
z −Gz

3

3

)]
. (38)

With these new variables the oscillating functions appear
in the coupling of ρ1 and ρ2, namely

i
∂ρ1

∂z
= iz exp

[
−i
(
δ

G
z −Gz

3

3

)]
ρ2,

i
∂ρ2

∂z
= −iz exp

[
i

(
δ

G
z −Gz

3

3

)]
ρ1. (39)

In terms of parameter G, the result Eq. (35) reads

|TE |2 = |ρ2(∞)|2 =
4π2

G4/3

∣∣∣∣∣Ai′
(
− δ

G4/3

) ∣∣∣∣∣
2

. (40)

In our numerical calculations we first analyzed the be-
havior of |ρ1,2|2 with z. In general these quantities ex-
hibit oscillations on the background of a smooth envelop.
There is way to approximately isolate this envelop. To
do so, we integrate the second equation of the system
Eq. (39) using the condition ρ2(−∞) = 0 and substi-
tute the expression for ρ2(z) into the first equation. This
yields the following closed integral-differential equation
for ρ1(z)

∂ρ1

∂z
= z

z∫
−∞

dz′z′ρ1(z′) exp

{
i

[
δ

G
(z − z′)− G

3

(
z3 − z′3

)]}
.

(41)
The procedure of extracting the envelop from this equa-
tion is developed in Ref. 19. Employing this procedure
yields

|ρ1(z)|2 =

(
δ
G −Gz

2
)2

z2 +
(
δ
G −Gz2

)2 . (42)

The derivation of Eq. (42) is briefly outlined in the foot-
note Ref. 20.

In Fig. 5 we plot |ρ2(z)|2 for two values of detun-
ing δ = 3 (upper panel) and δ = −3 (lower panel) with
G = 1. Apparently the smooth part of δ = −3 curve
agrees with theoretical prediction Eq. (42) much better
than the smooth part of δ = 3 curve. The reason for this
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FIG. 5: (Color online) Numerical solution, |ρ2(z)|2, of the
system Eq. (20) is plotted for two values of detuning δ = 3
(a) and δ = −3 (b) and for G = 1. The black line in (a) and
the green line in (b) are the envelops plotted from Eq. (42).
We see that the agreement with theory is much better in (b),
since Eq. (42) neglects interference.

is obvious: Eq. (42) does not capture the interference be-
tween the virtual transitions at negative and positive z.
This interference, having the same origin as Stükelberg
oscillations takes place at positive δ. Since δ in Fig. 5
was chosen to be big, the values of ρ2(z) approach zero at
large z. To capture the finite transmission, we chose the
parameters G = 0.7 and δ = ±0.5, and plotted |ρ2(z)|2
in Fig. 6. The agreement with Eq. (42) is worse in Fig.
6 since, for chosen parameters, the regime of transmis-
sion is less “semiclassical”. We also see that approaching
of |ρ2(z)|2 to finite values at large z is accompanied by
huge oscillations. These oscillations introduce an uncer-
tainty in the value |ρ2(∞)|2 due to necessary averaging.
This uncertainty manifests itself as wiggles in the depen-
dencies of |ρ2(∞)|2 on G and δ to which we now turn.

For zero detuning, the theoretical prediction for the
transmission coefficient is

|ρ(∞)|2 =
2.645

G4/3
, (43)

as follows from Eq. (40). In Fig. 7 we plot this G-
dependence together with |ρ(∞)|2(G) obtained numeri-
cally. We observe the agreement with theory at large G,
where the theory is applicable. Concerning the theoreti-
cally relevant small-G domain, numerical errors did not
allow us to establish the G-dependence at very small G.
It can be concluded that the averaged over strong oscil-
lations transmission coefficient approaches 1

2 at small G
and has a maximum near G = 1. We discuss the theo-
retical prediction for |ρ(∞)|2(G) at small G in the next
Section.

Finally, we studied numerically the dependence of the
transmision coefficient on detuning, δ. The result is
shown in Fig. 8 for the value of G = 1.5. We see that for
negative δ, the numerics agrees quite well with the theo-
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FIG. 6: (Color online) Numerical solution, |ρ2(z)|2, of the sys-
tem Eq. (20) is plotted for two values of detuning δ = 0.5 (a)
and δ = −0.5 (b) and for G = 0.7. The black line in (a) and
the green line in (b) are the envelops plotted from Eq. (42).
We see that |ρ2(z)|2 approaches finite values at large z. This
approach is accompanied by huge oscillations which compli-
cate the determination of the transmission coefficient.
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FIG. 7: (Color online) Blue curve, which shows the transmis-
sion coefficient obtained numerically, is plotted versus dimen-
sionless magnetic field, G, directly at topological transition
δ = 0. Black curve, which shows theoretical prediction for
transmission coefficient, is plotted from Eq. (43). In the
inset we plot the prediction, sin2( 8

3G2 ), based on heuristic
argument given in Section V.

retical prediction Eq. (40). For large positive δ, Eq. (40),
strictly speaking, does not apply, but qualitative agree-
ment is apparent. Oscillatory behavior of the trans-
mission coefficient is the consequence of the Stückleberg
interference of virtual Landau-Zener transitions taking

place at z = ± δ
1/2

G .
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FIG. 8: (Color online) Transmission coefficient (blue curve)
obtained numerically is plotted versus the detuning, δ, for
dimensionless magnetic field G = 1.5. Theoretical predic-
tion for transmission coefficient (black curve) is plotted from
Eq. (40). Small wiggles in the numerical curves are the
artifact of the averaging procedure. For negative detunings
the agreement with theory is good. For positive detunings,
theory predicts oscillations with magnitude bigger than 1,
while in numerical curve these oscillations, manifesting the
Stückelberg interference,21 slowly decrease with δ.

V. DISCUSSION

(i) It is instructive to compare our analysis to Ref.
17, where it was concluded that the probability |TE |2
is given by the Landau-Zener formula. Obviously, the
Landau-Zener result is a consequence of linearization of
the two branches near their crossing point. The criterion
for this linearization given in Ref. 17 is that the cyclotron
energy is small enough. In our notations, this criterion

can be written as ∆ � ~2

ml2 , which is nothing but the
requirement that G � 1, where parameter G is defined
by Eq. (36).

In order to check this criterion, let us trace how the
Landau-Zener formula might emerge from our system Eq.
(30)

In the semiclassical limit, the solutions Υ̃1, and Υ̃2

of the system Eq. (30) are proportional to exp [iσ(κ)],
where the derivative of the action, σ(κ), is given by

σ′(κ) = ±F1 −F2

2F1F2

[ (
δ − κ2

)2
+

4ν2F1F2

(F1 −F2)
2κ

2

]1/2

.

(44)
Using Eq. (29), we specify the combinations in the square
brackets and in the prefactor

4ν2F1F2

(F1 −F2)
2 = (4− ν2),

F1 −F2

2F1F2
=

(
∆l

α

)2
2ν

4− ν2
.

(45)
It seems that for small δ � 1 the term κ2 can be

dropped from (δ − κ2)2. Indeed, if this term is dropped,
the expression in the square brackets turns to zero at
κ = ±iκ−, where

κ− ≈
δ

(4− ν2)
1/2
≈ δ

2
. (46)

Since κ2
− = δ2

4 is much smaller than δ, dropping κ2 is

justified. Once δ2 is dropped, the expression for σ′(κ)
assumes the standard Landau-Zener form with transition

probability given by: exp

[
− πνδ2

8

(
∆l
α

)2]
. This is the

result obtained in Ref. 17.
In our opinion, the domain of applicability of this result

is limited for the following reason. In addition to κ =
±iκ−, Eq. (44) turns to zero at κ = ±iκ+, where κ+ ≈(
4− ν2

)1/2 ≈ 2. The point κ+ originates from the second

derivatives, ∂2Φ1

∂u2
1

, ∂2Φ1

∂u2
1

, in Eq. (28) which accounts for

the curvature of the spectrum neglected in Ref. 17. The
value κ+ is much bigger than δ and depends on detuning
only weakly. This suggests that TE is the result of a “two-
stage” process: one involving big momentum transfer ∼
κ+ and another involving small momentum transfer, ∼
κ−. The resulting TE is a strongly oscillating function of
detuning and magnetic field. In fact, similar situation,
i.e. numerous complex zeros in σ′, was encountered in
Refs. 22–27.

Returning to Ref. 17, we conclude that, the criterion
G� 1 is not sufficient. For Landau-Zener result to apply,
the detuning, δ, and the degree of degeneracy, ν, cannot
be both small. This can be derived from the above anal-
ysis. Indeed, the values κ+ and κ− merge for δ = 1− ν2

4 ,
so that either δ is not small, or the value of ν is close to
2. It also follows from the perturbative result Eq. (40 )
that for small G the detuning must be appreciable.

(ii ) Overall, we were not able to capture the most
relevant domain where both δ and G are small neither
analytically nor numerically. This is due to strongly os-
cillating character of |ρ2(z)|2. The physical origin of this
complication is that simple linearizng the Fermi contours
near the crossing is insufficient for finding the transition
probability. The amplitudes ρ1(z) and ρ2(z) keep “talk-
ing” to each other outside the domain where lineariza-
tion applies. Below we present a heuristic account of
the behavior of the transmission coefficient at zero de-
tuning. Conventionally,28 the transmission coefficient in
the Landau-Zener problem can be found upon setting κ
in the expression for σ′(κ) to be purely imaginary and
integrating between two turning points. This procedure
is applicable when the resulting action is big, so that the
transmission is small. If we adopt this procedure in Eq.
(44) after setting δ = 0, we would realize that, unlike for
the Landau-Zener transition, the action is imaginary and
is equal to

iσ =

2/G∫
−2/G

dz

[
z2 − G2z4

4

]1/2

=
8

3G2
. (47)
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We see that at small G the magnitude of action is big and
that the transmission coefficient oscillates with G instead
of being exponentially small. We cannot judge about
the prefactor, except that in Landau-Zener transition the
prefactor is 1. This leads to the prediction |ρ2(∞)|2 =
sin2( 8

3G2 ). This prediction is plotted in the inset of Fig. 7.
A maximum at G = 1.3 can possibly account for the
behavior of the numerical curve around G ∼ 1. If the
above heuristic argument applies, then the δ-dependence
of the transmission at small G should be weak.

(iii) The result Eq. (35) can be derived directly from
the system Eq. (28) without transforming to the mo-
mentum space. The zeroth-order solution of the first

equation is Ai

[
1

F1/3
1

(δF1 − u1)

]
. Thus, the right-hand

side in the second equation is the derivative of the Airy
function. Forced solution of the second equation con-
tains the overlap of this right-hand side with the free
solution of the second equation, which is Φ2(u1) =

Ai

[
1

F1/3
2

(δF2 − u1)

]
. Then the result Eq. (35) follows

from the identity

∞∫
−∞

dxAi [λ(x− a)]Ai′ [µ(x− b)]

=
πλ

(λ3 − µ3)
2/3

Ai′

[
λµ(a− b)

(λ3 − µ3)
1/3

]
, (48)

which can be easily verified using the integral represen-
tation of the Airy function.

VI. CONCLUSION

On the qualitative level, the result of this paper can
be summarized as follows. In the conventional theory
of the topological transition the electron motion in the
momentum space can be separated into the propagation
along the Fermi contours and the “beatings” between the
contours in the region where these contours nearly touch.
This separation applies when the domain of “beatings” is
much smaller than the size of the Fermi contours. For a
particular situation of two crossing spin-orbit sub-bands,
considered in this paper, the two contours do not depart
after crossing but stay close, i.e. remain nearly degener-
ate. The stronger is this degeneracy, the less applicable
is the separation into propagation and beating. In other
words, the the domain of beating occupies progressively
bigger portion of the Fermi contours. Crudely speaking,
the transmission coefficient oscillates around |TE |2 = 1

2
when sub-bands are almost degenerate. The oscillations
of |TE |2 depend strongly on the magnetic field, so that
the other sources of the magnetic-field dependence, see
e.g. Ref. 29, relevant away from the transition can be
neglected.
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