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Certain periodically driven quantum many-particle systems in one dimension are known to exhibit
edge modes that are related to topological properties and lead to approximate degeneracies of the
Floquet spectrum. A similar situation occurs in spin chains, where stable edge modes were shown to
exist at all energies in certain integrable spin chains. Moreover, these edge modes were found to be
remarkably stable to perturbations. Here we investigate the stability of edge modes in interacting,
periodically driven, clean systems. We introduce a model that features edge modes that persist
over times scales well in excess of the time needed for the bulk of the system to heat to infinite
temperatures.

I. INTRODUCTION

Non-abelian edge modes have attracted considerable
attention as a possible route to quantum information
processing1–5. Such edge modes occur in the ground
state sector of various models, and information encoded
in them is protected by a finite gap to excitations. In a
series of recent works6–10 it was established that, remark-
ably, certain spin models support topological edge modes
at all energy densities that are either stable or very long-
lived. Stable edge modes were termed strong zero modes
in Ref. 6 and are a reflection of the existence of an oper-
ator Ψ0 that commutes with the Hamiltonian H in the
thermodynamic limit, anti-commutes with a discrete (say
Z2) symmetry of the Hamiltonian D, {Ψ0,D} = 0, and
is normalizable Ψ2

0 = O(1). The presence of a strong
zero mode implies a parameter regime where the entire
spectrum of the Hamiltonian is approximately doubly
degenerate, with the almost degenerate eigenstates be-
ing {|n〉,Ψ0|n〉}, and correspond to two different discrete
symmetry sectors.

Strong zero modes were shown to exist in the trans-
verse field Ising model, which has a free fermionic spec-
trum, and in the XYZ spin chain6, which is an inter-
acting integrable theory. Importantly, these edge fea-
tures were shown to be extremely robust to perturba-
tions about these limits in the sense that almost strong
zero modes with long but finite life times persist7. Edge
modes that lead to approximate degeneracies at all en-
ergies are also known to occur in periodically driven sys-
tems11–16 and are closely related to symmetry-protected
topological (SPT) phases17–23.

By virtue of the periodicity of the spectrum of the
(stroboscopic) time evolution operator U(T ) the result-
ing structure of edge modes is richer than in the equi-
librium case: in addition to (almost) zero energy modes
there are so-called π-modes, which correspond to a quasi-
energy ε ≈ ±π/T , where T is the period of the drive.
In the terminology introduced above this corresponds
to the existence of two operators Ψ0 and Ψπ that are
normalizable, Ψ2

0,π = O(1), anti-commute with a dis-
crete symmetry of the system {Ψ0,π,D} = 0 and respec-

tively approximately commute [Ψ0, U(T )] ≈ 0 or anti-
commute {Ψπ, U(T )} ≈ 0 with the time evolution op-
erator U(T ). In terms of the spectrum of the Floquet
Hamiltonian the existence of Ψ0 implies the presence of
pairs of almost degenerate eigenstates {|n〉,Ψ0|n〉}, while
the existence of Ψπ implies the existence of pairs of eigen-
states {|n〉,Ψπ|n〉} whose energies (approximately) differ
by π/T .

The existence of strong zero and π mode operators in
non-interacting periodically driven models11, in the high-
frequency limit18, and in the Floquet-many body local-
ization context12,13,15,16,24. In the high-frequency regime
the Floquet Hamiltonians typically studied in the litera-
ture become short-ranged and the situation becomes very
similar to the equilibrium case7. The question of what
happens in interacting, clean Floquet systems away from
the high-frequency regime has not yet been explored in
any detail. In Ref. 14 it was shown that edge modes lead
to approximate degeneracies in the Floquet spectrum of
a particular clean, interacting system. However the im-
plications of this for the dynamics of the modes and their
robustness to heating was not investigated.

Periodically driven clean systems are known to heat
up25–29 and are generically characterized by Floquet
Hamiltonians with long-ranged interactions, so that one
would not expect long-lived edge modes to exist at all
energy densities. We show that in contrast to this expec-
tation there exist periodically driven interacting systems
that feature almost strong zero and π modes at all energy
densities, even though the system heats on much shorter
time scales.

The paper is organized as follows. Section II presents
results for the strong modes for a free Floquet system.
Section III presents results for the almost strong modes
of the interacting Floquet system. Section IV derives ef-
fective interacting Floquet Hamiltonians around some ex-
actly solvable limits, and compares almost strong modes
obtained from them to that obtained from the full time-
evolution. Section V presents the conclusions. The de-
tails of the analytic calculations and additional discus-
sions are relegated to the Appendices.
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II. STRONG ZERO AND π MODES FOR THE
FREE BINARY DRIVE

It is instructive to explicitly construct the strong zero
and π mode operators for periodically driven systems
with Floquet Hamiltonians that can be expressed as
fermion bilinears. As an example we consider an Ising
binary drive which switches between two Hamiltonians
for equal durations T/211,13,23,30,

U(T ) = e
−iTJx

2 Hxxe
−iTµ

2 Hz ,

Hxx =

L∑
i=1

σxi σ
x
i+1 , Hz =

L∑
i=1

σzi . (1)

In the following we set Jx = 1. The model (1) has
a Z2 symmetry of rotations around the z-axis by 180
degrees, generated by D = σz1σ

z
2 . . . σ

z
L. We now con-

struct operators Ψ0,π that are localized at the bound-
aries such that U†(T )Ψ0,πU(T ) = ±Ψ0,π, with an er-
ror that is exponentially suppressed in the system size
L. It is convenient to introduce Majorana fermions

a2`−1 =
∏`−1
j=1 σ

z
jσ

x
` and a2` =

∏`−1
j=1 σ

z
jσ

y
` , and col-

lect the even and odd labeled Majoranas into two vec-
tors ~aodd = (a1, a3, . . . , a2L−1),~aeven = (a2, a4, . . . , a2L).
Both Hxx and Hz are quadratic in the Majorana opera-
tors, and concomitantly their stroboscopic time evolution
can be cast in the form(

~aodd

(
(n+ 1)T

)
~aeven

(
(n+ 1)T

)) = M

(
~aodd

(
nT
)

~aeven

(
nT
)) , (2)

where M is an orthogonal matrix, and is given in Ap-

pendix A. We then make the Ansatz Ψ0,π =
∑
j ϕ

(0,π)
j aj

for the zero/π-mode operators and require them to be in-
variant (up to a sign in case of the π-mode) under strobo-
scopic time evolution. This leads to an eigenvalue equa-

tion of the form ϕ
(σ)
j = cos(σ)

∑
`Mj`ϕ

(σ)
` . Interestingly,

these equations can essentially be solved in closed form
(Appendix A) in the limit of large system size L.

Dropping contributions that are exponentially small
in system size, the operators can be written in the form
Ψσ ≈ ΨL

σ +ΨR
σ , where ΨL

σ (ΨR
σ ) has support mainly near

the left (right) boundary, where

ΨL
0 =

∑
j≥1

εj−1
−

[
cos
(Tµ

2

)
a2j−1 − sin

(Tµ
2

)
a2j

]
,

ΨL
π =

∑
j≥1

εj−1
+

[
sin
(Tµ

2

)
a2j−1 + cos

(Tµ
2

)
a2j

]
. (3)

Here we have defined ε− = tan(Tµ2 ) cot(TJx2 ) and ε+ =

− cot(Tµ2 ) cot(TJx2 ). Similar 0, π mode operators appear
in Ref. 11 for a time-symmetrized version of U(T ). Both
modes can be readily seen to anticommute with the gen-
erator of the Z2 symmetry {D,Ψ0,π} = 0, which estab-
lishes that acting with Ψ0,π on an eigenstate of U(T ) that
is even (odd) under the Z2 symmetry gives an eigenstate
U(T ) that is odd (even). The condition for Ψσ to be

normalizable in the thermodynamic limit is |εσ| < 1 and
|εσ| = 1 fixes the location of the topological phase transi-
tions of the model cf. Fig. 1. Here the topological phases
are that of a free BDI Floquet SPT19–23 with an invari-
ant in Z× Z, the two integers being the numbers of 0, π
edge modes. The drive used in this paper only generates
indices of 0 or 1 for each edge mode species so that the
difference between (Z2 × Z2) and (Z × Z) is not appar-
ent. More general drives that preserve the BDI symme-
tries can realize a larger numbers of edge modes in both
species11,31–33. Whether these additional edge modes are
associated with additional strong mode operators is left
for future study.

FIG. 1. Quasi-energies obtained from the eigenvalues of M for
the free binary drive. Different topological phases are visible
as the drive period T is varied. From left to right, the phases
are M0, M0 + Mπ, trivial, and Mπ, where Mσ indicates the
existence of a strong Majorana edge mode, cf. Eqn. (3).

In the T → 0 limit, we can perform a high-frequency
expansion34,35 to leading order and obtain the Floquet
Hamiltonian HF = 1

2 (JxHxx + µHz), which is a trans-
verse field Ising model. In this limit our expression (3)
for the zero mode Ψ0 reduces to that previously obtained
in equilibrium1,6,8. It is instructive to consider the strong
edge modes in some simple limiting cases23.

1. Tµ = (2n+ 1)π and TJx arbitrary

Here exp(−iTµHz/2) = (−i(−1)n)LD and σx1 be-
comes a strong π mode, while there is no strong
zero mode. This is consistent with ε− →∞, which
signals to non-normalizability of our zero mode so-
lution. Only the first term in the expansion of ΨL

π

in Eq. (3) is non-zero and gives ψLπ = σx1 .

2. Tµ = 2nπ and TJx arbitrary

In this case we have exp(−iTµHz/2) = 1 and σx1
becomes a strong zero mode, whereas there is no
strong π mode. This corresponds to the limit ε+ →
∞, ε− → 0 in (3).

3. TJx = (2n+ 1)π and Tµ arbitrary

Then exp(−iTJxHxx/2) = (−i(−1)n)L−1σx1σ
x
L and

it is straightforward to check that both a strong 0
and π mode exist. Their explicit expressions are
given by the j = 1 terms in (3).
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4. TJx = 2nπ and Tµ arbitrary

Here we have exp(−iTJxHxx/2) = 1 and no strong
edge modes exist unless Tµ/π is an integer. If this
integer is odd (even) then σx1 is a strong π (zero)
mode.

III. INTERACTING TERNARY DRIVE

We now add interactions to the Floquet driving by
dividing the period into 3 equal parts

U(T ) = e−i
TJz
3 Hzze−i

TJx
3 Hxxe−i

Tµ
3 Hz , (4)

where Hzz =
∑L−1
i=1 σzi σ

z
i+1. We note that D remains

a symmetry of this drive. We have studied this model
by means of exact diagonalization on system sizes up to
L = 14. In the following we set Jx = 1. It is useful to
define T ′ as T ′/2 = T/3 so that when Jz → 0 the ternary
drive reduces to the solvable binary drive. This facilitates
comparisons between results for free (Figs. 1 and 3) and
interacting drives (Figs. 2 and 4). Guided by the findings
of Ref. 7 in equilibrium we wish to investigate the possible
existence of almost strong zero and π modes, i.e. long-
lived edge modes. In order to search for these modes we
consider the overlap of the boundary spin σx1 = a1 at
time nT with the boundary spin at time zero

A(nT ) =
1

2L
Tr [σx1 (nT )σx1 ] =

1

2L
Tr [a1(nT )a1] . (5)

In the absence of any edge modes A(nT ) is expected to
rapidly decay to zero. On the other hand, almost strong
zero or π modes will have a non-zero overlap with the
edge spin Tr [σx1 Ψ0,π] 6= 0 and this prevents A(nT ) from
decaying to zero rapidly with time. The rationale behind
these expectations is discussed in Appendix B.

An alternative diagnostic of edge modes is the auto-
correlation function measured with respect to a certain
initial state |ψ〉, defined as Aψ(nT ) = 〈ψ|σx1 (nT )σx1 |ψ〉.
The physical meaning of this quantity is that we start
from an initial state |ψ〉, flip a spin at site 1, then time-
evolve until time nT , and flip the spin back again obtain-
ing a state σx1U(nT )σx1 |ψ〉. Aψ(nT ) then measures the
overlap of this state with one where the initial state was
evolved up to time nT without any spin-flips U(nT )|ψ〉.
Thus this quantity measures the decoherence of any edge
mode. If almost strong modes exist, then after an ini-
tial transient the two quantities A(nT ), Aψ(nT ) behave
similarly (Appendix B).

In Fig. 2 we show results for A(nT ) as a function of
stroboscopic time nT and drive period T for parameters
µ = 0.3 and Jz = 0.1. We see that edge modes persist
for considerable time even in the presence of interactions.
For the parameters shown, these modes are adiabatically
connected to the free case. In the remainder of the paper
we analyze this behavior as a function of system size L,
drive frequency T−1, and strength of interactions Jz.

FIG. 2. Edge mode diagnostic A(nT ) for the interacting
ternary drive with period T where T ′ = 2T/3. There are three
parameter regimes in which almost strong edge modes occur:
M0 (T ′Jx < 2), M0 +Mπ (2 < T ′Jx < 4) and Mπ (8 < T ′Jx).
Here M0,π indicates the presence of a edge zero/π mode. The
structure seen at T ′ ≈ 2π arises due to the flat band section
visible in Fig. 1 and the small value of Jz = 0.1. A larger
Jz would quickly dampen these oscillations. The oscillatory
behavior in the regime n . 10 and T ′ . 2 is a finite-size ef-
fect: the system size, L = 12, is too small for the spectrum to
“wrap around” the unit circle for these high frequencies, cf.
Fig. 15.

Since the π-modes alternate sign every period, their
persistence with time and system size is most apparent
in a staggered average over adjacent stroboscopic times,
A−(nT ) = [A(nT )−A((n+ 1)T )] /2. It is similarly con-
venient to extract the effects of zero modes by considering
the flat average A+(nT ) = [A(nT ) +A((n+ 1)T )] /2.
To set the stage we first investigate the behavior of A±

for the free binary drive, where we know when strong
edge modes exist. In Fig. 3 we show results for |A±(nT )|
for parameters where (i) a strong zero mode exists (top
panel); (ii) strong zero and π modes coexist (middle
panel); and (iii) only a strong π mode exists. It is appar-
ent from the top and bottom panels that in the absence
of the respective strong edge mode, the corresponding di-
agnostic rapidly decays to zero, and this behavior is sys-
tem size independent. In contrast, when a strong edge
mode exists, the diagnostic stays constant on a time scale
that grows with system size. Fig. 3 also reveals how the
system rebounds after the “decay”, revealing recurrences
characteristic of a free system. The log scale of the x-
axis masks the fact that the decays in the free system
are simple cosine oscillations that are exponentially slow
in system size.

We now turn to the ternary drive. Results for the edge
mode diagnostics for Jz/Jx = 0.05 are shown in Fig. 4.
We observe almost strong edge modes with life times that
initially grow with system size and eventually saturate.
We note that going from the top to the bottom panels the
drive frequency is being lowered, and this changes the life
times of the almost strong edge modes. In particular we
see that for sufficiently low frequency driving (middle and
lower panels) the life times of the almost strong modes
saturate at increasingly lower system sizes.

An immediate question raised by the existence of long-
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FIG. 3. Suitably symmetrized/anti-symmetrized overlaps A±

as a function of stroboscopic time nT , for the binary drive.
Top panel: a strong zero mode exists. Middle panel: a strong
zero mode coexists with a strong π mode. Lower panel: Only
a strong π mode exists. The lifetimes of the modes grow
exponentially with system size. From top to bottom panels,
all parameters are fixed, and only the drive frequency T−1 is
decreased.

lived edge modes is whether they are related to some kind
of prethermal behavior36–44. To answer this question we
have investigated on what time scales heating occurs in
our system. We now show that the lifetime of the modes
far exceeds thermalization times by several orders of mag-
nitude.

The comparison between the lifetime of almost strong
modes, and thermalization times are presented in Figs. 5
and 6. Fig. 5 presents results for two different parame-
ter points coinciding with the existence of almost strong
zero modes, T = 1.5 on the left panels, T = 2.0 on the
right panels, and µ = 0.2, Jz = 0.3 for both. In the top
panels of Fig. 5 we show the behavior of |A+(nT )| as
a function of stroboscopic time for several system sizes
and parameters that correspond to two different periods.
For these parameters A− ≈ 0 within a cycle. We ob-
serve that |A+(nT )| remains large for a substantial but
finite time, indicating the existence of an almost strong
zero mode. For the parameters chosen in Fig. 5, system
size of L = 14 is sufficient to show the saturation of the
lifetime with system size.

The lower two panels in Fig. 5 show the time-evolution
of two measures of thermalization, namely the entan-
glement entropy density for a subsystem of size three
and the expectation value of σzj=L/2 at the center of the

chain, both following a quantum quench from a Néel ini-
tial state. These results show that the system heats to

FIG. 4. Suitably symmetrized/anti-symmetrized overlaps A±

as a function of stroboscopic time nT , for the interacting
ternary drive with Jz/Jx = 0.05, and the same T ′, µ as for the
binary drive shown in Fig. 3. Note that the T ′ here equals the
T in figure 3. Top panel: an almost strong zero mode exists
whose lifetime grows with system size, and does not saturate
for the sizes shown. Middle panel: almost strong zero and π
modes coexist. The life time of the zero (π) mode saturates
for system L = 8 (L = 12). Lower panel: there is an almost
strong π mode, whose lifetime saturates for system size L = 8.

infinite temperature on a much shorter time scale than
the lifetimes of the edge modes. Note that at sufficiently
late times the entanglement entropy density approaches
the infinite temperature limit of ln (2) (dashed line) as
the system size is increased, cf. Fig. 8. We focus on sub-
system size three as this is the maximal value for which
finite-size effects (due to the limited system size L) are
sufficiently small. We find that the behavior of the σzj at
other positions is qualitatively similar in that it rapidly
decays to zero, including at the edge. We have consid-
ered several other initial states and observed the same
behavior.

In Fig. 6 we present analogous results for a parameter
regime in which an almost strong π mode exists (left hand
panels) and a case in which there are no long-lived edge
modes (right hand panels). The results for the entangle-
ment entropy density and the central spin show that in
both cases the system quickly heats to an infinite tem-
perature state. For T = 3.1, Jz = 0.3 and µ = 1.5 (left
hand panel) the results for A−(nT ) reveal the existence
of a π edge mode long after the system has thermalized.
On the other hand, for T = 1.5, Jz = 0.3 and µ = 1.5
(right hand panel) the edge coherence disappears around
the same time when the system reaches an infinite tem-
perature state. We observe that upon decreasing Jz the
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FIG. 5. Top panels: Time-evolution of edge zero mode di-
agnostic A+(nT ) (A−(nT ) ≈ 0, not shown). Middle and
lower panels: Time-evolution of the three-site entanglement-
entropy density and expectation value of the central spin
〈σzj=L/2(nT )〉 for a system initialized in a classical Néel state.
Middle and lower panels show thermalization on time-scales
that do not depend on system size, and occur on time-scales
much shorter than the lifetime of the almost strong mode in
the upper panel.

lifetimes of existing zero or π modes will increase roughly
as ∼ exp(1/Jz). It is difficult to quantify this behavior
more precisely due to the limitations set by the system
sizes accessible to us. We typically find only a narrow
parameter range in which Jz can be varied while the life-
times of zero/π modes still saturate for L = 14. We
find that the lifetimes of both zero and π modes can be
extended by moving closer to their respective integrable
lines, i.e. the centers of the blue and red regions In Fig. 7.

A second diagnostic for detecting the presence of edge
modes is the overlap of σx1 between opposite symmetry
sectors7. This is defined as

Γ =
1

2L

∑
s

max
s′
|〈s|σx1 |s′〉|2 , (6)

where |s〉 and |s′〉 denote the exact eigenstates of the
Floquet unitary U(T ). This diagnostic, since it takes
a mean of the overlap between opposite symmetry sec-
tors, treats zero and π modes on an equal footing. The
reasoning why Γ is a useful edge mode diagnostic goes as
follows. Up to corrections that are exponentially small in
system size strong edge modes Ψ0,π map each eigenstate
|s〉 to another eigenstate of opposite fermion parity, i.e.

FIG. 6. Top panels: almost strong π-mode diagnostic A−(nT )
for two low frequency drives as a function of time. For T = 3.1
there is a long-lived π-mode up to times nT ∼ 105, while for
T = 1.5 there isn’t. (A+ ≈ 0, for both cases, not shown)
Middle and bottom panels: time evolution of the three-
site entanglement-entropy density sent3 (nT ) and average spin
〈σzj=L/2(nT )〉 starting from a Néel state. The system is seen
to approach an infinite temperature state for times of the or-
der of nT ∼ 10 for both parameter sets.

|s′〉 ≈ Ψ0,π|s〉. As Tr(σx1 Ψ0,π) = O(1) strong edge modes
therefore lead to finite values of Γ. Reversing the argu-
ment, the exponentially small factor 2−L in the definition
of Γ can be compensated only if most eigenstates |s〉 of
U(T ) have a partner |s′〉 in the opposite symmetry sector
such that |〈s|σx1 |s′〉|2 = O(1). As almost all eigenstates
of U(T ) have finite correlation lengths this implies the
existence of fermionic edge modes. We plot Γ as a func-
tion of the parameters T ′ and µ of the ternary drive for
fixed substantial interaction strengths Jz/Jx = 0.2, 3.0 in
Fig. 7. We observe almost strong edge modes despite the
Floquet Hamiltonian having sizeable interactions. For
comparison we show the regions in which strong edge
modes exist in the binary drive. For the system sizes
accessible to us, the size and shape of the black regions
that indicate the presence of edge modes are only weakly
affected by finite-size effects (Appendix C).

A. Finite size effects

In a large finite system local thermalization45 implies
that the difference between the time average of the sys-
tem’s reduced density matrix ρA, and an appropriate
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FIG. 7. Edge mode diagnostic Γ for fixed Jz/Jx = 0.2, 3.0.
The black regions indicate the presence of almost strong edge
modes. For comparison we also indicate where zero (red)
and π-modes (blue) exist in the binary drive model. In the
top panel, the strong zero mode for |µ| ≤ 1 and sufficiently
small T is closely connected to the topological phase of the
static Kitaev chain. The blue and red wings for T > 0 are
introduced by the Floquet driving and do not have a static
analog.

thermal reduced density matrix ρth
A , goes to zero as sys-

tem size is increased for a fixed choice of subsystem A

|ρA − ρth
A | < εL , lim

L→∞
εL = 0. (7)

This means in particular that the time-averages of ex-
pectation values of local observables, sufficiently far away
from any boundaries, approach thermal values as the sys-
tem size is increased. We will now show that our system
quickly reaches an infinite temperature steady state in
this sense. Our discussion necessarily focusses on small
subsystems, and we are in particular unable to address
questions such as how the time scale at which the re-
duced density matrix of a large subsystem (but still small
compared to the system size L), approaches its infinite
temperature value within a given error, depends on the
size of the subsystem. However, given that the corre-
lation lengths in our system are very short, all “large”
observables are already accessible in short subsystems.
Considering how close a two point function at separation
100 is to its infinite temperature value is essentially a
purely academic question.

In the following we focus on two representative local
quantities, namely the z-component of the spin in the
centre of our chain and the entanglement entropies of
small subsystems. Fig. 8 shows the very late time aver-
age of the entanglement entropy per site as a function of
inverse system size 1/L for several subsystem sizes LA.
We see that for the system sizes accessible to us sent

LA
(∞)

approaches the infinite temperature value log(2). This
is of course as expected, but it allows us to quantify the

FIG. 8. Entanglement entropy density for different subsystem
sizes LA starting from the left end, and averaged over 100 time
points from 109−1012, long after the edge modes have melted.
There is a clear trend towards the infinite temperature value
of log(2), dashed line, as the chain length L is increased.

role of finite-size effects. In Fig. 9 we show the differ-
ence between the entanglement entropy per site at finite
times and the late time average sent

LA
(∞). We see that

sent
LA

(t) approaches its late time value, which we have just
argued to correspond to an infinite temperature state, on
time scales that are much shorter than the life times of
the edge modes. We note that reducing Jz will extend
the lifetime of the edge modes as discussed above, but
not change the time scales shown in Fig. 9. In Fig. 10 we
show the fluctuations of 〈σzL/2〉 at late times. We see that

as the system size L is increased, fluctuations around the
infinite temperature value of zero are suppressed.

Inspection of Figs. 8, 10, and 9 reveals that for param-
eters T = 3.1, Jz = 0.3, µ = 1.5, deviations from the
infinite temperature values are larger and convergence is
slower. This should be seen in the context that the life-
time of the π edge mode in this case has not yet saturated
for system size L = 14, cf. Fig. 6. So while our finite-size
analysis is less conclusive in this case, our findings are
compatible with the general picture of local thermaliza-
tion to an infinite temperature state long before the edge
modes start to decay.

IV. FLOQUET HAMILTONIAN

It is instructive to investigate the existence of edge
modes at the level of the stroboscopic Floquet Hamilto-
nian obtained from U(T ) = e−iTHF . We extract effec-
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FIG. 9. Short time entanglement entropy density for different
subsystem sizes LA, starting from the left end, for L = 14.
Plotted is the difference of the entanglement density from the
very late entanglement density used in figure 8, where the
latter is long after the edge modes have melted.

FIG. 10. Fluctuations of 〈σzL/2〉 after the initial decay. The
average is taken over the last 40 time points visible in Figs. 5,
6.

tive Floquet Hamiltonians around two limits, high and
low frequencies. As we are ultimately interested in the
behavior of large but finite systems, and short and inter-
mediate times, we set aside the issue of the convergence
of such expansions. In the small T limit of off-resonant
driving, our Floquet Hamiltonian is interacting and non-
integrable

HF ≈ H(0)
F =

1

3
(JzHzz + JxHxx + µHz) . (8)

A quantitative measure of how well H
(0)
F reproduces the

time evolution is provided by the normalized Frobenius
norm of the difference of evolution operators ∆(nT ) =

U(nT )− e−inTH
(0)
F

∆U(nT ) =
1

2L

√
tr
[(

∆(nT )
)†

∆(nT )
]
. (9)

Fig. 11 shows that the dynamics induced by H
(0)
F is in

very good agreement with the exact simulation for small
values of T (Appendix E discusses the choice of the low-
est period). The existence of almost strong edge modes
in this setting, corresponds to the generalization of the
results of Kemp et al7 to a quantum quench, for which
the system thermalizes on short, system-size independent
time-scales, while the zero mode persists over a much
larger time-scale.

FIG. 11. Dynamics of almost strong zero mode. Top row:
A+(nT ) for the exact U and for the approximate Uapprox given
by the leading order Magnus expansion. Middle row: ∆U(nT )
as a function of stroboscopic time. Bottom row: Time evo-
lution of the entanglement entropy density for a quench from
a Néel state. The entanglement cut is placed after the third
site from the left end of the chain. The onset of the decay for
the almost strong zero modes is not tied to the short time fea-
tures in ∆U or sent3 . Lowering Jz to 0.1 (not shown) pushes
the onset of the decay out to 105 periods while the steady
states of the middle and bottom panels saturate before 103

and 102 respectively.

In the low frequency regime we can analyze the vicin-
ity of the exactly solvable limit Jz = 0, Tµ/3 = π/2
which supports a strong π-mode. The Floquet Hamil-

tonian at this point is TH
(1)
F = TJx

3 Hxx + π
2D, and σx1

is an exact strong π-mode operator. Setting JzT/3 =
δzz ∼ 0.246, Tµ/3 = π/2 + δz ∼ π/2 − 0.015, and
JxT/3 = π/4 + 0.1/3 = θx, we note that we cannot
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FIG. 12. Top panel: Overlap A−(nT ) showing an almost
strong π mode for both the exact time evolution and the ap-
proximate HF , the latter given by a BCH expansion about
the point Tµ/3 = π/2 + δz, TJx/3 = π/4 + δT , TJz/3 = δzz.
Here, δT = 0.1/3, δz ∼ −0.015, δzz ∼ 0.246. Middle panel:
∆U(nT ) as a function of stroboscopic time. Bottom panel:
Time evolution of the entanglement entropy density with the
entanglement cut placed after the third site from the left end
of the chain. The initial state is a Néel state. While the
expression for HF fails to capture the long time dynamics ac-
curately, it nevertheless manages to capture the exponential
in system size dependence of the lifetime of the almost strong
mode. We stress that the agreement of the exact L = 12
and approximate L = 14 results in the top panel is purely
coincidental.

perform a high-frequency expansion as TJx is not small.
Nevertheless, HF to first order in δzz, δz but to arbitrary
orders in TJx may be derived from an infinite resumma-
tion of the Baker-Campbell-Hausdorff formula to obtain
a non-local perturbed Ising model (see Appendix D),

TH
(1)
F ∼ TJx

3
Hxx +

π

2
D + δzz [a1 (hzyx + hxyz)

+ a2h
E
zz + a3h

B
zz + a4hxyyx

]
+ δz

[
b1h

E
z + b2h

B
z

+b3hxzx + b4 (hxy + hyx)] . (10)

Here we have defined hα1...αk =
∑
j σ

α1
j . . . σαkj+k−1 ≡

hEα1...αk
+hBα1...αk

, where hE denotes the contribution in-

volving the spins σα1,L and hB the bulk part. As expected,
these additional terms still commute with D. Fig. 12
shows that the dynamics of A−(nT ) generated by this
Hamiltonian qualitatively agrees with the exact time evo-
lution despite ∆U growing large at shorter times. Taking
into account higher order corrections in δzz, δz

46 is ex-
pected to improve this agreement as long as we are close
enough to the exactly solvable point δzz, δz � 1.

V. CONCLUSIONS

We have established the existence of long-lived edge
modes in periodically driven disorder-free systems with
interacting Floquet Hamiltonians. The lifetimes of these
edge modes are much longer than the time scales over
which the system heats to infinite temperature. This
complements known results for edge modes in periodi-
cally driven disordered and prethermal systems. The ex-
istence of these modes imply robust edge states that sur-
vive heating, and open up the possibility of using these
states in quantum information and computing.

Our work raises a number of questions. Most impor-
tantly one should understand what determines the life
times of the almost strong zero and π modes. This is cur-
rently under investigation. Another question is to what
extent our findings can be understood in terms of Ref. 44
where the authors give precise statements on the lifetime
of prethermal physics for driven systems at high frequen-
cies. In this paper, we avoided this regime due to the
limits in system sizes accessible to us. To investigate this
one should understand in what parameter regime expan-
sions of the Floquet Hamiltonian around solvable limits
are asymptotic to sufficiently high orders. It also would
be interesting to explore eigenspectrum phases with (al-
most) strong edge modes in spin-1 chains and higher di-
mensional equilibrium as well as periodically driven sys-
tems. Other questions are whether the strong edge modes
in all free Floquet SPTs19,31–33,47–50 are equally robust
to adding interactions. It is also interesting to explore
the connection between almost strong mode operators in
interacting Floquet Hamiltonians and edge modes of in-
teracting topological phases51,52.
Acknowledgements: We are grateful to Paul Fendley,

Robert Konik, Sid Parameswaran and Sthitadhi Roy for
very helpful discussions. This work was supported by
the US Department of Energy, Office of Science, Basic
Energy Sciences, under Award No. DE-SC0010821 (DJY
and AM), the National Science Foundation under Grant
No. NSF PHY-1748958 (AM and FHLE) and by the
EPSRC under grant EP/N01930X (FHLE).

Appendix A: Explicit construction of the strong 0, π
mode operators for the binary drive

Our starting point is the time evolution of Majorana
operators under the two unitaries of our binary drive.
Defining

U1(T ) = e−iµHz
T
2 ,

U2(T ) = e−iµHxx
T
2 , (A1)

we have

U†1 (T )a2jU1(T ) = cos (Tµ) a2j + sin (Tµ) a2j−1 , (A2)

U†1 (T )a2j−1U1(T ) = cos (Tµ) a2j−1−sin (Tµ) a2j , (A3)
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U†2 (T )a2jU2(T )

=

{
a2j j = L

cos (TJx) a2j − sin (TJx) a2j+1 j < L.
, (A4)

U†2 (T )a2j−1U2(T )

=

{
a2j−1 j = 1

cos (TJx) a2j−1 + sin (TJx) a2j−2 j > 1
. (A5)

Denoting the time evolved Majorana operators by
aj(nT ) = U†(nT )ajU(nT ), we can cast the evolution
equations in the form(

~aodd

(
(n+ 1)T

)
~aeven

(
(n+ 1)T

)) ≡M (
~aodd(nT )
~aeven(nT )

)
, (A6)

where ~aodd(nT ) = (a1(nT ), a3(nT ), . . . , a2L−1(nT )),
~aeven(nT ) = (a2(nT ), a4(nT ), . . . , a2L(nT )) and

M =



a′ c′

b a −d c
. . .

. . .
. . .

. . .

−c d a b
. . .

. . .
. . .

. . .

−c′ a′


, (A7)

and

a = cos(Tµ) cos(TJx), b = sin(Tµ) sin(TJx),

c = − sin(Tµ) cos(TJx), d = − cos(Tµ) sin(TJx),

a′ = cos(Tµ), c′ = − sin(Tµ). (A8)

We now use that the spin operators at the left edge of the
chain have a simple expression in terms of the Majorana
fermions, i.e. σx1 (0) = a1(0). This suggests the following
Ansatz for the zero and π mode operators

Ψσ =

L∑
j=1

ψ
(σ)
j a2j−1 + φ

(σ)
j a2j , (A9)

where φ
(σ)
j and ψ

(σ)
j are respectively the amplitudes of

the expansion for the even and odd Majorana sublattices.
The requirement that

U†(T )ΨσU(T ) = cos(σ)Ψσ , (A10)

translates into an eigenvalue equation for MT

MT

(
~ψ
~φ

)
= cos(σ)

(
~ψ
~φ

)
. (A11)

As MT is an orthogonal matrix we can equivalently con-
sider the eigenvalue equation for M , which we do in the
following. Denoting the L× L blocks of M by

M =

(
M1 M2

−FM2F FM1F

)
, F =

 1
1

...

 , (A12)

we can block-diagonalize M by

M̃ = UMU† , U =
1√
2

(
I iF
I −iF

)
. (A13)

This gives

M̃ =

(
M̃1

M̃2

)
=

(
M1 − iM2F

M1 + iM2F

)
.

(A14)

Finally we may diagonalize M̃i = ViΛiV
†
i , where Λi is

the diagonal matrix of eigenvalues and the columns of
Vi host the eigenvectors. Putting everything together we
can express M in the form

M =
1√
2

(
V1 V2

−iFV1 iFV2

)(
Λ1

Λ2

)
1√
2

(
V †1 iV †1 F
V †2 −iV

†
2 F

)
≡WΛW †. (A15)

Since M̃∗1 = M̃2 and M is orthogonal, for each eigenvec-

tor |λ〉 of M̃1, there is an eigenvector |λ∗〉 of M̃2. For this

reason, it suffices to focus on M̃1. In the limit of large
system size the eigenvalue equation for M̃1 turns into a
matrix recurrence relation of the form (1 ≤ j < L/2)(

b id
−ic a− λ

)(
ψj

φL+1−j

)
+

(
a− λ −ic
id b

)(
ψj+1

φL−j

)
= 0,

(A16)
while for j = 1 we have(

a′ − λ −ic′
0 0

)(
ψ1

φL

)
= 0. (A17)

Assuming that Tµ 6= Zπ, TJx 6= Zπ we can rewrite this
in the form(

ψj+1

φL−j

)
= C

(
ψj

φL+1−j

)
, j ≥ 1, (A18)

where the matrix C is
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C =
1

λ sin(Tµ) sin(TJx)

(
sin2 (Tµ) −i [−λ cos (JxT ) + cos (Tµ)] sin(Tµ)

i [−λ cos (JxT ) + cos (Tµ)] sin(Tµ) 1− 2λ cos (JxT ) cos (Tµ) + cos2 (Tµ).

)
(A19)

The eigenvalues of C, for a given λ are

ε̃± = δλ,+1 [cot(Tµ/2) tan(TJx/2)]
±1

− δλ,−1 [cot(Tµ/2) cot(TJx/2)]
±1
. (A20)

The eigenvectors of C are,

|ε̃+〉 =

(
−i sin(Tµ/2)

cos(Tµ/2)

)
, |ε̃−〉 =

(
cos(Tµ/2)
−i sin(Tµ/2)

)
,

(A21)

and are independent of λ. The solutions to (A17) for the
relevant eigenvalues λ = ±1 are(

ψ1

φL

)
=

{
|ε̃−〉 if λ = 1

|ε̃+〉 if λ = −1
. (A22)

It is convenient to define,

ε± = ∓ [cot(Tµ/2)]
±1

tan(TJx/2)
. (A23)

Using the eigen-decomposition of C in (A18), we con-
clude that(

ψn+1

φL−n

)
= δλ,1

(
cos(Tµ/2)
−i sin(Tµ/2)

)
εn−

+ δλ,−1

(
−i sin(Tµ/2)

cos(Tµ/2)

)
εn+. (A24a)

So far we have neglected the fact that for j = L/2 the
set of recurrence relations is different. This is justified
as long as |ε±| < 1 and L � 1. In this regime we can
decompose the zero and π modes into their respective
contributions centered on the left and right edges respec-
tively Ψ0,π ≈ ΨL

0,π +ΨR
0,π. Focusing only on the left edge

we have

ΨL
0 ≈

∑
j≥1

εj−1
−

[
cos

(
Tµ

2

)
a2j−1 − sin

(
Tµ

2

)
a2j

]
,

ΨL
π ≈

∑
j≥1

εj−1
+

[
sin

(
Tµ

2

)
a2j−1 + cos

(
Tµ

2

)
a2j

]
.

(A25)

These are the expressions given in the main text.

Appendix B: Edge mode diagnostic A(nT )

In this subsection we discuss the two measures
A(nT ), Aψ(nT ) used to identify almost strong edge

modes. The time evolution operators commutes with ro-
tations around the z-axis by 180 degrees, and we there-
fore can choose the eigenstates of U(T ) to have definite
parity under these Z2 transformations

U(T )|m〉 = e−iT εm |m〉 ,
D|m〉 = sm|m〉 , sm = ±. (B1)

Up to finite-size corrections exponentially small in system
size a strong zero mode Ψ0 sends eigenstates to eigen-
states with degenerate eigenvalues but with the opposite
eigenvalue for D

Ψ0|m〉 ≈ |m̄〉 , εm̄ ≈ εm ,

(B2)

A strong π mode behaves similarly except that the quasi-
energies are shifted by π/T . The spectral representation
of A(nT ) reads

A(nT ) =
1

2L

∑
m1,m2

|〈m1|σx1 |m2〉|2e−i(εm2−εm1 )nT . (B3)

As σx1 is odd under the Z2 we have

σx1 = c0Ψ0 + cπΨπ + . . . (B4)

The coefficients c0 and cπ are different from zero only
if strong zero/π modes exist. Substituting this into the
spectral representation we have

A(nT ) =
|c0|2

2L

∑
m1,m2

|〈m1|Ψ0|m2〉|2e−i(εm2−εm1 )nT

+
|cπ|2

2L

∑
m1,m2

|〈m1|Ψπ|m2〉|2e−i(εm2
−εm1

)nT

+
1

2L

∑
m1,m2

[
c∗0cπ〈m1|Ψ0|m2〉

× 〈m2|Ψπ|m1〉+ h.c.

]
e−i(εm2

−εm1
)nT + . . .

(B5a)

The exponential factors in (B5a) will be strongly oscil-
lating for large nT except for the 2L terms in the dou-
ble sums that correspond to “paired” states (B2) and
their π-mode analogues. By the same arguments used in
the thermalization context, the time average of the sum
over oscillating terms becomes negligible at late times.
Assuming that A(nT ) relaxes, the oscillatory terms will
therefore not contribute to the late-time behavior and

A(nT ) ≈ |c0|2 + |cπ|2e−iπn. (B6)
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The second measure we use is defined with respect to an
initial state |ψ〉

Aψ(nT ) = 〈ψ|U(nT )†σx1U(nT )σx1 |ψ〉. (B7)

The physical meaning of this quantity is that we start
from an initial state |ψ〉, flip a spin at site 1, then time-
evolve until time nT , and flip the spin back again ob-
taining a state σx1U(nT )σx1 |ψ〉. Aψ(nT ) then measures
the overlap of this state with one where the initial state
was evolved up to time nT without the initial spin-flip
U(nT )|ψ〉. Employing a spectral representation we have

Aψ(nT ) =
∑
m1,m2

〈m1|σx1 |m2〉e−i(εm2
−εm1

)nT

× 〈ψ|m1〉〈m2|σx1 |ψ〉. (B8)

Focussing on the non-oscillatory terms in this double sum
(modulo (−1)n in case of the π-mode) gives a late time
contribution that is the same as (B6)

Aψ(nT ) ≈ |c0|2 + |cπ|2(−1)n . (B9)

In Fig. 13 we show the time-evolution of the symmetrized
autocorrelation functions A+(nT ), A+

ψ (nT ), and where

|ψ〉 is chosen to be the Néel state. The figure shows
that an almost strong zero mode exists, and that the
agreement between the two measures is good.

FIG. 13. Symmetrized overlaps A+(nT ), A+
ψ (nT ), where |ψ〉

is the Néel state. The time-evolution of the two quantities
are almost identical, with both showing a lifetime that grows
with system size L, indicating an almost strong zero mode.

Appendix C: System size dependence of the phase
diagram

Fig. 14 plots two metrics for the almost strong modes
Γ, χ, each formally defined in the caption. Γ measures
the extent to which the operator σx1 connects different
quasi-energy states, and does not differentiate between
whether these states have degenerate quasi-energies or
not.
χ measures the level of degeneracy for almost strong

modes and/or the level to which energies are separated

FIG. 14. Top panels: Plots of Γ = meansmaxs′ |〈s|σx1 |s′〉|2
where values of O(1) indicate an almost strong zero mode (left
panel) or almost strong π mode (right panel). The nontrivial
edge phases are robust to system size. Lower panels show an-
other metric from directly measuring the pairing structure of
the quasi-energy spectrum of the Floquet unitary. Lower left
panel: Denoting |s′〉 as the state that maximizes |〈s|σx1 |s′〉|2
for a given state |s〉, χ = means|angle (Tεs, T εs′)| for both
almost strong 0 mode (left panel) and almost strong π mode
(right panel). angle(x, y) finds the (smaller) angle between
the two points on the unit circle. Note that while Γ cannot
distinguish between 0, π modes, χ can.

by π/T . The plots show that deep within the phases,
there is negligible system size dependence.

We have taken care to pick phases where only almost
strong 0 or almost strong π mode exists, but χ can also
identify phases when both are present simultaneously. A
flat plateau in χ away from 0, π would indicate the pres-
ence of coexisting 0− π modes.

Appendix D: Derivation of Floquet Hamiltonian
with almost strong π mode

We outline the derivation of HF , for the ternary drive,
around the exactly solvable limit Jz = 0, Tµ/3 = π/2.
Setting, JzT/3 = δzz, Tµ/3 = π/2 + δz, and JxT/3 =
π/4+0.1/3 = θx, the Floquet unitary may be written as,

U(T ) = e−iHFT = e−i
TJz
3 Hzze−i

TJx
3 Hxxe−i

Tµ
3 Hz , (D1a)

≡ (−i)L−1e−iδzzHzze−iθxHxxe−iδzHze−i
π
2D,

(D1b)

where in the last line we have used that e−iπHz/2 =
(−i)LD = (−i)L−1e−i

π
2D. These steps are carried out
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to explicitly show that we have a Floquet Hamiltonian
that is non-local, and that it is in fact the presence or
absence of non-local term D in the Floquet Hamiltonian
that determines whether σx1 is respectively a strong π
mode or a strong 0 mode.

In what, follows we will consider the limit of δzz, δz �
1. We use the following formula from Baker-Campbell-

Hausdorff (BCH),

log(exp(X) exp(Y )) = X +
adXeadx

eadX − 1
Y +O(Y 2). (D2)

Furthermore, we use the following identity,

t

1− e−t
=

∞∑
m=0

B+
mt

m

m!
, (D3)

where B+
m are the Bernoulli numbers with B1 = + 1

2 . We
first note that D commutes with everything, so it can be
appended at the end of the calculation. We first combine
the exponentials containing θxHxx and δzHz, and define
the resulting operator as Z1,

−iZ1 ∼ −iθxHxx − iδz

( ∞∑
n=0

B+
n (−iθxadHxx)n

n!

)
Hz +O(δ2

z), (D4a)

∼ −iθxHxx − iδz
{

(σz1 + σzL)θx cot(θx) +

(
1 + 2θx cot(2θx)

2

) L−1∑
i=2

σzi

+

(
−1 + 2θx cot(2θx)

2

) L−2∑
i=2

σxi−1σ
z
i σ

x
i+1 − θx

L−1∑
i=1

(
σxi σ

y
i+1 + σyi σ

x
i+1

)}
, (D4b)

≡ −iθxHxx − iδz
{
hEz θx cot(θx) + hBz

(
1 + 2θx cot(2θx)

2

)
+ hxzx

(
−1 + 2θx cot(2θx)

2

)
− θx (hxy + hyx)

}
.

(D4c)

Above we have used the notation hα1...αk =∑
j σ

α1
j . . . σαkj+k−1 ≡ hEα1...αk

+hBα1...αk
, where hE denotes

the contribution involving the spins σα1,L and hB the bulk

part.
Next we combine the Hzz and Z1 exponentials using

the same steps as above, and only working to first order
in δz, δzz, obtain the resulting operator Z2

−iZ2 ∼ −iZ1 − iδzz
{(
σz1σ

z
2 + σzL−1σ

z
L

)
θx cot(θx) +

(
1 + 2θx cot(2θx)

2

) L−2∑
i=2

σzi σ
z
i+1

−
(
−1 + 2θx cot(2θx)

2

) L−2∑
i=2

(
σxi−1σ

y
i σ

y
i+1σ

x
i+2

)
+ θx

L−1∑
i=2

(
σzi−1σ

y
i σ

x
i+1 + σxi−1σ

y
i σ

z
i+1

)}
, (D5a)

≡ −iZ1 − iδzz
{
hEzzθx cot(θx) + hBzz

(
1 + 2θx cot(2θx)

2

)
− hxyyx

(
−1 + 2θx cot(2θx)

2

)
+ θx (hzyx + hxyz)

}
.

(D5b)

Now including the πD/2 term, we have our approximate HF ,
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THF ∼ θxHxx +
π

2
D + δz

{
hEz θx cot(θx) + hBz

(
1 + 2θx cot(2θx)

2

)
+ hxzx

(
−1 + 2θx cot(2θx)

2

)
− θx (hxy + hyx)

}
+ δzz

{
hEzzθx cot(θx) + hBzz

(
1 + 2θx cot(2θx)

2

)
− hxyyx

(
−1 + 2θx cot(2θx)

2

)
+ θx (hzyx + hxyz)

}
. (D6)

As we are working only to first order in δz, δzz we expect
this HF to only be valid for short times.

While we have used the BCH formula above, a more
systematic approach following the methods in Ref. 46
could prove useful for higher orders. In fact we have
checked that using the alternative approach of 46, and
working to first order gives the same form of HF .

Appendix E: Discussion of parameters used

Fig. 15 shows how the many-particle quasi-energy spec-
trum evolves with system size L. For any T , too small
a system will not capture any true Floquet dynamics as
the spectrum will not reach the Floquet zone boundaries,
and the system will always appear highly off-resonant.
For the parameters of our paper, T = 1 is a reasonable
lower limit for the period. As a general rule, for a given
T , increasing Jz or L or both, increases the number of
many-body resonances.

FIG. 15. Quasi-energy spectrum plotted against T for select
µ values. For small system sizes, setting T too small can lead
to the drive being off-resonant with the extensive many-body
spectrum. We see that for L = 12, T = 1 is a reasonable
lower limit for our calculations.
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