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Si2BN has been recently predicted theoretically as a new entirely planar 2-dimensional material
with a honeycomb-like structure, (like graphene), which is stable even at T > 1000 K. In the present
work we study the structural deformations and mechanical properties of Si2BN and graphene under
both uniaxial (along the direction of the arm chair and zig-zag chains) and uniform biaxial tensile
strain till the fracture limit and we compare those properties of the two structures with each other.
According to our findings, in the Si2BN structure, Si-Si and Si-B bonds are weaker than B-N and Si-
N bonds, respectively, contrary to graphene bonds, which all have the same strength. In particular,
B-N bond lengths of Si2BN remain almost unchanged under the strain conditions we studied, not
exceeding ≈ 6% of their initial length. Si2BN was found to be anisotropic, exhibiting large Young’s
and biaxial modulus values of the order of 1/3 and 2/5 of that of graphene, respectively. The
different bond strengths in Si2BN explains its anisotropy and makes it behave very differently under
strain when compared to graphene.

PACS numbers:

I. INTRODUCTION

The last decade has seen a tremendous surge of interest in two-dimensional (2D) materials due to their unique
properties which can be significantly different from those of their 3-dimensional (3D) counterparts1. Many such
materials have been theoretically predicted (see, for instance, Refs. 2–17), however, only few of them have been
observed or synthesized experimentally18–21. Among the 2D materials there exists a very interesting sub-category of
structures that are one atom thick and also entirely flat. Graphene18 and boron nitride16,22 (BN) are representative
structures for this category that have been observed experimentally19. However, both have notable disadvantages for
nanoelectronics applications; graphene has no gap, while BN has a very large gap.
On the other hand, silicene3, which is the Si counterpart of graphene, was found to be a buckled structure; a

feature also shared by most of the 2D Si containing honeycomb-like structures7–11. Furthermore, very few among
these structures were found to be planar11,12.
Recently, the existence of a stable new 2D material (Si2BN) has been theoretically predicted23. It constitutes

parallel arranged Si dimers in a hexagonal lattice which are interconnected through B-N dimers as shown in Fig. 1.
It can be seen as an extensively doped silicene structure, which has the advantages that it is entirely flat without
any dangling bonds and extremely stable kinetically23, contrary to the original silicene, which (as stated) is buckled
and kinetically unstable, with dangling bonds which make it highly reactive3. The Si2BN planarity gives rise to the
unusual sp2-like hybridization for the Si atoms. Interestingly, the pz orbitals on Si, normal to the structure plane,
interact with the neighboring Si−pz orbitals thus leading to the creation of Si-Si double bonds. This has the effect of
eliminating the dangling bonds which would otherwise make it energetically and kinetically unstable. The Si2BN can,
therefore, considered to be the latest addition to the very rare class of Si-based 2D honeycomb-like structure that is
entirely planar.
Recent studies suggest that the proposed Si2BN monolayer is efficient for hydrogen storage24; has a wider absorption

range than graphene thus making Si2BN a promising candidate for euryphotic photosensitive detector applications25.
Furthermore, it is proposed to be a high capacity anode material for Li and Na ion batteries26 surpassing the
capacity of many other 2D materials including graphene and phosphorene. Moreover, its structure has inspired the
design and study of other similar materials like the family of Pb2XY 2D topological insulators, with X=Ga/In and
Y=Sb/Bi27, the family of Gex(BN)y structures28 and the IV-V-VI compounds29. Other similar Si2BN structures
have also been studied recently30. These studies show the Si2BN to be a very interesting material with potential for
useful nanotechnology applications.
So far the mechanical properties of Si2BN have not been studied. In the present work we cover this gap by studying

the response of Si2BN to uniaxial and uniform biaxial strain up to the fracture limit and we compare them with
graphene. For our study on the response of Si2BN to uniaxial strain we focus on two high symmetry strain directions;
(i) along the Si-Si bonds (indicated as eac) and, (ii) along the perpendicular direction (indicated as ezz), which
correspond to the arm chair and zig-zag directions of graphene, respectively, and are shown in Fig. 1. For graphene
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we similarly focus on the arm chair and zig-zag chain directions, also indicated as eac and ezz, respectively. The
results obtained for the mechanical behavior of Si2BN under strain for these high symmetry directions can also be
used to obtain results for other strain directions using the method described in Ref. [31] which reported the study
of mechanical behavior of graphene under strain for any arbitrary strain directions. For the study of Si2BN under
uniform biaxial strain conditions, equal strain is applied simultaneously in both eac and ezz directions.
For all these cases we plot the stress-strain and the energy-strain curves, which we use to calculate the Young’s

and the biaxial moduli, as well as the Poisson’s ratio, the speed of sound, the ultimate tensile strain (UTS) and the
corresponding stress values, and the fracture limits. Contrary to graphene, the presence of different atom species
results in different bond strengths in Si2BN. Specifically, Si-Si and Si-B bonds were found to be weaker than B-N
and Si-N bond, respectively. B-N bond lengths remain almost unchanged under the strain conditions we studied,
not exceeding ≈ 6% of their initial length, even under the extreme strain conditions. These result in the anisotropic
mechanical properties for the Si2BN, while also exhibiting high Young’s and biaxial modulus, which are of the order
of 1/3 and 2/5 of those of graphene, respectively, as well as high UTS values, thus providing further support to the
high stability of the material found using other methods in an earlier work23.

II. THE METHOD

For the calculations of the present study we use the density functional theory (DFT) method as implemented in
the SIESTA code32. For the exchange and correlation functional we utilize the generalized gradient approximation
(GGA) and the Perdue-Burke-Ernzerhof (PBE) functional33. For the pseudopotentials of Si, B, N and C, which
are used in our calculations, we utilize the norm-conserving Troullier-Martins pseudopotentials34 in the Kleinman-
Bylander factorized form35 which can be found in the GGA pseudopotential database of SIESTA36. The basis for
the wavefunction expansion in real space is an atomic-like double-zeta basis with polarization orbitals for each atom.
Calculations are performed in the reciprocal space, using a 10 × 10 × 1 Monkhorst - Pack37 k-point grid for both
Si2BN and graphene. The mesh cutoff energy for the determination of charge densities and potentials used in the
calculations for Si2BN and graphene is 500 and 300 Ry, respectively. For these mesh cutoff values and k-grid points
the total energy per atom converges to a certain value with an error which is less than 0.1 meV.
For the calculations of both Si2BN and graphene we adopt a 32-atom unit cell in a rectangular lattice, with lattice

vectors a = (a, 0) and b = (0, b), as shown in Fig. 1. A 20 Å of vacuum, separating layers of Si2BN, is used in
the calculations in order to simulate an isolated Si2BN layer. The same vacuum space is also used for graphene.
Optimizations are performed for fixed lattice vectors using the conjugate gradient method. The unstrained structure
is assumed to be fully optimized if the maximum atomic force and the maximum stress component become smaller
than 0.001 eV/Å and 0.01 GPa, respectively. Same criteria apply for the optimized structure under uniaxial strain,
excluding the strain component along the strain direction, which obviously takes a non-zero value, while for uniform
biaxial strain only the criterion for the forces apply, since the strained structure under uniform biaxial strain has
fixed lattice vectors. For the stress calculation along the plane of the Si2BN and graphene sheets we assume a
structural thickness of 3.34 Å as in graphite. This consideration is also used in the above optimization criterion
for maximum stress since it allows direct comparisons of the mechanical properties of 2D structures with graphite2.
For the derivation of the optimized structure (i.e. for strain ε = 0) the lattice vectors are varied since the above
optimization criteria are achieved. For the study of Si2BN under uniaxial strain along the ezz and eac directions the
length of the unit cell vector in the strain direction (i.e. the length a for strain along ezz and b for strain along
eac) is kept fixed at a specific value, corresponding to a chosen strain value, while the length of the unit cell vector
perpendicular to it is allowed to vary till the optimization criteria for the strained structures are reached, as stated
above. For the study of Si2BN under uniform biaxial strain the length of both unit cell vectors a and b are strained
simultaneously under the same strain value.
Optimizations under strain ε are performed for increasing strain values starting from 0 up to the fracture limit with

an increment of 0.01. The initial atomic positions of a structure under optimization for strain ε = ε0 have the same
fractional coordinates with those of the optimized structure under strain ε = ε0 − 0.01.

III. RESULTS AND DISCUSSION

A. Equilibrium Si2BN and graphene structure at ε = 0

According to our findings the fully optimized 32-atom unit cell of Si2BN (shown in Fig. 1) consists of a rectangle
with the unit cell vectors a and b with lengths a = 12.841 Å and b = 11.293 Å, respectively. For the analogous 32
atom graphene unit cell, which is also a rectangle, the corresponding unit cell vectors were found to be; a = 4

√
3a0 =
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9.9572 Å and b = 6a0 = 8.6232 Å, where a0 = 1.4372 Å is the bond length of graphene. Interestingly, for these
a and b values the area mass density, ρS , of graphene and Si2BN are almost equal to each other, taking the values
ρS = 0.743 mgr/m2 for graphene and ρS = 0.742 mgr/m2 for Si2BN.

B. Structure deformations and bond length changes under uniaxial strain

The structural deformations obtained from stretching Si2BN and graphene uniaxially along ezz and eac directions
are shown in Fig. 2 for increasing strain values in 0.05 strain steps. The figures for Si2BN and graphene are placed
side by side for ease of comparison. The first column of the figure lists the nearest neighbor bond lengths for both
structures. As seen in this column, the C-C(1) bonds of graphene correspond to the bonds along the eac direction,
while the C-C(2) bonds correspond to the bonds of the zig-zag chains along the ezz direction. For the illustration
purposes of Fig. 2, we consider that a C-C, Si-Si and Si-B bond breaking occurs if its length exceeds the equilibrium
length by 15%, 20.5% and 12%, respectively, or 1.65 Å, 2.73 Å and 2.21 Å, respectively. The justification for this
choice of values will be provided later.
A general feature of both graphene and Si2BN, under uniaxial strain for the two strain directions ezz and eac, is

that bonds which are oriented along the eac direction (i.e. Si-Si and B-N bonds for Si2BN, and C-C(1) bonds for
graphene) remain parallel to each other, preserving the initial bond direction for ε = 0. In particular, B-N bonds of
Si2BN are located along parallel straight lines oriented along the eac direction, while alternating B-N and N-B bonds
which are normal to the same straight line, are shifted with each other along eac direction. The opposite happens for
the Si-Si bonds, however. Si atoms of the Si-Si bonds which are normal to the same straight line, are located along
parallel straight lines and, consequently, no shift of the Si-Si bonds along the eac direction is seen, as happens with
B-N bonds. However, Si-Si bonds along a line in the eac direction exhibit an alternating shift with each other with
respect to the normal to that line (i.e. along ezz direction). These shifts can be clearly seen in Fig. 2 and they are
caused by the difference in the length of the Si-N and Si-B bonds (as well as the different Si-N-Si and Si-B-Si angles),
which break the symmetry of the perfect honeycomb lattice.
In Fig. 3 we plot these shifts as a function of strain, where we can see that for ε = 0 those shifts are both positive.

As strain increases, Si-Si bond-shifts for strain along the ezz direction also increase, while B-N bond-shifts decrease.
For strain along the eac direction, however, B-N bond-shifts increase as a function of strain, while Si-Si bond-shifts
decrease. The Si-Si bond-shifts become zero at ε ≈ 0.10 and become negative upon a further increase in the strain
value. These negative values correspond to an increase in the shift of their absolute value, with the alternatingly
shifted Si-Si bonds crossing the imaginary line between them along the eac direction. Thus, an increase in strain along
the ezz direction results in a larger Si-Si bond length in the hexagon containing two B atoms than the Si-Si bond
length in the hexagon containing two N atoms. For increasing strain along the eac direction the former is larger than
the latter up to a strain value ε ≈ 0.10 at which they become equal to each other and for ε ' 0.10 the former becomes
smaller than the latter. It is also worth noting that the shift in B-N bonds for strain along the ezz direction reaches a
local minimum for ε ≈ 0.10 and a local maximum for ε ≈ 0.20, although the difference between those maximum and
minimum values is approximately 0.02 Å, indicating that the shift in B-N bonds remain practically constant for a
large strain range between approximately 0.06 and 0.25. As for graphene, due to the high symmetry of the structure,
there is no reason for such bond-shifts to occur.
As seen in Fig. 2, as the strain along the eac direction is increased, the C-C(1) bonds eventually break and graphene

dissociates into disconnected zig-zag chains. For ε ' 0.3 these zig-zag chains tend to deform into linear carbon chains,
as shown in the last figure-row of Fig. 2. Similarly, when the strain along the ezz direction is increased, C-C(2) bonds
eventually break and graphene dissociates into disconnected C-C dimers, as shown in the same figure-row. It is worth
noting, however, that the formation of graphene strips or ribbons is also possible from the breaking of C-C graphene
bonds, which is not described in Fig. 2. These results agree with other theoretical results presented in the literature
for graphene2.
Unlike graphene, however, the Si2BN structure contains four different types of bonds with different bond strengths.

Consequently, the dissociation here follows a different sequence as shown in Fig. 2. As the tensile strain along the eac
direction is increased, the Si-Si bonds are the first to break (ε ' 0.15). Similarly, as the strain along the ezz direction
is increased, the Si-B bonds can be seen to break first (ε ' 0.20). Bearing in mind that (i) the Si-Si and B-N bonds
are oriented along the eac strain direction and (ii) the Si-N and Si-B bonds have almost the same tilting angle with the
ezz strain direction, we conclude that the Si-Si bonds are weaker than the B-N bonds. Similarly, it can be surmised
that the Si-B bonds are weaker than the Si-N bonds.
The breaking of the Si-Si bonds under the strain along the eac direction leads to the dissociation of the Si2BN

structure into disconnected narrow Si2BN strips, while the Si-B bond breaking under the strain along the ezz direction
causes the dissociation of the Si2BN structure into (Si2BN)2 flakes, as both are shown in Fig. 2. As the strain is
increased further (ε > 0.27) in both ezz and eac directions, the Si2BN structure further deforms into two rather
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irregular structures, loosing its planarity. The deformed irregular structures found for ε = 0.3 are shown in the last
row of Fig. 2. Overall, as our strain studies suggest, the Si2BN structure is extremely robust, even at high strain
values, and almost comparable to graphene.
In Fig. 4(a) and (b) we plot the relative bond length differences, (defined as (d−d0)/d0, where d0 is the equilibrium

bond length (corresponding to ε = 0) and d is the bond length for ε 6= 0) for the bonds of Si2BN and graphene,
respectively, as a function of strain. As can be seen in Fig. 4(a), for strain 0 ≤ ε / 0.12 along the eac direction, there is
a monotonic increase in both the Si-Si and B-N bond lengths, which are parallely oriented along the strain direction.
In the range 0.12 / ε / 0.15, however, the slope of the Si-Si relative bond length difference changes as shown by
the corresponding dotted lines of Fig. 4(a), while the B-N relative bond length difference reaches its maximum at
ε = 0.14 and then followed by a decrease. This behavior can be explained as follows: For applied strain ε < 0.14, both
Si-Si and B-N bond lengths increase with an increase in the strain value. At ε = 0.14, the Si-Si bond starts breaking
and the Si2BN structure dissociates into Si2BN zig-zag strips. As ε is increased further, (i) the already weak Si-Si
interactions become even weaker, causing the dissociation of the Si2BN structure into weakly interacting disconnected
Si2BN strips, (ii) the interactions between the dissociated Si2BN strips become even weaker causing the shrinkage of
the initially stretched B-N bonds. It is reasonable, therefore, to conclude that the Si-Si bond start breaking when the
slope of the Si-Si curve of Fig. 4(a) changes, or the maximum of the B-N curve is reached; i.e. for ε = 0.14. For this
strain value the Si-Si bond length is 2.73 Å, or 20.5% larger than its value at equilibrium. This explains the reason
for assigning this value for the Si-Si bond breaking limit. For strain along the eac direction in the range 0 ≤ ε ≤ 0.3
the maximum increase in the B-N bond length is only 5.6%, while for the Si-N and Si-B bonds it is even less; only
3%, having almost the same behavior as a function of ε. Therefore, a bond breaking of B-N, Si-N and Si-B bonds
cannot be achieved.
The graphene counterparts of both Si-Si and B-N bonds of Si2BN are the C-C(1) bonds of graphene, while the

counterparts of both Si-B and Si-N bonds are the C-C(2) bonds. As shown in Fig. 4(b), for applied stress along the
eac direction, there is an increase in the C-C(1) bonds as a function of strain, eventually leading to the dissociation of
the structure into zig-zag strips. The C-C(2) bonds, on the other hand, remain mostly unchanged, increasing slightly
in the range 0 ≤ ε ≤ 0.15 and then decreasing for ε > 0.15, attaining its maximum value (2.1% increase) at ε = 0.15.
Using this observation, and using similar reasoning as used in the case for Si2BN, it is reasonable to assume that the
C-C(1) bond breaking starts when the C-C(2) bond length start decreasing, i.e. at ε = 0.15, for which the C-C(1)
bond length is 1.65 Å, or 15% longer than its length at equilibrium.
As shown in Fig. 4(a), as the strain value is increased along the ezz direction, the increase in the Si-B bond length

is more than that for the Si-N bond, and consequently the Si-B bonds can be expected to break first. For strain
in the range 0.18 / ε / 0.20, the slope of the Si-B curve of Fig. 4(a) increases, indicating a weakening of the Si-B
bonds, while the Si-N bond lengths continue to increase up to ε = 0.22 and then followed by a decrease. Based on
this observation one may assume that the Si-B bond breaking starts for strain in the range 0.18 / ε / 0.22, for
which the Si-B bond length takes values between 2.19 - 2.25 Å, or 11.4 - 14.3% longer than the Si-B bond length at
equilibrium. The maximum Si-N bond length, which is obtained at ε = 0.22, is 1.91 Å, corresponding to an increase
of the equilibrium bond length value by 7.38%. The Si-Si and B-N bonds, which for strain along the ezz direction
are oriented normal to the strain direction, remain practically unchanged with a maximum change in the absolute
value of 3% for strain in the range 0 ≤ ε ≤ 0.3. As a result, only the Si-B bonds are stretched enough to break, thus
forming the (Si2BN)2 flakes shown in Fig. 2. Interestingly, if all the Si-B bonds do not break simultaneously (i.e., due
to the lattice vibrations, which could compress some Si-B bonds and stretch others), then a variety of arm chair type
ribbons or irregular shape arm chair type flakes may be produced, which are expected to have B and Si atoms at the
edges.
In stark contrast to the differing responses of the Si-B and Si-N bonds of the Si2BN structure under applied strain,

their graphene counterparts (the C-C(2) bonds) have the same response under strain. This is expected since all bonds
connect the same species of atoms. Under these conditions if all such bonds break simultaneously, this will lead to
the disconnected C-C dimers shown in Fig. 2. If, on the other hand, they do not break simultaneously (i.e., due to
lattice vibrations, which could stretch or compress the C-C(2) bonds), it will lead to the dissociation of the graphene
structure into arm chair type ribbons or irregularly shaped nanoflakes.
In Fig. 4(c) we show the deformation as a function of strain for the Si-B-Si, B-Si-N and Si-N-Si angles of the Si2BN,

and C-C-C angles of graphene, which are formed along the zig-zag chains in the ezz direction. Due to symmetry
reasons, the sum of Si-B-Si and Si-N-Si angles equals twice that of the B-Si-N angle and, therefore, the B-Si-N angle
can be considered as an average of the Si-B-Si and Si-N-Si angles. The values of those angles at ε = 0 are (Si-B-
Si)=112.58o, (B-Si-N)=118.53o and (Si-N-Si)=124.49o, while (C-C-C)=120o. As expected, for strain along the ezz
direction those angles increase, while for strain along the eac direction, they decrease. This trend should continue at
least up to a certain strain value, while beyond that they may have a different behavior depending on the structural
deformations that take place and, in particular, may lead to bond weakening or breaking. As shown in Fig. 4c, this
trend is followed by Si-B-Si and B-Si-N angles up to the fracture limit, but Si-N-Si angle of Si2BN and the C-C-C
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angle of graphene for strain along the eac direction follow it only up to their minimum value, which for Si-N-Si is
120.16o at ε = 0.11 and for C-C-C is 113.30o at ε = 0.16. This behavior is due to the competition between the
Si2BN and graphene structures at ε = 0, with their corresponding dissociated structures resulting from the breaking
of the Si-Si and C-C(1) bonds, respectively, when the strain value along eac direction exceeds the critical value for the
breaking of those bonds. Thus, for increasing strain along the eac direction, those angles will initially decrease and
then, depending on the competition between those two structures, they may either continue to decrease or they may
increase until reaching the angles of their corresponding dissociated strip structures. In our case, they both increase,
while Si-B-Si and B-Si-N further decrease. This competition is affected by the weakening (as strain increases) of the
Si-Si and C-C(1) bonds of Si2BN and graphene, respectively. Note that, for strain along the eac direction, both of
these bonds undergo the maximum possible elongation of a bond of the structure for a certain strain value, since they
are oriented along the strain direction.

C. Structure deformations and bond length changes under uniform biaxial strain

As expected (due to the isotropy of graphene) graphene bonds increase linearly with the increasing strain up to the
fracture limit and they all have the same length for a specific strain value. This is clearly shown in Fig. 6, where the
relative bond length differences (d− d0)/d0 of the Si2BN and graphene bonds under uniform biaxial strain conditions
are presented. Under these conditions, all graphene bonds would break simultaneously if strain exceeded a critical
value, fracturing the structure to single atoms. This possibility, however, is rather unlikely given that the symmetry
breaking resulting from lattice vibrations can allow some bonds to break before reaching the critical value. Another
possibility is a phase transformation (possibly assisted by the lattice vibrations) that would lower the symmetry and
the energy of the structure, thus leading to a more stable structure. In the case of graphene, we find that for strain
ε > 0.17, the strained graphene structure becomes unstable and a phase transformation takes place transforming
the unstable high-symmetric strained graphene structure to a less symmetric but stable snake-like chain shown in
Fig. 5(a). Further increase in the strain leads to the formation of other structures that include graphene flakes, which
may or may not be connected with each other with few bonds, as shown in Fig 5(b).
On the other hand, due to its anisotropy, Si2BN will behave differently under uniform biaxial strain conditions.

Figure 5(c-f) show some snapshots of the structural deformations of Si2BN under uniform biaxial strain for increasing
strain values, in accordance with Fig. 2. According to our findings, for strain ε ≥ 0.13 the strained Si2BN becomes
unstable (see details in the SM38), leading to the structure shown in Fig. 5(e), where one can see that the Si-Si bonds
at the bottom of the figure have been broken. It is worth noting that although the relative elongation of Si-B bonds
is slightly larger than that of the Si-Si bonds (as shown in Fig. 6), the Si-Si bonds breaking occurs first as strain
increases, leading to the formation of the ribbons, which are shown in Fig. 5e). However, any further increase in strain
results in the breaking of the Si-B bonds, which is followed by a rearrangement of the atoms and finally the structure
transforms to a non-planar amorphous cluster as shown in Fig. 5(f).
As in the case of graphene, the strain value for fracturing Si2BN under uniform biaxial strain is smaller than the

corresponding values for uniaxial strain, which is reasonable when one considers that the biaxial strain combines
simultaneously the action of both εzz and εac, which in this case act synergistically for the fracture of the structure.
Moreover, as one can see in Fig. 6, B-N bonds do not increase by more than ≈ 2.5%, (a value which is achieved

at ε = 8.5%) indicating that those bonds will not break under uniform biaxial strain conditions, in accordance with
the results found for uniaxial strain along the eac direction. Furthermore, the decrease in the B-N bonds elongation
for increasing strain for ε > 8.5% points to a significant weakening of the Si-Si bonds for these values and could be
considered as the starting point for bond breaking under these strain conditions.
As for the shifts of Si-Si and B-N bonds, which were discussed in the case of uniaxial strain, they also occur

in the case of uniform biaxial strain. In Fig. 3 we show those shifts as a function of strain. As one can see, the
corresponding shift for Si-Si bonds, which were discussed in the previous subsection follows a curve very similar to
that obtained for uniaxial strain along the ezz, while the shift of B-N bonds follows a curve that looks like an average
of the corresponding shifts for strain along the eac and ezz directions, exhibiting a minimum at ε ≈ 0.05.

D. Mechanical properties of Si2BN under uniaxial strain. Comparison with graphene

In Figs. 7(a)-(d) we present the strain energy per atom, ∆U , the stress, σ (stress - strain curve), the Poisson’s ratio,
ν, and the Young’s modulus, E, as a function of strain ε along both the ezz and eac directions for both Si2BN and
graphene in the strain range −0.05 ≤ ε ≤ 0.3. Energy and stress calculations have been performed for increasing strain
values in this range, with a 0.01 strain step. By strain energy per atom ∆U we mean the difference ∆U = U − U0,
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where U and U0 are the values of the total energy per atom for the strained structure along a specific strain direction
and at ε = 0, respectively.
Since Si2BN as well as graphene are 2D structures, it is more appropriate to define stress as force per unit length

instead of force per unit area as in 3D materials. However, we may add a width of 3.34 Å to each of the planar
structures which would correspond to the interlayer separation of graphite in order to allow for direct comparisons2

between the two 2D-materials (Si2BN and graphene) and graphite. In the present study we adopt both considerations
in Figs. 7(b) and (d), where strain units are used. In the left y-axis of these figures, normal stress units are used
(adopting the 3.34 Å plane width), while in the right y-axis the force per unit length units (Nt/m) are used. For
the calculation of the Young’s modulus, E, we use the relation E = σ/ε, for the Poisson’s ratio, ν, the relation,
ν = −ε⊥/ε, where ε⊥ is the transverse contraction strain caused as a result of the normal strain ε and for the speed

of sound, vs, the relation vs =
√

E/ρs, where E is the Young’s modulus in force per length units and ρs the area
density.
Although a negative strain (which corresponds to compression) would just cause structural bending, computationally

it is possible to simulate the response of the non-bended planar structure to negative strain2. This allows for a
more reliable estimation of the Young’s modulus and Poisson’s ratio2 without the need for the extrapolation of the
corresponding curves of Figs. 7 to zero strain.
Our calculated results for graphene are in relatively good agreement with the other ab-initio methods, as well as

results obtained using the same method and the SIESTA suite39.
Using the least square fitting method to fit the stress, σ, the Young’s modulus, E, and the Poisson’s ratio, ν, to

quadratic and linear functions of strain, ε, we can have a good estimation of E and ν for strain along the ezz and
eac directions. Details of the fits are shown in the SM38, while the values of Young’s modulus, E, the Poisson’s ratio,
ν, the speed of sound, vs, as well as the ultimate tensile stress, σU , and the corresponding strain, εU , are shown in
Table I.
As can be seen from both Figs. 7 and Table I, in terms of E and ν, Si2BN is anisotropic (in contrast to graphene),

exhibiting a rather large E values, which are as high as ≈ 0.34−0.39 times the value of E for graphene. The Poisson’s
ratio values are higher than the corresponding ν value of graphene by 1.6 - 1.8. The speed of sound, vs, which is
calculated using the relation vs =

√

E/ρS, is also high; it is larger than 1/2 of the corresponding vs of graphene. The
ultimate tensile stress σu although not as high as in graphene, is still high enough, corresponding approximately to
1/4 - 1/3 of the σu value for graphene, appearing at a lower strain values (0.14-0.16 for Si2BN; 0.20-0.25 for graphene).
When compared to silicene, however, the Si2BN appears to be very robust7,41–44. Picturing Si2BN as a highly

doped silicene structure, we can say that the presence of B and N atoms have the effect of enhancing its mechanical
properties since the Si-Si bond is less strong when compared to the Si-B, Si-N and B-N bonds. Moreover, the rippling
features of silicine have been completely eliminated and the Si2BN structure is entirely planar.
An interesting point worth discussion is the very different behavior between the Poisson’s ratio of Si2BN as a

function of strain, for strain along the eac and ezz directions. For strain along eac, the Poisson’s ratio appears to
exhibit an almost linear behavior as a function of strain and the same behavior is also observed for graphene for
both the eac and ezz directions. On the other hand, for strain along the ezz direction the Poisson’s ratio shows
an initial decrease followed by an increase. As explained in the SM38, the reason for this different behavior is the
different deformation of the Si-B-Si and Si-N-Si angles as a function of the strain. For strain along the ezz and
eac directions, these deformations are more significant normal to the strain direction and offer the most important
contributions to the Poisson’s ratio. For strain along the eac direction these two contributions show a decrease and
appear to have an almost linear dependence on strain. As a result, the Poisson’s ratio also decreases and shows a
similar linear dependence on strain. On the other hand, for strain along the ezz direction, the contribution coming
from the Si-B-Si angle deformation initially decreases (up to approximately 0.12 strain) and then shows an increase,
while the contribution coming from the Si-N-Si angle deformation increases, although not linearly as a function of
strain. It is thus fair to conclude that the competition between these behaviors is responsible for the behavior of the
Poison’s ratio as a function of strain in this case. It becomes evident that the different behavior can be attributed to
the anisotropic behavior of the material due to the different bond strengths and the angles, unlike in graphene where
the counterparts of the the Si-N-Si and Si-B-Si angles are the same.

E. Mechanical properties of Si2BN under uniform biaxial strain. Comparison with graphene

Following the same analysis as in the previous subsection we present in Figs. 8(a)-(c) the strain energy per atom, ∆U ,
the stresses, σzz = σxx and σac = σyy (stress - strain curves) and the biaxial moduli, Mx = σxx/ε and My = σyy/ε, as
a function of uniform biaxial strain ε for both Si2BN and graphene for strains between -0.05 and their fracture limit.
Using the same method as those described in the previous subsection, we calculate the biaxial moduli Mx and My.

The values found from the least square fitting method are; for graphene, Mx = My = 1188 GPa (or Mx = My =



7

397 Nt/m) and for Si2BN, Mx = 502 GPa and My = 558 GPa (or Mx = 168 Nt/m and My = 186 Nt/m), which are
of the order of 2/5 of the M value for graphene. Details of the fits can be found in the SM38.
As expected, those results are consistent with the results obtained from the uniaxial strain study. According to the

elasticity theory the Mx and My moduli could be obtained from the Young’s moduli Ex and Ey, and the Poisson’s
ratios νxy and νyx values, for strain along the x (or zig-zag) and y (or arm chair) directions, respectively. With the
notation νab we denote the Poisson’s ratio for strain along a direction, with respect to the perpendicular in plane
direction b, i.e. νab = −εb/εa, where εa is the strain along the strain direction a and εb is the induced strain in the
perpendicular in-plane direction b. The formulas derived from the elasticity theory are Mx = Ex(1+νyx)/(1−νyxνxy)
and My = Ey(1 + νxy)/(1 − νyxνxy), which for the case of the isotropic graphene become Mx = My = E/(1 − ν).
Although the derivation of those relations is rather trivial, we present it in SM38 for completeness. Using those
formulas the values of Mx and My derived for graphene are Mx = My = 1190 GPa, and for Si2BN, Mx = 480 GPa
and My = 565 GPa, differing by ≈ 4% and ≈ 1% for Mx and My of Si2BN, respectively, and ≈ 0.2% for graphene.

IV. CONCLUSION

In the present work we have studied the response of the newly reported Si2BN material23, an entirely planar and
kinetically stable (at least up to 1000 K) structure, to tensile uniaxial and uniform biaxial strain up to fracture.
In particular, we studied its structural deformations and its mechanical properties as a function of strain. For our
study, on the response of the structure to uniaxial strain, we selected two high-symmetry strain directions, namely
the ezz and eac directions, which are normal and parallel to the Si-Si bonds of the Si2BN structure, respectively, and
used ab-initio DFT methods at the GGA/PBE level, as implemented in the SIESTA suite32. For our study on the
response of the structure to uniform biaxial strain, the structure is strained simultaneously along both directions. For
comparison we repeated the calculations for graphene using the same method.
According to our findings Si2BN has anisotropic mechanical properties, exhibiting high Young’s modulus, biaxial

elastic modulus and speed of sound values which are of the order of 1/3, 2/5 and 3/5, respectively, of the corresponding
values for graphene. The Poisson’s ratio values for Si2BN are higher by approximately 2/3 of that of graphene. Under
the application of high uniaxial strain values along the ezz direction the Si-B bonds undergo bond breaking and the
Si2BN dissociates into (Si2BN)2 flake units as shown in Fig. 2, while high uniaxial strain along the eac direction causes
the Si-Si bond breaking resulting in the dissociation of the Si2BN structure into the Si2BN strips as shown in the
same figure. For ε > 0.27, either for strain along the ezz or the eac directions, the Si2BN structure is deformed into
the irregularly shaped structures as shown in Fig. 2 for ε = 0.3 and it looses its planarity. For biaxial strain, graphene
breaks initially at ε = 0.18 into a snake-like chain, (as shown in Fig. 5(a)), but further increase of strain dissociates
the structure into flakes, (as shown in Fig. 5(b)). On the other hand, Si2BN dissociates initially at ε = 0.13 into
Si2BN ribbons through the breaking of the Si-Si bonds in similar fashion to the fracture process into ribbons seen for
uniaxial strain along the arm chair direction. Further increase in the strain transforms the structure into amorphous
non-planar cluster structures, as shown in Fig. 5(f). Over all the fracture and mechanical properties of Si2BN are
highly affected by the contrasting Si-Si and B-N bonds which are the weakest and strongest, respectively. It is worth
noting that the B-N bonds do not change by more than 6% under all the studied strain conditions.
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Structure study direction E (GPa) E (Nt/m) ν ρS (mgr/m2) vs (km/sec) εu σu (GPa) σu (Nt/m)
Si2BN present work ezz 330 110 0.303 0.742 12.2 0.16 27.68 9.245
Si2BN present work eac 376 125 0.345 0.742 13.0 0.14 33.26 11.11
graphene present work ezz 964 322 0.190 0.743 20.8 0.25 114.0 38.08
graphene present work eac 964 322 0.189 0.743 20.8 0.20 103.8 34.66
graphene LDA/CA - VASP7 (1003) 335 0.16
graphene GGA/PBE - Gaussian16 (1150) 345 0.149 0.749 (21.5)
graphene GGA/PBE - Siesta39 ezz (967) 323 0.179
graphene GGA/PBE - Q.E.2 eac 1024 342 0.177 0.686 21.14 0.185 103 34.4
graphene GGA/PBE - Q.E.2 ezz 1020 341 0.173 0.686 21.10 0.225 114 38.1
graphene Exp.40 1020 ± 150 341± 50 0.25 126 ± 12 42± 4
silicene LDA - DMol3 [41,42] ezz (188.6) 63.0 0.31 0.15
silicene LDA - DMol3 [41,42] eac (188.6) 63.0 0.31 0.17
silicene LDA/CA - VASP7 (186) 62 0.30
silicene GGA/PBE - Siesta43 ezz (186.8) (62.4)
silicene GGA/PBE - Siesta43 eac (176.9) (59.1)
silicene GGA/PBE - VASP44 ezz (179.8) 60.06 0.41 0.14 5.66
silicene GGA/PBE - VASP44 eac (190.1) 63.51 0.37 0.18 7.07
boronitrene LDA/CA - VASP7 (799) 267 0.21
boronitrene GGA/PBE - Gaussian16 (905) 271 0.211 0.736 (19.2)

TABLE I: Mechanical properties (Young’s modulus, E, Poisson’s ratio, ν, area density, ρs, speed of sound, vs, ultimate tensile
stress, σu, and the corresponding strain εu) of Si2BN in comparison with graphene, silicene and boronitrene for tensile strain
along the strain directions ezz and eac. Q.E. stands for Quantum Espresso. CA stands for Ceperley and Adler functional.
Values in parenthesis are either not provided by the corresponding paper and have been evaluated by us, or they have been
re-evaluated by us assuming the 3.34 Å width whenever necessary.
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ezz

eac

b

a
FIG. 1: (Color online). Figure showing the 32-atom rectangular unit cell of the Si2BN structure used in the present study along
with the strain directions, ezz and eac. Vectors a and b are the unit cell vectors. Light blue, red and green spheres represent
Si, B and N atoms, respectively.
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Bond lengths in Å Strain along zig-zag direction (ezz) Strain along arm chair direction (eac)
for strain ε along ezz (i.e. normal to Si-Si bonds for Si2BN) (i.e. along Si-Si bonds for Si2BN)

and eac directions Si2BN graphene Si2BN graphene

ε = 0.00
bond ezz eac
Si-Si 2.262 2.262
Si-B 1.970 1.970
Si-N 1.776 1.776
B-N 1.465 1.465
C-C(1) 1.437 1.437
C-C(2) 1.437 1.437

ezz

zze

C−C(2) C−C(1)

eac
eac

ε = 0.05
bond ezz eac
Si-Si 2.244 2.382
Si-B 2.040 1.985
Si-N 1.815 1.790
B-N 1.458 1.497
C-C(1) 1.436 1.502
C-C(2) 1.484 1.451

ε = 0.10
bond ezz eac
Si-Si 2.226 2.546
Si-B 2.112 1.994
Si-N 1.858 1.801
B-N 1.445 1.529
C-C(1) 1.430 1.578
C-C(2) 1.534 1.463

ε = 0.15
bond ezz eac
Si-Si 2.230 2.801
Si-B 2.164 1.992
Si-N 1.890 1.802
B-N 1.439 1.536
C-C(1) 1.421 1.673
C-C(2) 1.589 1.467

ε = 0.20
bond ezz eac
Si-Si 2.258 3.092
Si-B 2.219 2.006
Si-N 1.905 1.803
B-N 1.439 1.501
C-C(1) 1.408 1.790
C-C(2) 1.648 1.461

ε = 0.25
bond ezz eac
Si-Si 2.280 3.362
Si-B 2.303 2.027
Si-N 1.898 1.808
B-N 1.428 1.470
C-C(1) 1.391 1.935
C-C(2) 1.710 1.445

ε = 0.30
bond ezz eac
Si-Si — —
Si-B — —
Si-N — —
B-N — —
C-C(1) 1.381 2.455
C-C(2) 1.768 1.329

FIG. 2: (Color online). Structural deformations of Si2BN and graphene for tensile strain along ezz and eac directions. Same
colors are used for atoms as in Fig. 1. The strain values ε, as well as, the length of the bonds for each case are shown in the
first column. Strain is increased from 0.00 to 0.30 in 0.05 steps.
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FIG. 3: (Color online). Shift of Si-Si and B-N bonds for uniaxial strain along ezz and eac direction, as well as, uniform biaxial
strain. (See text for details.)
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FIG. 4: (Color online). Bond and angle deformations under tensile strain along ezz (solid lines) and eac (dashed lines) directions.
(a) and (b) Relative bond length differences (d− d0)/d, (where d and d0 are the bond lengths at ε 6= 0 and ε = 0, respectively),
for the bonds of Si2BN and graphene, respectively. (c) Angle deformations for the Si-B-Si, B-Si-N and Si-N-Si angles of Si2BN,
and C-C-C angles of graphene formed along zig-zag chains in the ezz direction. Dotted lines in (a) are presented as a guide to
the eye, to indicate different slopes.
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(f)(a) (b) (c) (d) (e)

FIG. 5: (Color online). Structural deformations of Si2BN and graphene under uniform biaxial strain. Same colors are used for
atoms as in Fig. 1. (a) Graphene for ε = 0.18, (b) Graphene for ε = 0.21, (c) Si2BN for ε = 0.05, (d) Si2BN for ε = 0.10, (e)
Si2BN for ε = 0.13 and (f) Si2BN for ε = 0.15.
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FIG. 6: (Color online). Relative bond length differences ((d − d0)/d0) for Si2BN and graphene bonds under uniform biaxial
strain versus strain.
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FIG. 7: (Color online). Mechanical response of Si2BN under uniaxial strain along ezz and eac directions and comparison with
graphene. (a) Strain energy per atom ∆U = (U−U0)/N , (b) Stress - strain plot, (c) Poisson’s ratio ν and (d) Young’s modulus
E = σ/ε.
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FIG. 8: (Color online). Mechanical response of Si2BN under uniform biaxial strain and comparison with graphene. (a) Strain
energy per atom ∆U = (U −U0)/N , (b) Stress - strain plot, (c) Biaxial moduli Mx = σac/ε and My = σzz/ε, where σac is the
stress along the eac direction and σzz the stress along ezz direction.


