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We study the growth of entanglement entropy and bond dimension with time in density matrix
renormalization group simulations of the periodically driven single-impurity Anderson model. The
growth of entanglement entropy is found to be related to the ordering of the bath orbitals and to
the relation of the driving period T to the convergence radius of the Floquet-Magnus expansion.
Ordering the bath orbitals by their Floquet quasi-energy is found to reduce the exponential growth
rate of the computation time at intermediate driving periods, suggesting new ways to optimize
matrix product state calculations of driven systems.
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I. INTRODUCTION

The control of strongly correlated electron systems via
laser-induced oscillating electric fields is an active area
of current research [1–5], raising fundamental questions
related to the dynamics of driven strongly correlated
models, in particular the time evolution of systems with
time-dependent Hamiltonian parameters. The Anderson
impurity model (AIM) [6] of a correlated orbital coupled
to a noninteracting bath is of fundamental physical
interest as perhaps the simplest nontrivial interacting
electron model and is important as an auxiliary model
in the dynamical mean-field theory of correlated electron
physics [7–9]. The development of efficient methods
to calculate the nonequilibrium properties of interacting
electron models such as the Anderson impurity model is
a key challenge [10–13].

The density matrix renormalization group (DMRG)
[14–16] is widely used as a solver for the Anderson
impurity model [17–19]. In DMRG, the system’s wave
function is represented by a matrix product state (MPS),
and the key issue is the growth of entanglement entropy
of the MPS with simulation time. In a previous study
[20] we introduced a 4-MPS variant of DMRG to study
the “quench” physics of the Anderson model, i.e., the
time evolution following an instantaneous change of
interaction and/or hybridization parameters from one set
of constant values to another. We found that different
arrangements of bath orbitals could dramatically affect
the growth of entanglement entropy, and a particular
arrangement (the “star geometry” [19], associated with a
proper energy ordering of bath orbitals) led to a very slow
(logarithmic) growth of entanglement entropy, enabling
simulations of the long-time behavior at a computational
cost that grew only polynomially with the simulation
time. In this paper, we move beyond the quench physics
to study the real-time dynamics of the periodically driven
single-impurity Anderson model (SIAM).

We generalize the 4-MPS method introduced in our
previous work [20]. In this method the system’s wave
function is represented as a sum of four terms, each of

which is the direct product of one of the four states
of the impurity (|0〉, |↑〉 , |↓〉 , |↑↓〉) and an MPS of the
bath. We find that there is a critical driving period
Tc, namely 2π over the band width of the bath density
of states, such that if the driving period T < Tc, the
driven system is as easy to simulate as a quenched SIAM,
while if T > Tc, the simulations become much more
expensive. The period Tc is related to the convergence
radius of the Magnus expansion [21–24]. For driving
periods T >Tc, computations with standard orderings of
the bath orbitals lead to linear growth of entanglement
entropy with time, implying an exponential increase
of computational cost with simulation time. We find
that an ordering of the bath orbitals exists, which we
call quasi-energy ordering, such that the asymptotic
entanglement entropy growth is slow (logarithmic in
time, for the noninteracting model, and with a small
linear coefficient for the interacting model), enabling in
principle simulations out to very long times. However,
the initial transient growth of entropy for this bath
ordering can be very rapid before the asymptotic limit
is reached, which limits the maximum simulation times
reachable in practice.

The rest of the paper is organized as follows. Section II
describes the driven SIAM we solve and the application
of the 4-MPS method [20] to the driven model. Sec. III
presents results obtained for the driven noninteracting
SIAM to illustrate the asymptotics of entropy growth
in different parameter regimes and determine the com-
plexity diagram. In Sec. IV, we simulate the interacting
SIAM, show some physical results and discuss entropy
growth. Section V is a conclusion and summary.

II. THEORY AND METHOD

We consider a single-impurity Anderson model (SIAM)
with time-dependent model parameters. The general
form of the model Hamiltonian H(t) is

H(t) = Hd(t) +Hbath(t) +Hmix(t), (1)
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with

Hd(t) =
∑
σ

εd(t)ndσ + U(t)(nd↑− 1
2 )(nd↓− 1

2 ), (2)

Hbath(t) =
∑
kσ

εk(t) c†kσckσ, (3)

Hmix(t) =
∑
kσ

Vk(t) d†σckσ + h.c., (4)

where ndσ = d†σdσ and σ = ↑, ↓ is the spin label. We use
the interaction picture with respect to H0(t) ≡ Hd(t) +
Hbath(t), so Hmix(t) becomes

Ĥmix(t) = U0(0, t)Hmix(t)U0(t, 0)

=
∑
kσ

Vk(t)d̂†σ(t)ĉkσ(t) + h.c., (5)

where U0(t, 0) = T e−i
∫ t
0
H0(t′)dt′ is the time-ordered

unitary evolution from 0 to t due to H0(t) and U0(0, t) =
[U0(t, 0)]†. Since H0(t) does not couple the d-orbital to
the bath, each bath orbital evolves independently in the
interaction picture:

ĉkσ(t) = ckσ e
−i

∫ t
0
εk(t′)dt′ , (6a)

and the d-orbital evolves according to

d̂σ(t) = dσ e
−i

∫ t
0

[εd(t′)+U(t′)(ndσ̄− 1
2 )]dt′ , (6b)

with σ̄ denoting the opposite spin of σ. Notice that
n̂dσ̄(t) = ndσ̄ does not evolve in the interaction picture
of H0(t) and that ndσ̄ commutes with dσ, which together
lead to Eq. (6b).

As in the 4-MPS scheme developed in our previous
work [20], the wave function |Ψ(t)〉 is represented as

|Ψ(t)〉 =
∑
i

ci(t) |i〉d ⊗ |Ψi(t)〉bath, (7)

where i sums over the 4 impurity states |0〉, |↑〉, |↓〉, and
|↑↓〉, and each |Ψi(t)〉bath is a matrix product state. The
wave function |Ψi(t)〉 is evolved according to

|Ψ(t+ ∆t)〉 ≈ e−iH̃mix(t+ ∆t
2 )∆t|Ψ(t)〉, (8)

with the exponential Taylor expanded to 4th order in ∆t
to ensure good unitarity. The time-averaged Hamiltonian
H̃mix(t) in a time step ∆t is

H̃mix(t) ≡ 1

∆t

∫ t+∆t/2

t−∆t/2

Ĥmix(t′)dt′

=
∑
kσ

Ṽkσ(t)d†σckσ + h.c., (9)

with effective hybridization given by

Ṽkσ(t) ≈ Vk ei
∫ t
0

[εd(t′)+U(t′)(ndσ̄− 1
2 )−εk(t′)]dt′

× sinc
(
εd(t)+U(t)(ndσ̄−1/2)−εk(t)

2 ∆t
)
. (10)

FIG. 1. The density of states of the bath orbitals εk. We
consider a semicircle DOS with a half band width E. The
bath is initially half-filled, and the d-orbital energy εd = ±|εd|
oscillates between the two values shown every half driving
period T/2 across the Fermi level.

The Hamiltonian H̃mix(t) is represented by a matrix
product operator (MPO) with bond dimension 2 that
acts on the wave function in 4 MPSs [20].

We now specify the specific model we study. In the
Schrödinger picture, the N → ∞ bath orbitals have
time-independent energies εk(t) = εk with a semicircular
density of states (DOS) shown in Fig. 1 and time-
independent and equal hybridization amplitudes Vk(t) =

V/
√
N to the impurity d-orbital. The Hubbard U on the

d-orbital is also fixed. The only time-dependent quantity
is the d-orbital energy, which we take to have the square
wave form

εd(t) =


−|εd|, 0 < t <

T

2
,

+|εd|,
T

2
< t < T,

(11)

with driving period T . We choose a piecewise constant
Hamiltonian for numerical reasons: in this case Eq. (8)
can be made exact by choosing ∆t such that T/2 is a
multiple of ∆t. We consider time evolution starting from
a product state

|Ψ(t = 0)〉 = |Ψ0〉d ⊗ |FS〉bath, (12)

where |FS〉bath is a half-filled Fermi sea of the bath as
shown in Fig. 1. We will provide physical results that
show the local quantities on the d-orbital and complexity
results that show the growth of entanglement entropy of
the bath MPSs at the maximum entropy bond, which is
often the one closest to the Fermi level.

III. NONINTERACTING RESULTS

We first present results obtained for the noninteracting
driven SIAM using a standard Slater-determinant-based
method. The time-evolution of a Slater determinant by
a noninteracting Hamiltonian is numerically inexpensive
and is not limited by the growth of entanglement entropy.



3

FIG. 2. (Color online) Comparison of time dependence of
entanglement entropy of quenched (lower curve, blue online)
and driven (upper curve, red online) Anderson impurity
model. The driving period ET = 10, the Hubbard U = 0, the
bath is half-filled and the impurity-bath coupling V/E = 0.25.
Initially the impurity is empty. The entanglement entropy is
computed between the 500 bath orbitals below the Fermi level
and the rest of the system.

The 4-MPS method will be applied in Sec. IV to obtain
results for the interacting model. The impurity-bath
coupling in this section is V/E = 0.25, and we use
N = 1000 orbitals. The initial state is |0〉d⊗|FS〉bath, an
empty d-orbital and a half-filled Fermi sea in Fig. 1. If
εd is time-independent, this corresponds to studying the
behavior after a quench of εd from a very high value.

A. Energy-ordered bath

We use the von Neumann entropy Socc = −Tr(ρ ln ρ)
for the entanglement between the N/2 bath orbitals
below the Fermi level and the rest of the system to
estimate the maximum entanglement entropy that would
be encountered in an MPS-based simulation when the
bath orbitals are energy-ordered. Figure 2 compares
the growth of the entanglement entropy in the quench
case (lower curve, blue online) and the driven case
(upper curve, red online) for driving periods T > Tc
longer than the critical period Tc = π/E. We see
that the entanglement entropy in the quench case grows
logarithmically in time, consistent with previous results
[20], but in the presence of a periodic drive, the growth
of entropy becomes linear in time.

To understand the factors controlling the growth of
entanglement entropy in the driven SIAM, we plot in
Fig. 3 the increase rate of entanglement entropy per
driving period against the dimensionless driving period
ET for different values of driving amplitude |εd|. The
results are obtained at long times after the simulation
was started and represent the steady-state growth of
entanglement entropy. We see that for ET < π (i.e., for
driving frequency ωd = 2π/T greater than the full band
width 2E), there is no discernible steady-state linear

FIG. 3. (Color online) Linear growth rate of entropy over a
cycle of the drive in steady state plotted against the driving
period for various amplitudes |εd|. Hubbard U = 0 and the
impurity-bath coupling V/E = 0.25.

increase of entropy over one drive period. In other words,
the entropy grows more slowly than linearly (in fact,
it grows logarithmically) with time. For ET > π, the
steady-state growth rate of entanglement entropy is non-
zero, and depends on the driving period and amplitude
in a complicated way. The growth rate has a maximum
at a drive frequency that depends on the drive amplitude
and is always within the envelope shown as the dashed
curve, which is obtained by numerically maximizing the
linear growth rate ∆ST /T of entropy at fixed period T
via tuning the amplitude |εd|.

The existence of the critical driving period may be
understood within Floquet-Magnus theory [21–24], which
states that at high driving frequency, periodically driven
systems with Hamiltonian H(t) may be represented in
terms of a time-independent Hamiltonian H̄ with the
parameters determined by averages of parameters in
H(t) over one driving period. Corrections to the high-
frequency limit may be expressed as a power series
in the driving period T . If the series converges, the
physics of a system in which periodic drive is turned
on is in effect that of a quenched model. In the
particular case of the SIAM studied here, this would
mean that the entanglement entropy increases with time
logarithmically. We then interpret the critical period
that marks the onset of linear entropy growth as the
radius of convergence of the Magnus expansion.

For the noninteracting SIAM, the convergence radius
of the Magnus expansion can be determined from the
Floquet Hamiltonian HF , which is defined as the time-
independent Hamiltonian whose time-evolution over a
full period T reproduces the time-evolution of the driven
system over the same period, i.e.,

e−iHFT ≡ T e−i
∫ T
0
H(t)dt. (13)

For the square-wave model in Eq. (11), the solution for
small driving amplitude |εd| can be resummed exactly to
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FIG. 4. (Color online) The bath orbital energies εk of the
Floquet Hamiltonian HF for ET = 3 (blue) and ET = 4
(red). The orbital energies are unaffected by the periodic
driving if ET < π but get aliased to quasi-energies within
[−π/T, π/T ] modulo 2π/T if ET > π.

find (details in Appendix A)

HF = H̄ + i|εd| tan

(
T

4
adH̄

)
nd +O(|εd|2), (14)

where H̄ = 1
T

∫ T
0
H(t)dt is the time-averaged Hamil-

tonian, adH̄ = [H̄, ·] is the adjoint representation of H̄
and the tan(·) function is defined by its formal power
series. In the noninteracting model, the spectral radius
of adH̄ is 2E and the expansion of the tan(·) fails when
its argument is π/2, reproducing the critical value shown
in Fig. 3. We expect that very similar considerations will
apply to the interacting SIAM.

The linear growth of entanglement entropy in the long-
period regime ET > π where the Magnus expansion
breaks down may be understood in an entropy pumping
picture. The up and down motion of the d orbital acts
as an elevator that transports electrons from occupied to
unoccupied orbitals. For small T this process does not
affect the energy ordering and does not lead to entropy
increase. For T longer than the convergence radius,
the bath orbital energies are aliased to [−π/T, π/T ] ⊂
[−E,E], breaking the original ordering of the bath
orbitals and leading to entropy increase.

B. Quasi-energy-ordered bath

The above analysis suggests that when the drive period
T > Tc, we should rearrange the bath orbitals in the
MPS in ascending order of quasi-energy, i.e., εk modulo
2π/T to within [−π/T, π/T ], as shown in Fig. 4, rather
than energy. To test this idea, we again calculate the
entropy growth using the Slater-determinant-based non-
interacting simulation. The initial state |0〉d ⊗ |FS〉bath

in the star geometry remains a product state (an MPS
with bond dimension = 1). The entanglement entropy

FIG. 5. (Color online) The growth of entropy SN/2 for the
driven and quenched models with energy-ordered and quasi-
energy-ordered bath orbitals. Hubbard U = 0 and impurity-
bath coupling V/E = 0.25. Period ET = 10.

SN/2 between the N/2 bath orbitals with negative quasi-
energies (within [−π/T, 0)) and the rest of the system will
be used to estimate the maximum entanglement entropy
encountered in an MPS-based simulation when the bath
orbitals are quasi-energy-ordered. The SN/2 defined here
becomes equivalent to the entanglement entropy Socc

used in the previous section if ET < π, when the bath
orbitals are energy-ordered.

Fig. 5 shows the same simulation as in Fig. 2 using
N = 1000 bath orbitals now ordered by their quasi-
energies of ET = 10. The entropies of the energy-
ordered simulation in Fig. 2 (blue and red lines) are
compared with the new results (green and purple lines)
in Fig. 5 and the time t is put on log scale. When the
bath orbitals are ordered by quasi-energy, the growth of
SN/2 is logarithmic for both the quenched and driven
models. This is because the Floquet Hamiltonian HF is
now energy-ordered, as opposed to the aliased situation
in Fig. 4. But the driven model is still harder to simulate
than the quenched model, because the slope of the SN/2
v.s. ln t curve is greater for the driven model.

For the quenched model, the steady-state slope of
SN/2 v.s. ln t is unchanged when the bath orbitals are
quasi-energy-ordered. Only the steady-state intercept
is shifted up by a constant ∆SN/2, which is found to
be approximately proportional to ln(T/Tc) (see Fig. 6a).
This is the price to pay for not ordering the quenched
bath by energy.

For the driven model, the driving period T changes the
slope of the SN/2 v.s. ln t curve. Fig. 6b shows how the
slope increases from that of the quenched model (T →
0 at fixed |εd| is equivalent to quench) to unboundedly
large values proportional to lnT . This indicates that the
leading-order term in the entropy SN/2 is

SN/2 ∼ c lnT ln t, (15)

where c depends on |εd| but is found to be bounded (see
Fig. 7). At very large driving amplitude |εd| & E, the
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FIG. 6. (Color online) (a) The upshift ∆SN/2 of entropy in
the quenched SIAM at |εd| = 0 when bath orbitals are ordered
by quasi-energy of driving period T . (b) The slope of SN/2

v.s ln t in the driven SIAM at |εd|/E = 0.1. Bath size for long
periods need to reach N = 3000 to obtain accurate data.

coefficient c goes down. The large-|εd| behavior is related
to transient formation of bound states as the d-orbital
energy moves out of the band.

Eq. (15) means that the bond dimension in an MPS-
based simulation using the quasi-energy-ordered bath
arrangement is D ∼ eSN/2 ∼ t c lnT . The time complexity
of the singular value decomposition (SVD) step is then
O(D3) = O(t3c lnT ). Since the power of t for the quasi-
energy-ordered method is unbounded for long driving
periods T , the complexity is still beyond polynomial
time. Another drawback of using quasi-energy ordering
is the delocalization of maximum entanglement entropy
throughout the MPS, while in energy-ordered MPSs, the
maximum entanglement entropy tends to concentrate
near the Fermi level. This gives the quasi-energy-ordered
method a prefactor of the order of the bath size N .

IV. INTERACTING RESULTS

In the previous section, we estimated the growth of
entanglement entropy in an MPS-based simulation using
a Slater-determinant-based code for the noninteracting
SIAM. Now we present MPS-based simulations of the
interacting SIAM using the 4-MPS method developed
in Sec. II. We choose a fixed Hubbard U/E = 1 and

FIG. 7. (Color online) The dependence of the coefficient c in
Eq. (15) on the driving amplitude |εd|. Hubbard U = 0 and
impurity-bath coupling V/E = 0.25.

the impurity-bath coupling V/E = 0.25 is the same as
in Sec. III. We use N = 30 bath orbitals to fit the
hybridization function of the continuum bath DOS in
Fig. 1 with good accuracy up to Et ≤ 75 following
[20]. The SVD truncation error tolerance was 10−5.
Noninteracting d-occupancies are reproduced with 2 ∼ 3
decimal places as a benchmark.

A. Physical results

For short drive periods ET < π, we find that the
physical results for the driven interacting SIAM are
not significantly different from those obtained for the
quenched SIAM. So we plot both Figs. 8 & 9 in the long-
period regime of ET > π. The energy-ordered and quasi-
energy-ordered algorithms using the 4-MPS method give
the same physical result, only costing different CPU
times, which will be discussed in Sec. IV B. In Fig. 8,
we compare the mean d-occupancy nd and the double
occupancy D computed for the quenched and driven
systems. Also shown are the corresponding D values for
the noninteracting quenched model in dashed grey line.
For period ET = 10, both nd (red line in Fig. 8a) and the
double occupancy D (purple line) oscillate approximately
sinusoidally, even though the driving signal εd(t) is a
square wave: as will be seen, the higher harmonics
become noticeable only for higher amplitude of the drive.
When the period increases to ET = 20, the wave forms
approach a relaxed oscillation (Fig. 8b). The overshoots
in every period disappear in a noninteracting simulation
(U = 0, not plotted), which produces simple monotonic
decays to the square-wave levels.

When the driving amplitude |εd| is increased, the wave
form of nd distorts, and the relaxation to steady-state
oscillation slows down, as is shown in Fig. 9a. Also, there
is an increase of double occupancy D. At |εd|/E = 0.8,
the steady-state wave form of D(t) is above n2

d/4 almost
the entire period. To obtain Fig. 9b, we used the centered
moving average method with period equal to the driving
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FIG. 8. (Color online) The d-occupancy nd = 〈nd↑〉 + 〈nd↓〉
and double occupancy D = 〈nd↑nd↓〉 of the quenched and
driven SIAMs v.s. time at Hubbard U/E = 1, impurity-bath
coupling V/E = 0.25, driving amplitude |εd|/E = 0.1 and
period in (a) ET = 10 and (b) ET = 20. The dashed grey
line is n2

d/4 of the quenched nd.

period T to obtain the period-averaged quantities nd(t)
and D(t). Then ∆nd is taken to be half the peak-to-
peak value of the oscillatory part nd(t) − nd(t) of the
d-occupancy, and the steady-state D is estimated from
D(t) based on an exponential tail fit. The fit corrects
the final value of double occupancy by a non-negligible
amount when |εd| is large and the relaxation gets slow.

A possible explanation of the increase of double occu-
pancy D might be that the oscillating d-orbital energy
is like a phonon mode that induces an effective intra-d-
orbital attraction, which becomes greater than U when
the amplitude |εd| is big enough (|εd|/E & 0.6, at which
D ≈ 1/4). Whether this attractive interaction can lead
to superconductivity is interesting for further studies.

B. Complexity results

Obtaining results in Fig. 9 at medium to large driving
amplitudes required substantial computational resources,
because of the slow relaxation to steady state and the
rapid growth of entanglement entropy in the ET > π
regime. In the energy-ordered simulation, the maximum

FIG. 9. (Color online) (a) The d-occupancy nd and double
occupancy D of the SIAM at driving amplitudes |εd|/E =
0, 0.1, . . . , 0.8 and period ET = 10. Other parameters are the
same as Fig. 8. The grey dashed line is n2

d/4 of the quenched
nd. (b) Amplitude ∆nd (1/2 of peak-to-peak value) of nd and
the time-averaged double occupancy D over a full period.

entanglement entropy grows with time linearly, so the
maximum bond dimensions in the MPSs increase expo-
nentially with the number of periods simulated. In this
section, we investigate whether this exponential difficulty
can be helped by reordering the bath orbitals in the MPSs
in quasi-energy order.

While the entropy growth in the noninteracting SIAM
may be logarithmic in time t if the bath orbitals are
ordered by their Floquet quasi-energy, as is shown in
Sec. III B, the entropy growth for the interacting SIAM
is slightly faster than logarithmic (see red curve in
Fig. 10a). We increase the number of bath orbitals to
N = 40 to reach Et = 100, and then compare the energy-
ordered and quasi-energy-ordered simulations in Fig. 10
under |εd|/E = 0.1, ET = 6. As is shown in Fig. 10b,
the quasi-energy-ordered 4-MPS simulation is slower in
the short run. The short-term growth of entropy, e.g. in
the first few periods, is faster if the bath orbitals are
not energy-ordered. In the long run, the quasi-energy
ordering is more favorable. The entropy growth only
slightly curves up in the Smax v.s. ln t plot. The long-
term growth rate of entropy and ln tCPU v.s. t are clearly
reduced. The difficulty in the ET > π regime is beyond
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FIG. 10. The maximum entanglement entropy Smax reached
in (a) and CPU time tCPU spent in (b) to run to different
simulation times Et. Parameter values U/E = 1, V/E = 0.25,
|εd|/E = 0.1, and ET = 6. The red curve in (a) is slightly
concave upward as Et approaches 100 when the period-ET
oscillations are eliminated by moving average.

polynomial time using either method, but is significantly
reduced by the quasi-energy ordering method.

Figure 11 shows the crossing time of the maximum
entanglement entropies Smax of the energy-ordered and
quasi-energy-ordered simulations. In a wide range of
driving periods, the crossing time tcross of the entropies
in Fig. 10 exists and is minimum at intermediate driving
periods T at which the linear growth rate of entropy
Smax of the energy ordering method is fastest. After the
entropies cross, the quasi-energy ordering method still
needs to overcome two more short-term drawbacks: a) its
maximum entanglement entropy is widely spread over the
MPS bonds, in contrast to the energy ordering method,
where the entanglement entropy is concentrated near the
Fermi level, and b) the bigger entropy in the first few
periods, before the CPU-times cross.

V. CONCLUSION

This paper presents a generalization of our previously
developed 4-MPS method to time-dependent Hamiltoni-
ans and uses the formalism to study the driven SIAM.

FIG. 11. Crossing time of maximum entanglement entropies
of the energy-ordered and quasi-energy-ordered simulations at
various driving periods T . Fixed parameter values U/E = 1,
V/E = 0.25, |εd|/E = 0.1. The red line is a smooth guideline
of the data points in blue dots.

We analyzed the computational time complexity in the
short drive-period ET < π and the long-drive period
ET > π regimes for both the noninteracting (U = 0) and
interacting (U > 0) models. The behavior of the driven
model in the ET < π regime, where the Floquet-Magnus
expansion converges, is not significantly different from
the quenched model, either in terms of computational
complexity (both requiring only polynomial time) or
physical results. However, in the ET > π regime, the
entropy grows linearly in the energy-ordered algorithm.
The long times (many periods) are therefore exponen-
tially hard to reach. Ordering the bath orbitals by quasi-
energy reduces the entropy growth of the noninteracting
model from linear to logarithmic, albeit with a coefficient
of the logarithm that grows unboundedly with the drive
period T (proportional to lnT ). For the interacting
model, quasi-energy ordering significantly reduces the
linear growth rate of entanglement entropy and thus the
exponential hardness grows with time more slowly in the
long run.

The Floquet Hamiltonian of an interacting lattice
system outside the convergence radius of the Floquet-
Magnus expansion can exhibit highly rich and nontrivial
behavior, as is shown in [23, 25]. The work presented
here shows that the growth of entanglement entropy
depends strongly on basis. A quasi-energy ordering of
bath orbitals in the MPS as motivated by the Floquet
Hamiltonian of the noninteracting SIAM can reduce the
computational complexity, but we have no reason to
believe the basis sets studied here are optimal. Further
research into the basis sets of the matrix product states
based on more refined analyses of the Floquet Hamiltoni-
ans for driven interacting models could be an interesting
direction for future studies.

Acknowledgments: This research is supported by the
Department of Energy under grant DE-SC0012375.
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Appendix A: Floquet Hamiltonian

The Floquet Hamiltonian HF of a periodically driven
system H(t) = H0 + εH1(t) is given by

e−iHFT = T e−i
∫ T
0
dt [H0+εH1(t)]. (A1)

For small amplitudes we have ε → 0. We can take
derivative with respect to ε at ε = 0 to obtain

T e−i
∫ T
0
dt [H0+εH1(t)] = e−iH0T

− iε
∫ T

0

dt e−iH0(T−t)H1(t)e−iH0t +O(ε2). (A2)

We define an expansion

HF = H0 + ε δH
(1)
F +O(ε2). (A3)

Then we have

e−iHFT = e−i(H0+ε δH
(1)
F )T +O(ε2) = e−iH0T

− iε
∫ T

0

dt e−iH0(T−t) δH
(1)
F e−iH0t +O(ε2). (A4)

Comparing Eqs. (A2) and (A4), we have from the first-
order terms of ε that∫ T

0

dt eiH0tH1(t)e−iH0t =

∫ T

0

dt eiH0t δH
(1)
F e−iH0t,

(A5)

where we have multiplied on both sides by eiH0T from
the left. Then we use the nested commutator expansion

eiH0tH1(t)e−iH0t =

∞∑
n=0

(it)n

n!
adnH0

[H1(t)], (A6)

where adH0
≡ [H0, ·] is the adjoint representation of H0,

and adnH0
[H1(t)] = [H0, adn−1

H0
[H1(t)]] is the n-fold nested

commutator of H0 with H1(t). Using this formula on
both sides of Eq. (A5), and from the square-wave model

H1(t) = H1 sgn

(
t− T

2

)
, 0 ≤ t < T, (A7)

we obtain the series expansion

∞∑
n=0

(iT )n

(n+ 1)!

(
1− 1

2n

)
adnH0

(H1)

=

∞∑
n=0

(iT )n

(n+ 1)!
adnH0

(δH
(1)
F ), (A8)

which can be resummed to yield

(ei
T
2 adH0 − 1)2

iTadH0

H1 =
eiTadH0 − 1

iTadH0

δH
(1)
F . (A9)

All functions of adH0 are defined using their power series
in Eq. (A8). We now apply the multiplicative inverse of
the power series of adH0 on the right-hand side to both
sides and after some algebra obtain

δH
(1)
F = i tan

(
T

4
adH0

)
H1. (A10)

The formal solution in Eq. (A10) can be evaluated in the
eigenbasis of H0 as

〈m|δH(1)
F |n〉 = i〈m|H1|n〉 tan

(
Em − En

4
T

)
. (A11)

where |m〉 and |n〉 are eigenstates of H0 with eigen-
energies Em and En. In case H1 = |εd|nd with nd ≡∑
σ d
†
σdσ, Eq. (14) in the main text is derived. Since no

assumption is made on H0 except it is time independent,
Eqs.(A10), (A11) & (14) hold for both the interacting
and the noninteracting SIAMs.
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