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We analyze the electron spin relaxation rate 1/T1 of individual ion-implanted 31P donors, in a
large set of metal-oxide-semiconductor (MOS) silicon nanoscale devices, with the aim of identifying
spin relaxation mechanisms peculiar to the environment of the spins. The measurements are con-
ducted at low temperatures (T ≈ 100 mK), as a function of external magnetic field B0 and donor
electrochemical potential µD. We observe a magnetic field dependence of the form 1/T1 ∝ B5

0 for
B0 & 3 T, corresponding to the phonon-induced relaxation typical of donors in the bulk. However,
the relaxation rate varies by up to two orders of magnitude between different devices. We attribute
these differences to variations in lattice strain at the location of the donor. For B0 . 3T, the
relaxation rate changes to 1/T1 ∝ B0 for two devices. This is consistent with relaxation induced
by evanescent-wave Johnson noise created by the metal structures fabricated above the donors. At
such low fields, where T1 > 1 s, we also observe and quantify the spurious increase of 1/T1 when
the electrochemical potential of the spin excited state |↑〉 comes in proximity to empty states in
the charge reservoir, leading to spin-dependent tunneling that resets the spin to |↓〉. These results
give precious insights into the microscopic phenomena that affect spin relaxation in MOS nanoscale
devices, and provide strategies for engineering spin qubits with improved spin lifetimes.

I. INTRODUCTION

Electrons bound to shallow donors in silicon became a
centerpoint of solid-state physics in the 1950s, when the
study of their spin and orbital states was used as a bench-
mark for the then emerging theories of band structure,
effective mass and impurity states in solids1. In particu-
lar, the detailed analysis of the donor electron spin-lattice
relaxation time T1 provided key insights into the multi-
valley band structure of silicon, and the way it influences
spin-phonon coupling2.
Fast-forward half a century, donor spins have become

the subject of intense research for their potential use in
quantum computing3–6. In this context, the old results
on the electron spin T1 seemed to provide ample reas-
surance that spin lifetime would not constitute a limita-
tion to the encoding and protection of quantum informa-
tion. The donor electron T1 in bulk samples exceeds an
hour at cryogenic temperatures and moderate magnetic
fields7, whereas the spin decoherence time T2 is limited
to a few hundred microseconds8,9, due to the coupling
of the electron spin to the bath of spin-1/2 29Si nuclei
present with 4.7% abundance in natural silicon. How-
ever, the adoption of isotopically enriched 28Si samples,
where the concentration of 29Si nuclei is reduced below

0.1%10, has allowed extending T2 close to11 or beyond12
one second. This comes within an order of magnitude
of the T1 time observed in nanoscale single-donor qubit
devices13 at the magnetic fields & 1 T typically used for
control and readout of the electron spin9, and calls for
an effort to understand in detail all spurious channels of
spin relaxation.
In this work, we provide an extensive collection of ex-

perimental results and theoretical models on the elec-
tron spin relaxation time T1 of single 31P donors in sil-
icon metal-oxide-semiconductor (MOS) nanoelectronics
devices, with the aim of elucidating how the environment
of the donors influences the spin lifetime. Earlier mea-
surements of T1 on single donors in nanoscale devices13–16
had already shown evidence of deviation from bulk-like
behavior. Here, by analyzing data on 7 different devices,
we uncover several microscopic mechanisms that affect
the spin relaxation time. In particular, we provide evi-
dence for relaxation induced by evanescent-wave Johnson
noise (EWJN), by electron tunneling to a nearby reser-
voir, and modifications of the spin-phonon relaxation rate
caused by strain.
The paper is organized as follows. Sec. II gives an

overview of the theory of electron spin relaxation of
donors in silicon, covering both bulk effects (phonon-
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induced relaxation) and phenomena specific to donors
near metallic nanostructures (evanescent-wave Johnson
noise, charge noise). Sec. III describes the details of
our physical system and the experimental setup, as well
as the measurement protocols used to acquire the data.
Sec. IV shows the magnetic field dependence of T1 in sev-
eral devices, both in natural and isotopically-enriched sil-
icon, with a detailed analysis of the low-field (Sec. IVA)
and high-field (Sec. IVB) relaxation channels. Sec. V
presents evidence of spin relaxation caused by tunneling
to a nearby charge reservoir. Finally, Sec. VI discusses
the results and the remaining open questions.

II. BACKGROUND

We describe a single 31P donor in silicon, subjected to
an external magnetic field B0 ‖ ẑ, with the following spin
Hamiltonian:

HP = gzµBB0Sz − hγnB0Iz + hAS · I, (1)

where h is the Planck constant, gz is the component the
electron Landè g-tensor along the field direction, µB is
the Bohr magneton, γn = 17.25 MHz/T is the nuclear gy-
romagnetic ratio, A is the electron-nuclear hyperfine cou-
pling, S and I are spin-1/2 vector Pauli matrices describ-
ing the electron and the 31P nuclear spins, respectively,
and Sz, Iz are the operators representing the electron and
nuclear spin projections along the ẑ-axis. For 31P donors
in bulk silicon, the parameters in Eq. 1 take the values
gz = 1.9985 (corresponding to gzµB/h = 27.971 GHz)
and A = 117.53 MHz, but the distortion of the wavefunc-
tion caused by electric fields, strain or local confinement
can result in small shifts of such values17.
In this paper we focus on the physics of the electron

spin alone. Earlier experiments on the 31P nucleus18 have
shown that it retains its state for extremely long times
(typically many days, or even months). Moreover, we
work in the regime where the electron Zeeman energy
gµBB0 greatly exceeds the hyperfine coupling A, and the
electron-nuclear eigenstates are simply the tensor prod-
ucts of the electron (|↓〉, |↑〉) and nuclear (|⇓〉, |⇑〉) basis
states. Therefore, choosing for example to prepare the
nuclear spin laways in the |⇑〉 state, the donor Hamilto-
nian can be truncated to an electron-only operator:

H = (gzµBB0 + hA/2)Sz, (2)

where the term hA/2 has the only effect of adding a small
contribution to the electron spin energy splitting. This
is inconsequential for the discussion of electron spin re-
laxation, and will be ignored from here onward.

Electron spin relaxation consists of transitions between
the |↑〉 and |↓〉 basis states leading to thermal equilibrium
with a bath at temperature T , and is mathematically
described by the presence of off-diagonal matrix elements
in the Hamiltonian, coupling the spin to some operators
of the bath. In a simplified picture, we can describe the

bath as a noise source that introduces a perturbation to
the Hamiltonian described by:

H′[λ(t)] = ∆⊥[λ(t)]S. (3)

Here∆⊥[λ(t)] is an operator that does not commute with
H, and depends on the parameter λ(t) which describes
the noise acting on the electron spin. The electron relax-
ation rate is the sum of the decay (W↑↓) and excitation
(W↓↑) rates:

T−1
1 (λ) = W↑↓ +W↓↑. (4)

Thermal equilibrium is obtained by imposing that decay
and excitation rates obey the detailed balance condition:

W↓↑
W↑↓

= exp
(
−gzµBB0

kBT

)
. (5)

In the experiments presented here, conducted at B0 >
0.5 T and T ≈ 200 mK, gzµBB0 � kBT and we can
approximate T−1

1 (λ) ≈W↑↓, with:

W↑↓ = 2π
~
|〈↓ |H′[λ(t)]|↑〉|2 ρf . (6)

This expression is an application of Fermi’s golden rule,
where ρf is the density of available final states for emis-
sion of energy from the spin into the bath. Introducing
the transition operator of the noise perturbation

D⊥,λ = ∂H′[λ(t)]
∂λ

(7)

and the noise power spectral density

Sλ (ω) =
∫ +∞

−∞
dτ〈λ(0)λ(τ)〉 exp(−iωτ), (8)

we can express the total relaxation rate as19,20

T−1
1 =

∑
λ

|〈↑ |Dλ,⊥|↓〉|2

~2 Sλ (ω0) . (9)

A. Phonon-induced relaxation

In bulk silicon, the dominant mechanism that creates
a transverse operator ∆⊥[λ(t)] acting on the donor elec-
tron spin is the modification of the g-tensor caused by
elastic distortions of the crystal lattice (phonons).
The band structure of silicon contains six degenerate

conduction band minima along directions ±x,±y,±z (la-
beled below by the index j = 1, 2, . . . , 6) at finite crystal
momentum k0, called valleys. A bound electron state
in silicon must be constructed from linear combinations
of the 6 valleys, whose index effectively constitutes an
additional quantum number, in addition to the usual
hydrogen-like principal, orbital and magnetic quantum
numbers. The spherical symmetry of the Coulomb po-
tential produced by the donor nucleus is broken by the
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cubic crystal field potential, creating a valley-orbit cou-
pling. As a result, the ground 1s orbital state is fur-
ther split into six valley-orbit states: a singlet with A1
symmetry (ground state), a triplet with T2 symmetry
and a doublet with E symmetry, with wave functions
Ψi =

∑6
j=1 α

(j)
i ψ(j), where ψ(j) are envelope-modulated

Bloch functions of the 1s orbital and1,21

α
(j)
1 = 1√

6
(1, 1, 1, 1, 1, 1), (A1) (10a)

α
(j)
2 = 1√

2
(1,−1, 0, 0, 0, 0), (T2) (10b)

α
(j)
3 = 1√

2
(0, 0, 1,−1, 0, 0), (T2) (10c)

α
(j)
4 = 1√

2
(0, 0, 0, 0, 1,−1). (T2) (10d)

α
(j)
5 = 1

2(1, 1,−1,−1, 0, 0), (E) (10e)

α
(j)
6 = 1

2(1, 1, 0, 0,−1,−1). (E) (10f)

When a phonon with wave vector q travels through the
crystal, it creates a local strain ~U that inhomogeneously
deforms the lattice by the displacement

Q(r) =
∑
q,t

[
et(q)aq,te

iq·r + e∗t (q)a∗q,te−iq·r
]
, (11)

where e(q) = e∗(−q) is the polarization vector, aq,t the
displacement amplitude and t = x, y, z. The deformation
alters the crystal symmetry such that the jth valley is
shifted by an energy

ε(j) =
∑
t,t′

Ut,t′
(

Ξdδt,t′ + ΞuG(j)
t G

(j)
t′

)
, (12)

where Ut,t′ is the component of the strain tensor ~U , G(j)

is the unit vector pointing from the origin to the bottom
of the jth valley in the first Brillouin zone, and Ξd and
Ξu are the Herring deformation-potential which describe
the shift in the band edge energy caused by isotropic
dilations and uniaxial strain, respectively22,23. If unper-
turbed, the ground state A1 (Eq. 10) has an equal pop-
ulation of all valleys. As a consequence of the energy
shifts ε(j) caused by the lattice phonon, the relative val-
ley populations become unequal, causing the mixing of
some excited states with the ground state. This effect is
called "valley-repopulation" and causes a change in the
electron g-factor.

The g-factor of each valley depends on the spin-orbit
interaction, which differs whether the electron moves in
or out of plane with respect to the external magnetic
field, resulting in an anisotropic value given by2:

g2 = g2
|| cos2 θ + g2

⊥ sin2 θ, (13)

where θ is the angle between B0 and the valley axis and
g|| and g⊥ are the g values with B0 pointing parallel

and perpendicular to the valley axes, respectively. In the
unperturbed case, once averaged over all valley states
according to their population, the g-factor actually be-
comes isotropic for the A1 ground state due to the even
valley population:

g0 = 1
3g|| +

2
3g⊥. (14)

However, in the strained case, the valley population is
unequal which leads to an anisotropic g which depends
on the amount of strain. For instance, for stress along
the [100] direction, the g-factor becomes2:

g − g0 = 1
6
(
g|| − g⊥

)(
1− 3

2 sin2 θ

)
×
[
1− (1 + 3x/2)

√
1 + x/3 + x2/4

]
, (15)

with x = Ξ′u/E12, where Ξ′u is the deformation potential
adjusted for stress and E12 is the valley-orbit splitting
between the ground state A1 and the doublet state E.
This g-factor anisotropy effectively couples the electron
spin S to the lattice phonon q via the Hamiltonian23:

H′ph = 2g′µBB0Ξu
−3E12

f(q)q
(
aq,t

∑
r

D(t)
r D(t′)

r + c.c.

)
St′

(16)
where g′ = 1

3 (g||−g⊥), f(q) = 1/
[
1 + 1

4a
∗2
0 q

2]2, a∗0 is the
effective Bohr radius, and

Dr = 3
∑
j

α(j)α(j)
r U(j) (17)

is a tensor that describes the geometrical structure of
the conduction band edge, with r labeling the valley-
orbit excited states and U(j) the tensor that selects the
direction of the j-th valley.
The spin-phonon interaction described by Eq. (16) rep-

resents one example of off-diagonal perturbation H′ as in
the general formalism of Eq. (6). From this, Hasegawa23
calculated the donor spin-lattice relaxation rate as:

T−1
1,rp = 1

90π

(
g|| − g⊥
g0

)(
Ξu
E12

)2( 1
ρv5
t

+ 2
3ρv5

l

)
×
(
gµBB0

~

)4
frp(θ) · kBT

= Krp
4 B4

0T,

(18)

where vt = 5860 m/s and vl = 8480 m/s are the trans-
verse and longitudinal sound velocities in silicon, respec-
tively, ρ = 2330 kg/m3 is the density of silicon and
frp(θ) = sin2 θ(1 + 3 cos2 θ) is a geometric factor where θ
is the angle between B0 and the [100] crystal axis2,23.
Even if the electron wave function were entirely con-

fined in one valley, strain can cause a change in g-factor
by shifting the nearby energy bands that determine g2,24.
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This "one-valley" mechanism yields a spin-lattice relax-
ation rate of the form:

T−1
1,ov = 1

20π

(
M

g0

)2( Ξu
E12

)2( 1
ρv̄5
t

+ 2
3ρv̄5

l

)
×
(
gµBB0

~

)4
fov(θ) · kBT

= Kov
4 B4T,

(19)

where M = 0.44 is the matrix element of the one-valley
g-factor shift and fov(θ) = cos4 θ(1 + 1/2 sin4 θ)24. Since
the magnetic field in our experiment is aligned along the
[110] direction, θ = 45◦, both the "valley repopulation"
and the "one-valley" mechanisms provide a channel for
spin relaxation.

The spin relaxation rates in Eq. (18) and (19) were
derived in the high-temperature limit, kBT � gµBB0,
where both spontaneous and stimulated phonon emis-
sion take place. These are described by including a
factor (1 + nph) in the rate calculation, where nph =
1/[exp(gµBB0/kBT ) − 1] is the Bose occupation factor
for phonons of energy matching the electron Zeeman en-
ergy. The factor kBT in Eqs. (18), (19) appears because
(1 + nph) ≈ kBT/gµBB0 in the high-T limit.
The low-temperature limit of the spin relaxation rates,

of relevance to experiments we present here, is obtained
by replacing kBT/gµBB0 with 1 in Eqs. (18), (19), which
results in the well-known T−1

1 ∝ B5 dependence13,25:

T−1
1 |low−T = K4

gµB
kB

B5
0 = K5B

5
0 . (20)

B. Evanescent-wave Johnson noise

Another mechanism inducing electron spin relaxation
is magnetic noise leaking from the aluminum gates in the
vicinity of the electron. Quantum and thermal fluctua-
tions of the electrical currents in the metal create electro-
magnetic fluctuations known as Johnson noise26–28. The
Johnson noise leaks out of the metal into the insulator in
form of evanescent waves when the photon modes in the
metal are totally reflected at the metal-insulator interface
(Fig. 4a)29. This effect is called evanescent-wave John-
son noise (EWJN)30–32 and is particularly strong near a
metal interface. EWJN can cause spin relaxation at low
temperatures because the evanescent waves constitute an
electromagnetic reservoir that can absorb energy (Eq. 6).

In the nanoscale MOS devices studied here, the main
sources of EWJN are the metallic control gates (see
Fig. 1a). At r, the position of the donor, this noise is
characterized by the power spectrum

Sii (ω) =
∫ ∞
−∞

eiωt 〈Bi (r, t)Bi (r, 0)〉 dt

= 〈Bi (r)Bi (r)〉ω . (21)
Here i = x, y, z is a Cartesian index and B the magnetic
component of the EWJN field. The angle brackets de-
note a thermal average over the quantum states of the

system. The power spectrum determines T1 according to
the formula

1
T1

=
(µB

~

)2
[Sxx (ω0) + Syy (ω0)] , (22)

for B0 in the z direction.
As will be shown below, the conditions of our experi-

ment are such that firstly we can approximate the electro-
magnetic fields as quasi-static, since the vacuum photon
wavelength is on the order of cm and exceeds the device
dimensions. Secondly, we anticipate a local relation be-
tween the electric field and the electric displacement since
the devices satisfy the inequalities `� a� δ, where a is
any linear dimension of the metal pieces,

` = vF
me

ne2σ (23)

is the mean free path with vF as the electron Fermi ve-
locity, me the electron mass, n the electron density, and

δ =
√

2/µ0µRσω0 (24)

is the skin depth with µ0 as the magnetic permeability
constant and µR as the relative permeability. µR = 1 for
our device.
For this situation, it has been shown that32

1
T1

= 1
L
µ2
Bµ

2
0σω0

4π~ , (25)

where L is a length that depends only on the geometry
of the metallic elements of the device and the position of
the qubit. Its calculation can be rather involved and we
will give estimates for our device in Sec. IV A.

C. Charge noise

Charge noise does not directly couple to the spin of
the qubit. However, when combined with spin-orbit cou-
pling, it creates a fluctuating effective magnetic field that
will contribute to T1

33. According to Ref.33, if the fre-
quency dependence of the charge noise power spectrum is
proportional to 1/fa, then the field dependence of 1/T1 is
B2−a

0 . For 1/f noise (a = 1) this would give 1/T1 ∼ B0.
While a 1/f charge noise spectrum has been observed be-
tween 10−2 and 3×105 Hz in Si-based devices34, it is ex-
ceedingly unlikely that it would hold up to the > 1010 Hz
frequency range that is relevant for 1/T1. Indeed, a recent
re-analysis of the data in Ref.34 suggests that the noise
spectrum changes from 1/f to 1/f2 for f > 2×105 Hz35.
In the MOS donors-based devices discussed in this

work, the noise spectrum became white for f ≥ 10 kHz11.
This would give 1/T1 ∼ B2

0 if extended up to the electron
Larmor frequency.
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FIG. 1. (Color online) Phosphorus donor qubit system.
(a) Schematic of a phosphorus donor implanted in silicon,
and a false-colored scanning electron micrograph of a device
similar to the ones measured. Two independent gates con-
trol the donor potential (DD and DP, green) while a single-
electron transistor (SET, yellow) determines the donor charge
state, which is correlated to the electron spin state via a spin-
dependent tunneling process. A plunger gate (PL, green)
controls the electrochemical potential of the SET (and of a
donor, if one is present in its vicinity). A broadband mi-
crowave antenna (purple) provides a magnetic drive for both
the electron and the nuclear spins. (b) Energy level diagram
of the electron-nuclear spin system, with electron spin reso-
nance (ESR) and nuclear magnetic resonance (NMR) tran-
sitions indicated. (c) Schematic of the (electron-spin depen-
dent) donor electrochemical potentials µd,↑, µd,↓ during read-
out and operation. The nuclear state is irrelevant in the
readout process. For readout, the donor is tuned such that
µd,↑ − EZ/2 = µSET = µd,↓ + EZ/2 and |↑〉 can tunnel out,
leaving the donor ionized. The resulting positive donor charge
shifts the SET tuning to a high-conductance point. In con-
trast, |↓〉 stays confined, keeping the SET in Coulomb block-
ade. For operation, both spin states are well confined below
the SET electrochemical potential with µd,↓, µd,↑ � µSET, so
the electron cannot escape. This is the bias point for the de-
vice during the wait time for spin relaxation measurements.
N(E) is the density of states in the SET island.

III. QUBIT SYSTEM AND MEASUREMENT
METHODS

A. Qubit setup

Our qubit system consists of a single electron spin con-
fined by a phosphorus 31P donor, implanted in either

natural silicon (natSi) or isotopically-enriched 28Si with
800ppm residual 29Si nuclei (Fig. 1a)10. With the ion
implantation parameters used for the devices described
in the present work, each device contains typically 10−20
donors in a 100× 100 nm2 window.
Aluminum gates, defined by electron beam lithogra-

phy, control the electrostatic environment and allow se-
lecting a specific donor for the measurements. Here, spin
readout is obtained via spin-dependent tunneling into the
island of a single-electron transistor (SET)13 kept at a
low electron temperature (T ≈ 100 mK). It is always
possible to tune the gate voltages in such a way that
one and only one donor has its electrochemical poten-
tial aligned with that of the SET island, while all other
donors are either already ionized, or are kept far below
the Fermi level (Fig. 1c).
A DC-only (DD) and a pulsed (DP) gate above the

donor control the donor potential. Additionally a plunger
gate (PL) is used to manipulate the donor potential and
the SET electrochemical potential µSET. In all devices
from 2013 onward, a broadband microwave antenna36 is
used for microwave and radio frequency pulses, allow-
ing for full control over the electron9 and nuclear18 spins
(Fig. 1b).

B. Measurement procedures

Donor control via a virtual gate. The spin readout
process depends on the relative alignment of the (spin-
dependent) donor electrochemical potentials µd,↑, µd,↓
with respect to the SET electrochemical potential
µSET

13,37. To simplify the analysis we define a virtual
pulsed gate voltage VDV by combining the effects of the
voltage pulses on the SET plunger, V ac

PL, and on the donor
pulsed gates, V ac

DP:

VDV =
√

(βV acPL)2 + (V acDP)2
. (26)

These pulsed voltages are applied in addition to the DC
voltages VPL and VDP chosen to select a specific donor to
be near the readout condition.
The factor β determines the way in which we choose

to shift µd and µSET. We typically choose “compensated
pulses", i.e. keep µSET fixed while moving µd by using
VPL to compensate for the effect of VDP on µSET. We
thus call βc the slope of the Coulomb peaks in the charge
stability diagram of the donor and plunger gates (Fig.
2a), determined by the ratio of capacitive couplings of
gates PL and DP to the SET island:

βc = ∆VPL/∆VDP

= CSET−PL/CSET−DP.
(27)

Any other value of β corresponds to an uncompensated
operation (βuc), i.e. one where µSET varies during the
pulsing.
We also define the donor plunge voltage V c

p (V uc
p ) as

the effective voltage that determines how far below µSET
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the donor electrochemical potential µd is plunged when
operating compensated (uncompensated):

V c/uc
p = VDV(βc/uc) sin θ, (28)

where θ = ∠
[
VDV(βc/uc), µSET

]
. Note that, for V uc

p , the
shift of µSET caused by the uncompensated pulsing can
result in a change in the electron number in the SET
island.

Electron spin read out. The current through the SET,
ISET, is used to determine the charge state of the donor
which, in turn, correlates to the electron spin state in
the presence of spin-dependent tunneling13,37–39. The
SET is biased in Coulomb blockade (ISET ≈ 0) when the
donor is in the neutral charge state. For spin readout, the
donor and SET electrochemical potentials are tuned such
that µd,↑ − EZ/2 = µSET = µd,↓ + EZ/2. This ensures
that the electron can only leave the donor and tunnel
onto the SET if in state |↑〉, leaving behind a positively
charged donor which shifts the SET bias point and brings
it to a high-conductance state (ISET ≈ 1 nA). Coulomb
blockade is restored when a |↓〉 electron tunnels back onto
the donor. Thus we observe a current spike whenever the
electron was in state |↑〉, while the current stays low if in
state |↓〉 (Fig. 1c). This donor tuning is called“read level"
and, in our definition, corresponds to Vp = VDV = 0V
(Fig. 2a).

Electron spin initialization For B0 ≤ 1.5 T we pre-
pare a |↑〉 state in two steps. First we use the read level,
Vp = 0V, to initialize |↓〉. After a waiting time suitably
longer than the electron tunnel-out time, a |↑〉 will have
escaped the donor and be replaced by a |↓〉, while |↓〉 will
remain in place. Second, we invert the spin from |↓〉 to |↑〉
using an oscillating magnetic field B1 whose frequency is
adiabatically swept through the resonance40.
For B0 > 1.5 T the above method would require

ESR frequencies higher than those available with our
microwave source. We thus resort to a random elec-
tron initialization, obtained by ,loading the electron when
µd,↓, µd,↑ � µSET. In this case both the |↑〉 and |↓〉 states
are accessible and electron spin is prepared with roughly
equal probability of the two.

Spin relaxation measurement. The electron spin re-
laxation time T1 is obtained by measuring the probabil-
ity of finding the spin in the |↑〉 state after a wait time
τ has elapsed. To this end, we apply the pulse sequence
illustrated in Fig. 2b to the virtual gate DV.

For B0 ≤ 1.5 T we prepare a |↑〉 state while for B0 >
1.5 T a random electron is initialized with roughly equal
probability of |↑〉 and |↓〉 (see paragraph Electron spin
initialization).

Next, we plunge the donor electrochemical potential
far below µSET with a voltage pulse of amplitude Vp
and duration τ . This ensures that the previously initial-
ized electron spin cannot escape the donor (see, however,
Sect. V). Finally, a single shot-spin readout is performed
at Vp = 0V.
We repeat this sequence 30 times to determine the

spin-up fraction P↑ after each wait time τ . The mea-

𝑉p

(a)

(b)

𝑡

Initialize Plunge/wait Read

𝐸F 0

𝑇10.5

↑

Δ𝑉DP

Δ𝑉PL

(c)

𝐷+
𝐷0

𝑉𝐩
c

𝑉𝐩
uc

↓

↑

↓

𝐼 S
E
T

FIG. 2. (Color online) Measurement of the electron spin
relaxation rate. (a) Detail of the charge stability dia-
gram [SET current as a function of plunger gate (PL) and
donor gate (DP)] around the ionization point of the donor
under study. The donor transition from ionized (D+) to neu-
tral (D0) when µd = µSET is indicated by the dashed purple
line. The virtual gate voltage VDV(βc = −0.51), indicated
by the blue arrow, is determined by ∆VPL and ∆VDP (Eq.
27). V c/uc

p is the effective plunge voltage. (b) Schematic of
the pulse sequence to measure the relaxation time T1. For
fields B0 ≤ 1.5T (orange line), the spin is determinstically
initialized to |↓〉 and then inverted with an adiabatic ESR
pulse. For B0 > 1.5T (green line) an electron with a random
spin state is initially loaded. Then the donor is plunged for
time τ , until the spin state is determined by spin-dependent
tunneling with the SET. (c) Example of a T1 measurement at
B0 = 1T. The relaxation time T1 = 9.8±0.7 s is extracted us-
ing a least-square exponential fit (Eq. 29), with Coffset = 0.10
determined in a separate experiment.

surement of P↑(τ) is repeated multiple times to check for
consistency, which can be occasionally disrupted by drifts
and jumps in the electrostatic environment.
T1 is extracted by performing a least-square fit to P↑(τ)

with the exponential decay:

P↑(τ) = Cinite
−τ/T1 + Coffset, (29)
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where Cinit is the initial spin-up proportion and Coffset
the offset at τ →∞ created by erroneous spin-up counts,
caused e.g. by tunnel-out events of |↓〉 spins into states
made available in the electron reservoir by thermal ex-
citations, or by noise spikes counted as |↑〉 spins. Cinit
and T1 are free fitting parameters, whereas Coffset is de-
termined separately by measuring the spin-up proportion
after |↓〉 has been initialized, and is fixed at that value in
the fit.

As an example, Fig. 2c shows set of P↑(τ) that, fitted
to Eq. (29), yielded the longest measured relaxation time
at B0 = 1T, T1 = 9.8± 0.7 s.

IV. RELAXATION RATE DEPENDENCE ON
EXTERNAL MAGNETIC FIELD

The dependence of the electron relaxation rate T−1
1

on the strength of the external magnetic field B0 gives
insight into the mechanisms that lead to the relaxation it-
self. Fig. 3 (a) shows sets of relaxation rates as a function
of B0 for seven different donor qubit devices, fabricated
and measured in our laboratory between 2010 and 2018.
Devices 2010A, 2010B (described in Ref. 13) and 2011A
were fabricated on natSi. Devices 2013A, 2013B, 2017A
(described in Ref. 11), 2018A were fabricated on enriched
28Si. We fit the relaxation rate of devices 2010A, 2010B,
2017A and 2018A with a polynomial function of the form:

T−1
1 (B0) = K0 +K1B0 +K5B

5
0 , (30)

with the results tabulated in Fig 3b (a dash indicates
that the parameter was fixed at Kn = 0).
The prefactor K5 describing the phonon-induced re-

laxation rate ∝ B5
0 at high magnetic fields varies sig-

nificantly between the different devices (see Sec. IVB).
Furthermore, all fitted devices show a deviation from
T−1

1 ∝ B5
0 at magnetic fields B0 . 3T, except for de-

vice 2010B: devices 2010A and 2017A follow T−1
1 ∝ B0,

while device 2018A shows a T−1
1 ∼ const. behavior at

low field.
These deviations from bulk-like relaxation behaviors

unveil details of the interaction betwen the donor elec-
tron spin and its environment in the MOS nanostructures
under study.

A. Relaxation induced by Evanescent-wave
Johnson noise

In our metal-oxide-semiconductor devices, the electro-
static gates, SET, and microwave antennas are all poten-
tial sources of EWJN.

Replacing the qubit Larmor frequency with ω0 =
gµBB0/~ in Eq. (25) yields:

T−1
1 = µ2

Bµ
2
0σgB0

4π~2
1
L

= K1B0. (31)

The most important point about this formula is that no
other plausible spin relaxation mechanism gives a rate
proportional to B0. Linearity of T−1

1 in B0 is thus a
convincing signature of EWJN.
For the validity of the analysis that follows, the value

of the electrical conductance σ of the aluminum struc-
tures is very important. σ determines the characteristic
length scales ` (mean free path) and δ (skin depth) and
the resulting magnitude of the relaxation. We extracted
σ from 4-point measurements on Hall bar structures (Fig.
4b) with feature sizes varying from 300nm to 30nm. We
tested aluminum layers formed both via thermal evap-
oration and electron beam physical vapour deposition
(EBPVD), but all devices on which spin relaxation was
measured and reported in Fig. 3 were fabricated using
thermal evaporation.
We find that the conductivity drops with reduced fea-

ture size but only up to a factor of 2 (Tab. 4c), which
is consistent with a grain size of approximately 20nm,
i.e. comparable but still smaller than the width and
thickness of the fabricated gates. We base the calcula-
tions below on the value σ = 1.6× 107 S/m obtained for
the 30nm feature size, which corresponds to the small-
est gate dimensions used in donor devices studied in
this paper. This conductance results in a skin depth
δ(B0 = 1 T) = 752 nm (Eq. 24) and a mean free path
` = 6.3 nm (Eq. 23) with µR = 1, n = 18×1028 m−3 and
vF = 2× 102 m/s41. This shows that ` is always smaller
than even the smallest feature sizes in our devices, plac-
ing the conduction electrons in the aluminum gates in
the diffusive regime.

EWJN depends on the gate geometry through the ge-
ometric factor L (Eq. 31). L can be calculated analyt-
ically for different cases: half spaces and spheres. The
electron spin effectively sees a metallic half space when
its distance to the gates d is much smaller than the gate
lateral dimensions a. When the spin is further away from
a finger gate or an antenna (d � a, Fig. 4d), it sees
approximately a conducting cylinder. Since our devices
have d ≈ 10− 20 nm and a ≈ 30− 80nm, we employ an
interpolation between both cases in form of

1/T1i = 1/ [T1i(Lhs) + T1i(Lcyl)] , (32)

where i indicates the direction x, y or z of the applied
field B0. We model an antenna or finger gate as a string
of spherical beads. The final relaxation rate follows as

T−1
1,x = µ2

Bµ
2
0σω0

32π~d

(
1 + 256d4

15πa4

)−1

, (33a)

T−1
1,y = 3µ2

Bµ
2
0σω0

64π~d

(
1 + 256d4

91πa4

)−1

, (33b)

T−1
1,z = 3µ2

Bµ
2
0σω0

64π~d

(
1 + 256d4

47πa4

)−1

. (33c)
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Fit  function: 

𝑇1
−1 𝐵0 = 𝐾0+𝐾1𝐵0 + 𝐾5𝐵0

5

𝑲𝟎(𝐬
−𝟏) 𝑲𝟏(𝐬

−𝟏𝐓−𝟏) 𝑲𝟓 (𝐬
−𝟏𝑻−𝟓)

2010 A - 0.88 ± 0.02 5.5 ± 0.5 × 10−3

2010 B - - 1.54 ± 0.05 × 10−2

2017 A - 0.250 ± 0.004 (5.6 ± 0.7) × 10−4

2018 A 0.14 ± 0.02 - 10 ± 1 × 10−4

(a)

(b)

Device 2010A natSi

Device 2010B natSi

Device 2011A natSi

Device 2013A 28Si

Device 2013B 28Si

Device 2017A 28Si

Device 2018A 28Si

Bulk Si:P crystal
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FIG. 3. (Color online) Relaxation rate as a function of external magnetic field. (a) Measurements of the electron
relaxation rate 1/T1 as a function of external magnetic field B0 for different samples. Devices 2010A and 2010B are republished
from Ref.13 and fabricated on natSi, same as device 2011A (diamonds). Devices 2013A, 2013B, 2017A and 2018A have been
fabricated on isotopically-enriched Si28 epilayers (dots). For reference, a data point measured on a bulk Si:P crystal at T < 5K
is shown (green square, J. J. L. Morton, personal communication). For devices 2010A, 2010B, 2017A and 2018A, polynomials
of the form T−1

1 (B0) = K0 + K1B0 + K5B
5
0 have been fitted to the relaxation rate. The insets show the respective device

designs. (b) Fitting parameters for the different samples. A dash indicates that the parameter was fixed at Ki = 0.

Using the measured conductivity (Tab. 4c), the predicted
relaxation rate due to EWJN for B0 = 1.5 T applied in
the z-direction (in the plane of the device) is T−1

1z ≈ 4 s−1,
for a donor depth d = 20 nm and aluminum gates of
width a = 50nm (Tab. 4e). This prediction is close
to the measured value of T−1

1 = 1.3 s−1 in device 2010A,
while it overestimates T−1

1 by around one order of magni-
tude for device 2017A. Neither device 2010B nor device
2018A exhibit a T−1

1 ∝ B0 behaviour within the mea-
sured range of magnetic fields.

This order of magnitude agreement between theory
and experiment can be considered satisfactory, in light
of the many experimental parameters that are only ap-
proximately known, such as the donor depth d, as well
as the lateral position of the donor with respect to the
gates (the devices that show no evidence of 1/T1 ∝ B0
could have the donor underneath the gaps between the
gates, for example).

The table in Fig. 4e shows the predicted anisotropy of
1/T1 as a function of the direction of B0. In the future,
such anisotropy of the EWJN contribution could provide
a further test of the theory, if 1/T1 were measured as a
function of field direction using a 3D vector magnet.

B. Phonon-induced relaxation: effects of lattice
strain

The phonon-induced electron spin relaxation strongly
depends on the crystalline environment of the donor. We
observed nearly two orders of magnitude variation in the
prefactor K5 of the term T−1

1 ∼ B5
0 (Fig. 3). We tenta-

tively attribute this variability to the variation of local
strain in the devices. Strain in MOS devices arises due to
the different thermal expansion coefficients of aluminum
and silicon42. The donors are quite close to the Al gates,
and the presence of strain has been documented in several
experiments, especially for its impact on the hyperfine
coupling A17,43,44.
As shown in Eq. (12), the valley energies shift with

strain. This leads to a lowering in energy of the E excited
states [Eq. (10)e,f], i.e. to a reduction of the valley-orbit
splitting E12

2,45, which would suggest that the spin re-
laxation becomes faster with strain [see Eqs. (18),(19)].
However, for large compressive strain in the z-direction
the lowest-energy valley-orbit states become symmetric
and antisymmetric combinations of the ±z valleys. This
causes the overlap matrix element Dr [Eq. (17)] to be-
come vanishingly small45. The decrease of Dr caused by
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𝝈 (𝟏𝟎𝟕 S/m)

Bulk, T = 300 K 3.8

w = 300 nm, thermal, 4 K 3.9

w = 100 nm, thermal, 4 K 3.4

w = 30 nm, thermal, 4 K 𝟏. 𝟔

w = 300 nm, EBPVD, 4 K 6.9

w = 100 nm, EBPVD, 4 K 4.2

d (nm)
𝑻𝟏,𝒙
−𝟏(𝒔−𝟏)
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𝑻𝟏,𝒚
−𝟏(𝒔−𝟏)

theory

𝑻𝟏,𝒛
−𝟏(𝒔−𝟏)

theory

𝑻𝟏,𝒛
−𝟏(𝒔−𝟏)
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20 2.4 3.9 3.8
1.32 ± 0.03 (2010A)

0.375 ± 0.006 (2017A)
50 0.4 2.1 1.5

metal
dielectric

EM wave

Evanescent 
waves

(a) (b)

(c) (d)

(e)

w

𝑎
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𝑎

𝑧||𝐵0

x
𝑥

[110]

𝑎

SET

Antenna/
Donor gate

FIG. 4. (Color online) Evanescent wave Johnson noise.
(a) Schematic of the origin of EWJN in our qubit devices.
(b) Scanning electron micrograph of a Hall bar structure to
measure the conductivity σ of the Al gates. The width is
w = 30 nm in the depicted device. (c) Conductance of
50 nm thick Al metal, measured at temperature T = 4 K with
Hall bar structures as in (b), for different feature widths w,
formed either by thermal evaporation or electron-beam phys-
ical vapour deposition (EBPVD). Room-temperature bulk
value for comparison. (d) Device layout showing the donor
position, the external magnetic field and the crystal orien-
tation. a is the metallic gate dimension, d is the distance
between the donor and the metal gates. (e) Relaxation rates
predicted by the EWJN theory using σ = 1.6 × 107 S/m,
B0 = 1.5 T, a = 50 nm and d = 20 or 50 nm, compared to
two measured values.

the change in valley composition greatly outweighs the
increase of 1/E12, resulting in an overall reduction T−1

1 ,
according to Eq. (16).

Device 2017A was also the subject of the experiments
by Laucht et. al.17. In that work, the analysis of the hy-
perfine shift yielded sxy ≈ −0.1% in-plane compressive
strain. This device exhibits the slowest phonon-induced
relaxation (lowestK5) among all tested and, significantly,
the strongest deviation from the bulk value of the hyper-
fine coupling (A ≈ 97 MHz).

In Device 2018A we measured A ≈ 115 MHz from
which, using the atomistic tight binding simulations from
Fig. S6 in Ref.17, we estimate a strain sxy ≈ −0.05%.
This lower value of the strain is consistent with the faster
spin-phonon relaxation observed in this device (K5 ≈
10 × 10−4 s−1T−5, compared to K5 ≈ 5 × 10−4 s−1T−5

in Device 2017A).
The highest value of K5 ≈ 1.5 × 10−2 was found in

Device 2010B. That device did not have a microwave an-
tenna, so the hyperfine coupling could not be measured.
Interestingly, 1/T1 in Device 2010B coincides with the
relaxation rate measured in an all-epitaxial single-donor
device fabricated via STM hydrogen lithography15. The
STM device is likely to exhibit very little strain, since
the donor is deeply embedded in the silicon crystal and
no metal gates are present in its vicinity. These findings
suggest that device 2010B contained a donor implanted
deeper than usual, far away from the aluminium gates,
and therefore subjected to a reduced amount of strain.
The deep location of the donor would also explain the ab-
sence of EWJN-induced relaxation in this device, which
followed 1/T1 ∝ B5

0 down to the lowest field.
Observing the trend of phonon-induced relaxation

across all devices, one might notice that devices fabri-
cated on 28Si epilayers appear to always have longer T1
than those on natural silicon. This could be due to some
built-in strain in the epilayers.

C. Other relaxation processes

One device, 2018A, exhibits a field-independent relax-
ation rate for B0 < 2 T. In Ref. 13, the relaxation rate
of Device 2010A was also interpreted as a combination
of 1/T1 ∝ B5

0 and 1/T1 = const. (the data point at
B0 = 1.75 T was thought to be an outlier), and a quan-
titative model was developed to justify the constant con-
tribution. Since our devices contain on average 10 − 20
donors in a 100 × 100 nm2 region, we analyzed the rate
at which a spin excitation on the donor under measure-
ment can diffuse to nearby donors by means of magnetic
dipole-dipole interactions. The flip-flop rate Γff between
a pair of donors can be expressed as13:

Γff ≈
π

2〈∆ωI〉
Mff(θ, d), (34)

where 〈∆ωI〉 is the half-width of each electron spin res-
onance as caused by the Overhauser field from the 29Si
nuclei, andMff is the flip-flop matrix element in the mag-
netic dipolar coupling Hamiltonian, which depends on
the angle θ and the distance d between the spins. This
model yields Γff ≈ 2 s−1 using d = 24 nm and taking
〈∆ωI〉/~ ≈ 3.5 MHz9 as the typical value of Overhauser
field broadening in natSi.
It is immediately clear from Eq. (34) that this model

would yield implausible results when applied to the 28Si
enriched samples, where 〈∆ωI〉/~ ≈ 1 kHz is three orders
of magnitude smaller than in natSi11. This is because
Eq. (34) assumes that the donors have the same hyperfine
coupling A and the same g-factor, and their resonance
frequencies are detuned solely by Overhauser fields. We
now know that this assumption is, in general, unlikely to
hold: we have observed hyperfine couplings ranging from
97 to 116 MHz in various devices, with the spread arising
from different local electric fields and strain17. Including
the effect of locally different A and g for different donors
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FIG. 5. (Color online) Perpendicular electric field at
the typical donor depth. Absolute value of the electric
field component |E⊥| perpendicular to the magnetic field B0
applied along the z-axis, calculated using the COMSOL finite-
elements electrostatic package. We show values 10nm under
the Si/SiO2 interface, a typical donor implantation depth.
The model consists of a 2µm×2µm×2µm silicon substrate
grounded at the bottom. On top of a 8 nm SiO2 layer, we de-
fine the aluminum gates, which are coated by 2 nm of Al2O3.
We assume typical voltages, i.e. 0.4V to the barrier, plunger
and donor gates, 2V to the top gate, and we set the potential
of the microwave antenna at ground. To model the 2DEG
under the top gate, we ground the Si/SiO2 interface in the
relevant regions.

within the same device would result in a near-complete
suppression of the (energy-conserving) flip-flop processes.
Therefore, we do not believe that this mechanism can
be responsible for the field-independent relaxation rate
observed in Device 2018A.

Another relaxation mechanism, recently discovered in
STM-fabricated donor devices16, is a spin-orbit coupling
(SOC) induced by the presence of an electric field E⊥
perpendicular to the external magnetic field B0. In our
devices, the direction and strength of the electric field at
the donor can vary significantly, depending on where ex-
actly the donor is located with respect to the gates (Fig.
5). An electric field component E⊥ perpendicular to B0
should, in general, be expected. This mechanism would
mediate an additional spin-phonon relaxation channel on
top of the bulk-like valley repopulation and one-valley re-
laxation, resulting in values ofK5 higher than in the bulk.
Instead, in all devices except 2010A and 2010B, we found
K5 to be lower than the bulk value. This does not mean
that this SOC mechanism does not exist in our devices,
but it indicates that, in almost all cases, its contribution
is less significant than the suppression of the relaxation
rate caused by local strain.

|↓〉

|↑〉

𝑁𝑁(𝐸𝐸)

𝐸𝐸

|↓〉

|↑〉

𝑁𝑁(𝐸𝐸)

𝐸𝐸

|↓〉

|↑〉

𝑁𝑁(𝐸𝐸)

𝐸𝐸

𝐸𝐸F

(a) (b) (c)

FIG. 6. (Color online) Spin relaxation through quantum
tunneling. (a) Spin relaxation via direct tunneling of |↑〉
from the donor into the SET reservoir while µd,↑ & µSET; the
|↑〉 electron is then replaced by |↓〉. (b) Spin relaxation via
co-tunneling of |↑〉 into a virtual free state in the SET while
|↓〉 tunnels onto the donor. (c) For µd � µSET all tunnel
processes are suppressed.

V. TUNNELING EFFECTS

The experiments described in this work rely upon
switching between a “plunge/wait" phase, during which
the electron remains bound to the donor while its spin is
allowed to relax, and a “read” phase, during which elec-
tron tunneling between the donor and the SET island is
used to measure the spin state (Fig. 1c). Here we discuss
the impact on the measurement results of the possibil-
ity that the electron tunnels out of the donor during the
plunge/wait phase.
To describe the rate of first-order tunneling between

donor and SET island, we first define αp as the lever arm
of the gate voltages to the donor, which determines the
shift in µd induced by the effective donor plunge Vp [see
Eq. (28)]:

∆µd = −eαpVp (35a)

αp = βcCd−PL + Cd−DP

C∑ (35b)

where Cd−PL and Cd−DP are the capacitances between
the donor and the plunger gate PL and the donor and
the donor gate DP, respectively, and C∑ is the total
capacitance of all gates to the donor. In the presence
of a magnetic field we define the donor electrochemical
potential as the average of the |↓〉 and |↑〉 levels:

µd = µd,↓ + µd,↑

2 . (36)

With this definition, the direct (first-order) tunnel-out
rate of the |↑〉 electron at electrochemical potential µd,↑
can be written as46,47:

ΓDT ≈ Γ0 · [1− f(Vp, Te)], (37)
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FIG. 7. (Color online) Relaxation rate as a function of plunge voltage. (a) Charge stability diagram of the donor-SET
system, obtained b monitoring the SET current as a function of plunger gate (PL) and donor gate (DP) voltages. The donor
transition from ionized (D+) to neutral (D0) when µd = µSET is indicated by the dashed purple line. Virtual gate voltage
VDV(βc = −0.51) (compensated plunging, green) and VDV(βuc = 1.81) (uncompensated plunging, blue) are indicated. The
corresponding effective plunge voltage is V c/uc

p (orange arrows). (b) Relaxation rates as a function of V c/uc
p . The dotted region

indicates the area expanded in panel (d). (c) SET current as a function of the read level voltage V c
p , resulting in a spin tail of

length ∆V c/uc
p = 7.2 mV at B0 = 5 T. The inset shows the applied pulse sequence. (d) Zoomed-in plot for low plunge voltages

with voltage V Z
p (V Z

p /2) corresponding to the Zeeman energy EZ (EZ/2) marked. The direct tunnelling process is described
by Eq. (37) (purple line), using a bare tunnel rate Γ0 = 50 s−1. The red dotted line is an attempt to fit the region of slow
decrease of 1/T1 to Eq. 39 which describes a second-order co-tunnelling process. However, a good fit to the data requires using
a bare tunnel rate Γ0 = 1.4× 106 s−1, in severe discrepancy with the value used for the direct tunneling fit.

where

f(Vp, Te) = 1(
1 + exp −eαpVp+EZ/2

kBTe

) (38)

is the Fermi function, Te is the electron temperature
of the SET island and the term −eαpVp + EZ/2 =
µd,↑−µSET describes the energy detuning between the |↑〉
state and the SET electrochemical potential at a plunge
voltage Vp, with gate lever arm αp. Since kBTe � EZ
in our experiments, Γ0 effectively represents the bare |↑〉
tunnel-out rate at the “read" position. For simplicity, we
assumed that Γ0 remains independent of Vp within the
small voltage range used in the experiment.

This direct tunnel process results in an apparent elec-
tron spin relaxation, when |↑〉 tunnels from donor to SET
and is replaced by a different electron in state |↓〉 (Fig.
6a). The spin relaxation rate is therefore similar (al-
though not identical48) to the charge tunneling rate. In
this work, we have used the first-order tunneling process
to deliberately initialize the spin in the |↓〉 state for the

experiments at B0 ≤ 1.5 T. Direct tunneling is exponen-
tially suppressed with the energy difference between µd
and µSET and is only expected as long as |↑〉 is aligned
with available free states in the SET island, above or just
below µSET.
Even if no free states are available for first-order tun-

neling, the |↑〉 electron can relax via a second-order tun-
neling process. If an empty state at energy E > µd,↑
is available in the electron reservoir, the |↑〉 donor elec-
tron can virtually occupy such state for a time tH ∼
~/(E−µd,↑) given by the Heisenberg uncertainty princi-
ple. During this time, another electron coming from the
reservoir can occupy the donor state. This process can
be inelastic if the original |↑〉 electron is replaced by a
|↓〉 electron from the reservoir (Fig. 6b). This process
is then called spin-flip co-tunneling, and leads to a spin
relaxation rate described by48–50

ΓCT = Ez
π~
·
(

~Γ0

eαpVp

)2
. (39)

Eq. (39) shows that the co-tunneling rate is suppressed
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only quadratically (instead of exponentially) with plunge
voltage, so it can in principle remain significant for µd,↑ .
µSET. Eventually, when µd � µSET all tunnel process
should be suppressed (Fig. 6c).

However, ΓCT also depends quadratically (instead of
linearly) on the bare tunnel rate Γ0. Experiments show-
ing co-tunneling effects have been ones where the electron
under study was strongly tunnel-coupled to the charge
reservoir, typically in a quantum transport setup50,51,
which requires Γ0 & 1 × 109 s−1. Here we have instead
Γ0 . 1 × 103 s−1, making the co-tunneling process ex-
tremely weak.

In Fig. 7 we present the measurements of the spin re-
laxation rate 1/T1 as a function of plunge voltage Vp.
Fig. 7a shows the measured plunge voltage points with
respect to µSET (dashed purple line) in the charge sta-
bility diagram. We measure along two directions in the
diagram: one with “compensated” plunging, i.e. moving
µd while keeping µSET = const. using βc = −0.51 (green
points, V c

p ), and one with “uncompensated” plunging
perpendicular to the previous one using βuc = 1.82 (blue
points, V uc

p ). The latter allows for much higher Vp but
also shifts µSET and leads to a change in SET electron
number N when a Coulomb peak is crossed.

As expected, the relaxation rate strongly decreases the
deeper the donor is plunged below µSET (Fig. 7b), until
it stabilises at around T−1

1 = 9−1 s−1. Clearly we identify
two regimes: On the one hand, at high plunge voltages
(V c/uc

p & 10mV) the relaxation rate shows no depen-
dence on V c/uc

p , which means that the relaxation rate is
not influenced by any type of tunneling process. On the
other hand, at low V

c/uc
p , the relaxation strongly depends

on V
c/uc
p . Fig. 7d shows the region V c

p ∈ (0, 13)mV in
greater detail.

To relate V c
p to energy, we determine αp by measuring

the Zeeman energy through spin-dependent tunnelling
(Fig. 7c). Therefore, we tune the read level and measure
at which voltages |↑〉 and |↓〉 tunnel out of the donor. We
relate

∆µd = µd,↑ − µd,↓ = EZ. (40)

To perform this measurement, we apply the following
pulse sequence (inset Fig. 7c). We load an electron with
a random spin state, bias the donor at the read level
with voltage V c

p and finally empty it. During the whole
pulse sequence, the SET current is measured. Then
we repeat the pulse sequence while varying V c

p from
µd,↓ > µSET, causing a high current by lifting Coulomb
blockade regardless of the spin state, to µd,↑ < µSET,
blocking conduction fully. In the intermediate regime
where µd,↓ ≤ µSET ≤ µd,↑, |↑〉 tunnels to the SET, creat-
ing a current spike, and is replaced by |↓〉 - we observe a
spin tail13. The voltage range of this tail ∆V c

p = 7.2mV
corresponds to the Zeeman energy at the external mag-
netic field of B0 = 5T. From this we calculate the lever

arm as

αp = EZ

∆µd
= gµBB0

e∆V c
p

= 0.08. (41)

The voltage corresponding to the Zeeman energy at 1T is
thus V Z

p = 1.4mV, as indicated in Fig. 7d. We indicated
in the figure half the Zeeman energy, since this is the
plunge voltage where µd,↑ ≥ µSET.
Within the detailed region in 7d, we can again iden-

tify two regimes: For Vp . 2mV, we observe a strong
dependence of the relaxation rate on V c

p , which we at-
tribute to direct tunnelling from |↑〉 to the SET reser-
voir. The purple line shows the predicted relaxation rate
from Eq. (37) with use of realistic experimental param-
eters Γ0 = 50 s−1, Te = 250mK, and V Z

p = 1.4mV,
αp = 0.08, as determined by the spin tail measurement.
For V c

p ∈ (2, 4)mV we observe a slower decrease of the
relaxation rate, which might indicate the transition to
a spin-flip co-tunneling mechanism. However, due to the
slow direct tunneling rate Γ0 = 50 s−1, Eq. (39) predicts
an extremely slow co-tunnelling rate ΓCT(V c

p = 2 mV) =
3× 10−9 s−1. This rules out co-tunnelling for this relax-
ation process and leaves us searching for an explanation.
In order to fit the data with Eq. (39) we would have to

assume Γ0 = 1.4 × 106 s−1 (dotted red line in Fig. 7d),
five orders of magnitude larger than the value extracted
from the direct tunneling fit. This is could indicate that
the region of slow decrease in 1/T1 has nothing to do
with co-tunneling, or that the electron is able to virtually
tunnel to some other charge center with a much larger
bare tunnel rate, but the direct tunneling to this other
center does not appear in the experiment withing the
explored gate space.
We also study the relaxation time for several different

SET Coulomb peaks, corresponding to a different elec-
tron number N in the SET island. (Fig. 8). This exper-
iment was performed after a thermal cycle of the device,
resulting in a device tuning different from that in Fig.
7. We find a strong variation in relaxation behaviour be-
tween different electron numbers for V c

p . 10mV, when
first-order tunneling processes are relevant. This is be-
cause the direct tunnel rate ΓDT depends on the density
of available states in the SET island. We estimate that
our SET contains 100 electrons, which places it in an
intermediate regime where it does not yet behave like
a proper metallic electron reservoir with a continuous
density of states, but shows some residual many-electron
quantum-dot behaviour52. As a consequence, the density
of states is modulated by quantum effects arising from
the Hund’s rule when consecutively filling the electron
orbitals. Different orbitals correspond to different wave
functions, resulting in a different direct tunnel rate ΓDT
as a function of the SET electron number (at constant
µd). In principle, the bare tunnel rate Γ0 is modulated
by density of state effects also as a function of µd, but the
exponential influence of the Fermi function tends to mask
this effect in the measurement of 1/T1. The non-uniform
density of states in the SET island is most clearly visi-
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FIG. 8. (Color online) Relaxation rate as a function of
electron number. (a) Charge stability diagram as a func-
tion of plunger gate (PL) and donor gates (DD, DP) with bias
points corresponding to different SET island electron numbers
N indicated. (b) Relaxation rates with plunge voltage for dif-
ferent N . Only compensated plunging is performed here.

ble in the spin tail measurement (Fig. 7c), which clearly
shows modulations of the a spin-up probability within
the Zeeman energy window.

VI. CONCLUSIONS

In this work we have presented an extensive experi-
mental study of the electron spin relaxation rate 1/T1
of single 31P donors, implanted in silicon metal-oxide-
semiconductor devices. In particular, we have sought to
highlight the subtle ways in which the presence of gat-
ing structures, metallic surfaces, crystal strain and tun-
nel coupling to charge reservoirs can make the relaxation
rate deviate from that of bulk donors at equivalent tem-
peratures and magnetic fields.

We found that Evanescent-Wave Johnson Noise
(EWJN) is a likely candidate for the anomalous in-
crease of the spin relaxation rate at low magnetic fields
(B . 1 T) if the qubit is close to a highly conducting

surface, such as the aluminum gates used here for elec-
trostatic control of the donor.
By analyzing 1/T1 of different devices in the regime

where it is controlled by spin-phonon relaxation, we fur-
ther deduced that lattice strain at the donor site might
contribute to decreasing the relaxation rate, leading to
very long T1 times of up to 9.8 seconds at B = 1T.
Finally, we analyzed the extent in which electron tun-

neling effects influence the spin relaxation, particularly
when the donor electrochemical potential is in the vicin-
ity of the Fermi level of an electron reservoir. The sig-
nificance of this observation is that, when conducting
experiment of very long duration (e.g. long dynamical
decoupling sequences11), it is essential to ensure that the
donor potential is plunged well below the Fermi level.
These observations will help designing and optimizing

future devices to ensure that the spin relaxation time
does not become a limit to the spin coherence time. We
also hope they will stimulate further study of the micro-
scopic origins of spin relaxation in realistic semiconductor
devices, beyond the physics of bulk donors.
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