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We have laid out the results of a rigorous theoretical investigation into the response of elec-
tron dressed states, i.e., interacting Floquet states arising from the off-resonant coupling of Dirac
pseudospin-1 electrons in α-T3 lattices, to external radiation with various polarizations. Specifi-
cally, we have examined the role played by the hopping-scale parameter α that is a measure of the
coupling strength with an additional atom at the center of the honeycomb graphene lattice and
which, when varied, continuously gives rise to different Berry phases. We have found that the elec-
tronic properties of the α -T3 model (consisting of a flat band and two cones) could be significantly
modified depending on the polarization of the imposed irradiation. We have demonstrated that
under elliptically polarized light the low-energy band structure of such lattices will directly depend
on the valley index. We have obtained and analyzed the wave functions, their symmetries and
the corresponding Berry phases, connections and curvatures, and revealed that such field-modified
geometry phases could be finite even for a dice lattice, which has not been observed in the absence
of an optical dressing field. These results lead to possible radiation-induced band structure control
and engineering, as well as experimental and technological realization of such optoelectronic and
integrated photonic devices.

PACS numbers: 03.65.Vf, 73.90.+f, 73.43.Cd, 42.50.Ct

I. INTRODUCTION

The α-T3 model is considered to be the most recent and promising member of novel two-dimensional (2D) materials.
Their low-energy dispersions are obtained from a pseudospin-1 Dirac-Weyl Hamiltonian 1,2 and possess a strong
similarity in comparison with graphene. 3–5 The atomic structure of the α-T3 model is represented by a honeycomb
lattice with an additional site at the center (a hub atom) of each hexagon. The model Hamiltonian depends on a
hopping-scale parameter α = tanφ which is a measure of the coupling strength with the hub atom and depends on the
ratio of the two hopping coefficients for all hub-rim and rim-to-rim sites. Both α and φ may be varied continuously
and the Berry phase could be expressed in terms of these two parameters and play a crucial role in controlling many
of the electronic and many-body properties of such 2D lattice structures.

The most encouraging technological opportunity for α-T3 is its applicability for tuning the value of the parameter α
from 0 to 1. The results for graphene correspond to the α→ 0 limit of this model, while the α→ 1 limit is connected
to a class of available pseudospin-1 materials. 1,6,7 Such unique tunability together with associated electron-state
evolutions have made studying various properties of these α-T3 materials as one of the most desirable directions in
present-day condensed-matter physics, chemistry and technology.

One of the latest advances in laser and microwave technologies has resulted in the possibility of an efficient control,
as well as tunability of the basic electronic properties, low-energy band structures including bandgap and correspond-
ing spin- and valley-dependent electronic states by applying an off-resonant periodic field. Electron states generated
in such a way are referred to as either electron (or optical) dressed states and represent a single quantum object
of strongly coupled light and matter. These dressed states are further characterized by different polarizations of
an imposed field, as schematically displayed in Fig. 1. The effect of such light-matter interaction on modifying key
electronic properties could vary substantially, depending on the type of polarizations of incoming radiation. Most of
the important characteristics of such dressed states could be deduced from conventional Floquet theory, which effec-
tively describes an extremely wide range of quantum-mechanical systems under an external periodic field. 8–11 Based
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on these theories, researchers have proposed and developed numerous techniques to modify the existing electronic
properties of condensed-matter materials, which was subsequently referred to as “Floquet engineering” of various
nanostructures 12–14 and especially for the novel low-dimensional Dirac-cone materials. 15–22 Considerable effort has
been devoted to find a way to present topological-insulator properties in such systems under irradiation. 12,23,24 Op-
tical dressing can also alter the tunneling and conductance 25 properties of a topological insulator, leading to tunable
spin transport on their surfaces 26 or edges with potential applications in spintronics, and resulting in an optically-
stimulated Lifshitz transition as well. 27

Another important property of such electronic dressed systems for operating an optoelectronic device is the challenge
of confining these electron states within a specific spatial region. This is directly related to the presence or absence
of the so-called Klein paradox 28 in α-T3 materials. Circularly polarized radiation is known to open an energy gap in
initially metallic graphene, 15,29 leading to a suppression of either electron transmission 30,31 or electronic trapping 32

experimentally. For systems with a band gap, such as buckled honeycomb lattices, the modification of this energy
gap depends on its initial value and could be either increased or decreased, 16 which can affect all collective electronic
properties in a nontrivial way. 33 In contrast, radiation with a linear polarization does not generate any band gaps,
but can lead to a strong anisotropy in energy dispersions of α-T3 material.34 Here, we would like to emphasize
that the right term in referring to the Floquet quasiparticles is the quasienergy. Even though sometimes we still
use the word ”energy“ meaning the eigenvalues of a Hamiltonian equation, the distinction is crucial and should be
always recognized. For such anisotropic massless fermions, a full head-on transmission is replaced by asymmetric
Klein tunneling 35 with an important advance in electron technologies, i.e., electron confinement in a 2D material.
Interestingly, such unique Klein tunneling within α-T3 materials 36 with α < 1 has been shown to be different from
both graphene (α = 0) and dice lattice (α = 1). 37

The principal focus of the present work is to develop a formalism for investigating the properties of optical dressed
states for the α-T3 model corresponding to well-known polarizations of incoming radiation, i.e., elliptical (and circular
as a special case) and linear. From a physics point of view, elliptically polarized light has the combined effect of opening
two generally inequivalent band gaps, just as it was shown for circularly polarized light. It also induces an in-plane
anisotropy, related to linear polarization. Therefore, one can use elliptically polarized fields for tuning and control of
these optically induced modifications of the electronic states. Contrary to recent work, 2 we concentrate on deriving
closed-form analytic approximations and the wave-vector dependence of the energy dispersions around each valley,
determine and analyze the corresponding wave functions, their symmetries, and the corresponding Berry phases which
are now significantly modified by electron-light coupling.

We have conducted a comprehensive investigation of the way in which the Berry phase of α-T3 is modified in the
presence of irradiation. The procedure is significantly different from the study of the properties of dressed states for
various phases φ. These phases are not equivalent to the Berry phases, even though they are directly and uniquely
related. We have found that the dice lattice could acquire a finite Berry phase due specifically to the irradiation,
while it was zero initially. Generally, the Berry phases substantially depend on the material parameter α and the
electron-light coupling λ0, as well as the polarization of the dressing field. The Berry phase was proven to be connected
to most physical properties of α-T3 lattices. 38 Researchers have found that its orbital susceptibility will undergo a
transition from diamagnetic in graphene to paramagnetic in a dice material, 10,39 which was also demonstrated by
using a tight-binding model. 40 The same conclusion applies to magneto-transport in α-T3 materials, 41 where the
calculated conductivities present several peaks, and each of these peaks will be split if α is finite. 42,43 Therefore, one
of our goals in this paper aims at studying how the geometric Berry phase of α-T3 lattices is modified in the presence
of an optical dressing field.

Our results can be verified by experimental measurements, such as STM, 44 TEM, 45 angle resolved photoemission
spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) applications. 46 Recently, the Floquet states,
their topological properties and even the Berry curvatures have received a great deal of attention by experimentalists,
including Refs. [47,48].

The rest of this paper is organized in the following way. In Sec. II, we provide a brief description of important
electronic properties, including low-energy band structures in the vicinity of the K and K ′ valleys, their corresponding
wave functions, and revealing all their dependences on the geometry phase parameter φ(α) as well. Following this,
we present our detailed derivations for off-resonance electron Floquet states under elliptically, circularly and linearly
polarized irradiation. Meanwhile, we also show corresponding eigenstates for such dressed electrons and analyze their
structure and symmetry properties. Specifically, we examine how all our results depend on φ(α) and on electron-field
coupling λ0. We also indicate some cases in which the band structures become valley dependent. In Sec. III, we
calculate Berry phases for different eigenstates, provide analytical expressions for them, and discuss their properties.
Our concluding remarks are provided in Sec. IV. In addition, detailed derivations of all our major results are given in
Appendices A, B and C.
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A) Elliptical polarization  B) Linear polarization  

FIG. 1: Schematics of an α-T3 lattice (in xy-plane) irradiated with A) elliptically and B) linearly polarized off-resonance optical
dressing field. In each case, E0 represents the amplitude of the electric-field component of incident light.

II. ELECTRON DRESSED STATES

In this section, our goal is to obtain quasienergy dispersions and wave functions of quasiparticle dressed states by
incident light with elliptical, circular and linear polarizations. In calculating these quantities, we are mainly concerned
with elucidating the effect of Berry phase φ on these dressed states.

To establish notations, we start with an overview of the low-energy Hamiltonian of the α-T3 model, its eigenfunctions
and energy dispersions. The eigenstates are determined from the following φ-dependent pseudospin-1 Dirac-Weyl
Hamiltonian 2

Ĥφτ (k) = ~vF

 0 kτ− cosφ 0
kτ+ cosφ 0 kτ− sinφ

0 kτ+ sinφ 0

 , (1)

where k = (kx, ky) is a 2D wave-vector, kτ± = τkx ± iky with τ = ± labeling two different valleys and vF denoting
the Fermi velocity. In Eq. (1), α = tanφ is a bonding-strength parameter in Fig. 1, characterizing an α-T3 lattice.
For α = 1 or φ = π/4, this Hamiltonian reduces to that of a dice lattice 1. Three energy bands of the Hamiltonian

in Eq. (1) are E
(0)
γ (k) = γ ~vF k, corresponding to valence (γ = −1), conduction (γ = +1) and flat (γ = 0) bands of

electrons. These energy bands are degenerate with respect to τ and φ. Their corresponding wave functions are

Ψγ=±1
0 (k| τ, φ) =

1√
2

 τ cosφ e−iτθk

γ
τ sinφ eiτθk

 , (2)

where θk = arctan(ky/kx) is the angle associated with the wave-vector k, and

Ψγ=0
0 (k| τ, φ) =

 τ sinφ e−iτθk

0
−τ cosφ eiτθk

 . (3)

Unlike the degenerate electron dispersions E
(0)
γ (k), the energy dispersion of dressed-state quasiparticles depends on

the Berry phase φ and valley τ .

A. Elliptically polarized radiation

The vector potential for elliptically polarized light will depend on the direction of the major axis of the polarization
ellipse. By assuming that this major axis is collinear with the x-axis, the expression for such a vector potential takes
the form 16
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FIG. 2: Bandedges ε
(e)
d (k = 0| τ, φ) (at either K or K′ point depending on valley index τ = ±1) calculated from Eqs. (11)

and (12) for dressed states in α-T3 lattices under elliptically polarized light as a function of φ = arctan(α) in (a) and α in
(b). In each panel, the conduction, valence and “flat” band dispersions correspond to blue, green and red curves, respectively.
As usual, the bandgap is still defined as the energy separation between the valence and conduction bands. Here, the upper
conduction band touches the middle “flat” band in both panels and ε0 = τβ c20/~ω is the unit for energy bands.

A(e)(t) =

[
A

(e)
x (t)

A
(e)
y (t)

]
=
E0
ω

[
cos(ωt)
β sin(ωt)

]
, (4)

where the superscript “(e)” stands for elliptical polarization, β = sin Θe 6= 1 is the ratio of field strengths along the
two axes of the polarization ellipse. Equation (4) represents the most general form of various polarization types, where
β → 1 corresponds to circularly polarized light with equal but π/2 phase-shifted components, and β → 0 describes
linearly polarized radiation, given by Eq. (23).

It is important to mention that as in previous studies 34 of graphene, the dressed-state energy dispersions obtained
with a semiclassical time-dependent representation as in Eq. (4) are found equivalent to that 15 derived from a quantum-
field theory in the limit of a large occupation number of photons.

By making use of the canonical substitution, kx,y → kx,y − (e/~)A
(e)
x,y(t), the field-free Hamiltonian in Eq. (1) is

changed into

Ĥφτ (k) =⇒ Ĥ(e)(k, t| τ, φ) ≡ Ĥφτ (k) + Ĥ(e)
A (t| τ, φ) , (5)

where the interaction term is given by

Ĥ(e)
A (t| τ, φ) = −τc0


 0 e−iτΩβ(t) cosφ 0

0 0 e−iτΩβ(t) sinφ
0 0 0

 + h.c.

 . (6)

In Eq. (6), h.c. represents the Hermitian conjugate of the preceding matrix and Ωβ(t) = arctan [β tan(ωt)] turns into
(ωt) for circularly polarized light. The interaction strength, c0 = eE0vF /ω, is the same for linearly polarized light.
Apart from c0, we also introduce another dimensionless coupling constant λ0 = c0/~ω in our calculations. Since our

studies aim at an off-resonant high-frequency irradiation with E
(0)
γ (k)/~ω � 1, we can treat λ0 as a small parameter,64

and therefore corresponding series expansions could be executed with it.

If the field-free Hamiltonian is linear in k, which holds true for nearly all Dirac and gapped Dirac structures, e.g.,
gapped or gapless graphene, buckled honeycomb lattices and transition metal dichalcogenides, the corresponding
Hamiltonian for dressed states can be obtained simply by adding a single k-interaction term. However, the situation
becomes drastically different for phosphorene with a more complicated anisotropic k dependence in its field-free
Hamiltonian. 17

Mathematically, in order to solve the current eigenvalue problem, we have to rely on a perturbation theory. Moreover,

nearly all off-resonant systems, subjected to an external periodic field with E
(0)
γ (k)� ~ω, could be effectively described

by a perturbative Floquet-Magnus expansion 8 of the interaction Hamiltonian in powers of (1/~ω). Eventually, this
allows for an approximate solution whenever the exact diagonalization of an interaction matrix becomes impossible, 16

or at least it substantially simplifies a very lengthy calculation. 17
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The key idea for using the perturbation approach is the following. Once the interaction Hamiltonian term

H(e)
A (t| τ, φ) is expressed as

Ĥ(e)
A (t| τ, φ) = P̂τ,φ eiωt + P̂†τ,φ e

−iωt , (7)

where the operator P̂τ,φ and its Hermitian conjugate P̂†τ,φ are time-independent, the effective Hamiltonian representing

our dressed-state system becomes 8

Ĥ(e)
eff (k, t| τ, φ) = Ĥφτ (k) +

1

~ω

[
P̂ τ,φ, P̂†τ,φ

]
−

+
1

2(~ω)2

{[[
P̂ τ,φ, Ĥφτ (k)

]
−
, P̂†τ,φ

]
−

+ h.c.

}
+ · · · , (8)

where [Â, B̂]− ≡ ÂB̂ − B̂Â.

For most situations, it is sufficient to retain the first two terms of such a power series in Eq. (8). In our case,

combining with Eqs. (6) and (7) we obtain explicitly the time-independent perturbation operator P̂ τ,φ as

P̂ τ,φ = −c0
2

 0 (τ − β) cosφ 0
(τ + β) cosφ 0 (τ − β) sinφ

0 (τ + β) sinφ 0

 . (9)

This matrix is real, but clearly not Hermitian, as it always occurs for all types of circularly polarized radiation,
including the general elliptical polarization with 0 ≤ β < 1.

After evaluating the commutation relation in Eq. (8), we arrive at the following expression for the effective pertur-
bation Hamiltonian up to the order of O(λ2

0)

Ĥ(e)
eff (k| τ, φ) = Ĥφτ (k)− τβλ0c0

 cos2 φ 0 0
0 − cos(2φ) 0
0 0 − sin2 φ

− τ

4
~vFλ2

0

 0 h12(k| τ, φ) 0
h∗12(k| τ, φ) 0 h23(k| τ, φ)

0 h∗23(k| τ, φ) 0

 ,

(10)
where h12(k| τ, φ) = cosφ [1 + 3 cos(2φ)] (β2kx − iτky) and h23(k| τ, φ) = sinφ [1− 3 cos(2φ)] (β2kx − iτky).

It is important to point out that the chirality kτ± ≡ τkx± iky kept in the third term of Eq. (10) for β = 1 is the same

as that in Ĥφτ (k) given by Eq. (1). It is also interesting to check the second term of Eq. (10), which is independent of

k and determines the dressed-state bandedges ε
(e)
d (k = 0| τ, φ) at the K point, i.e.,

ε
(e)
d (k = 0| τ, φ) = τβ

c20
~ω
×


− cos2 φ

+ cos(2φ)

+ sin2 φ

= τβλ0c0 ×


−1/

(
1 + α2

)(
1− α2

)
/
(
1 + α2

)
,

α2/
(
1 + α2

) (11)

as well as the energy gap δ0(φ) between the valence and conduction bands

δ0(φ) =
β

2
λ0c0 ×

{
cos(2φ) + cos2 φ , for 0 ≤ φ < φ0

1 , for φ0 < φ ≤ π/4 ,
(12)

where φ0 = 0.615 rad w 0.196π or α0 = 1/
√

2 and the subscript “d” stands for dressed states. Hereafter, we will omit
the λ0 dependence in other expressions for simplicity.

The simple but important bandedge and bandgap results in Eqs. (11) and (12) can be seen in Fig. 2. Each energy is
given in units of ε0 = τβ c20/~ω, i.e., its actual value depends on the valley index τ , the ratio of the ellipse polarization
axes β, the electron-light interaction strength c0, and the dimensionless coupling constant λ0. The “flat” band is
actually not flat anymore, and all three bands are now distorted and intersect with each other. Even for β = 1, the
energy bandgap changes from λ0c0 for graphene to λ0c0/2 for a dice lattice. It is intriguing to find that the bandgap
remains as a constant in the region of φ > φ0 or α > α0. The bandgap of a dice lattice is the smallest and exactly half
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FIG. 3: Numerically calculated dressed-state energy dispersions ε
(e)
d (k| τ, φ) based on Eq. (10) under elliptically polarized and

off-resonant irradiation with β = 0.8 as functions of kx for ky = 0. All results are obtained in the vicinity of the K valley with
τ = 1. Each plot involves dispersions for three bands, i.e., conduction (γ = 1, blue), valence (γ = −1, green) and “flat” (γ = 0,
red) bands. Here, panel (a) presents results for a dice lattice (φ = π/4) under circularly polarized irradiation (β = 1) with
λ0 = 0.2 (solid), 0.4 (long-dashed) and 0.6 (short-dashed). Plots (c), (e) on the left correspond to Berry phase φ = 0.196π
with λ0 = 0.25 in (c) and λ0 = 0.5 in (e), having closed bandgap between the conduction and “flat” bands. Panels (b), (d), (f)
on the right are for φ = π/6 at λ0 = 0.2 (b), 0.4 (d) and 0.6 (f). Here, the unit for energy bands is ε0.

of that for graphene (the largest). The α-dependence of the bandedge locations, presented in Fig. 2(b) for comparison,
is similar but not exactly identical to the corresponding dependence on φ. Although analytical solutions for band
dispersions at finite k could be obtained from a third-power algebraic equation, the expressions are too lengthy to be
shown and analyzed.

Our numerical results for the energy dispersions ε
(e)
d (k| τ, φ) for the elliptically polarized light are presented in

Fig. 3. Besides the simplest case with φ = π/4, which was discussed above and presented in Fig. 3(a), we examine

the remaining ones and find that the initially flat band E
(0)
0 (k) ≡ 0 acquires a k-dependent non-zero curvature and

can sit either above or below the zero line depending on the selection of Berry phase φ as well as the valley index
τ (not shown). The valence and conduction bandedges are shifted individually in energies, and therefore we see no
mirror symmetry with respect to the zero line between valence and conduction bands, as was noticed in Ref. [2].
However, a complete inversion symmetry for k → −k is still kept, which implies that only even powers of wave-

vector components kx and ky will appear in the eigenvalue equation associated with the Hamiltonian Ĥ(e)
eff (k, t| τ, φ)

in Eq. (10). Apparently, the effect from the imposed radiation on the flat band and its distortion around the zero line
become most visible near k = 0. We would like to emphasize that such distortion behavior and β dependence in these
dispersions result from the anisotropy of incident light and are absent for circularly polarized radiation with β = 1.
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FIG. 4: Numerically calculated valley-dependent dressed-state quasienergies ε
(e)
d (k| τ, φ) based on Eq. (10) under an elliptically

polarized dressing field with β = 0.8. We plot ε
(e)
d (k| τ, φ) as functions of kx for ky = 0. Panel (a) presents dispersions for

φ = 0.196π, while panel (b) shows plots for φ = π/6. In each plot, λ0 = 0.25, where solid curves correspond to K valley with
τ = 1, whereas dashed ones to K′ with τ = −1. Here, the “flat” band touches either the conduction or the valence band in
panel (a) for τ = 1 and τ = −1, respectively, and the unit for energy bands is ε0.

Actually, not just the band edges and gaps from Eqs. (11) and (12), but the whole k dispersions of energy bands in
Fig. 4 demonstrate their direct and substantial dependence on valley index τ = ±1. Here, the location of each energy
band varies near the K and K ′ valleys, and this noticeable difference is certainly not limited to just a sign switching,
in contrast to all situations studied before. As φ = 0.196π or α = 1/

√
2, either upper or lower bandgap is closed,

depending on τ value. Consequently, we expect non-equivalent density of electronic states in each low-energy (near
K or K ′) region. The contributions from these τ -dependent density of electronic states will not be equal or simply
opposite to each other, leading directly to valley-dependent optical and transport properties.

The ε
(e)
d (k| τ, φ) dispersions also display a striking resemblance to silicene, in which the electronic states with a given

spin σ = ±1 present two inequivalent band gaps ∆τ,σ = |∆SO−στ∆z|, in which ∆SO is a constant intrinsic spin-orbit
gap and ∆z can be tuned continuously by an external perpendicular electrostatic field. Therefore, by varying the field
strength, one of the gaps between the conduction and valence bands can be either opened or closed, and then such a
buckled honeycomb lattice would behave like a topological insulator, valley-spin polarized metal or just a conventional
band insulator. Here, the lower energy gap |∆SO −∆z|, which defines a physical band gap between the valence and
conduction bands, changes into the upper one ∆SO + ∆z as either the valley index τ or the spin index σ switches its
sign. 49,50 This unique dependence gives rise to specific transport properties 51 and many valleytronics applications 52,
and more importantly it could be realized by α-T3 lattice under elliptically polarized irradiation.

As a comparison, for graphene with E
(0)
γ (|k|) = γ~vF |k| and interacting with circularly polarized radiation, we find

the dispersion relation for off-resonant dressed states can be expressed as

εγd(k) = γ

√(
c20
~ω

)2

+

{
~vF k

[
1− 2

( c0
~ω

)2
]}2

, (13)

which could be derived from the limit of vanishing anisotropy for multilayer black phosphorus 17 or by setting all band
gaps to zero for transition metal dichalcogenides 16. The explicit expression in Eq. (13) is a result of expansion up to
the order of O[1/(~ω)2]. On the other hand, an exact solution predicts 15 that the energy band gap is given by

2δd =
√

(~ω)2 + 4c20 − ~ω w
2c20
~ω

[
1−

( c0
~ω

)2

+ · · ·
]
. (14)

Consequently, from Eq. (12) we know the field-induced energy bandgap in Eq. (14) for graphene is exactly twice as
large as that of a dice lattice (taking β = 1).

B. Symmetric band structure and wave function of a dice lattice

In this part, we would like to address spin-1 dice lattices with α = 1 or φ = π/4 as a special case, in which all
the equations are greatly simplified and analytical expressions can be obtained to gain a deeper insight into dressed-
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electron dynamics. It is also interesting to notice that the effect of irradiation becomes the smallest in this case for
a given dressing-field intensity, as we see by comparing Fig. 3(a) with Figs. 3(b), (d), (f). Moreover, this case has its
own significance in device applications since T3 spin-1 materials could be possibly synthesized now.

In this case, the non-interacting Hamiltonian (1) for a dice lattice takes the form

Ĥdτ (k| τ) =
~vF√

2

 0 k−τ 0
k+
τ 0 k−τ
0 k+

τ 0

 =
∑
α=±

k ατ Σ̂(1)
α , (15)

where Σ̂
(1)
±1 = Σ̂

(1)
x ± iΣ̂(1)

y are defined based on spin-1 matrices in Appendix A. By expanding the Hamiltonian in

Eq. (15) up to the order of O[1/(~ω)2], the effective Hamiltonian in Eq. (10) becomes

Ĥ(e)
eff (k| τ) w

 −(τβ/4)λ0c0 G(k| τ) 0
0 0 G(k| τ)
0 0 (τβ/4)λ0c0

 + h. c. , (16)

where

G(k| τ) =
~vF√

2

[
τkx

(
1 +

β2λ2
0

4

)
− iky

(
1 +

λ2
0

4

)]
. (17)

Here, the significant simplification of Eq. (10) has been made possible mainly due to the fact that h12(k| τ) =

h23(k| τ) = 1/
√

2 (β2kx − iτky) at φ = π/4.

For the effective Hamiltonian in Eq. (16), the low-energy band structure is symmetric with respect to electrons and
holes, given by one flat and two dispersive bands

ε
(e)
d (k) = 0 and ε

(e)
d (k) = ±

√
S(k) , where (18)

S(k) =

(
βλ0c0

4

)2

+ (~vF )
2

{
k2 +

λ2
0

2

[
(βkx)2

(
1 +

β2λ2
0

8

)
+ k2

y

(
1 +

λ2
0

8

)]}
,

which becomes independent of valley index τ . Only in this case do the middle band stay flat for all wave-vectors k,
while the dispersive valence and conduction bands remain symmetric to γ = ±1 at the same time. From Eq. (18) we
know the opening of a finite bandgap in this case is the same as δ0 = βλ0c0/2 given by Eq. (12) at φ = π/4. It is
clear that the anisotropy of the energy bands comes solely from the elliptical polarization of the dressing field and
disappears for β = 1. From now on, we will focus only on the latter case for circularly polarized radiation. In this way,
the energy index γ = ±1 still labels a Dirac cone with a renormalized isotropic Fermi velocity v̄F = vF

(
1 + λ2

0/4
)
.

Now we can find the wave functions for disersions (18). The solutions, pertaining to the valence and conduction
bands γ = ±1 are

Ψ
(E)
d (γ, τ |λ0,k) =

1√
N (γ)

 τ C (1) e−iτθk

C (2)

τ (~vF k)2 e+iτθk

 , (19)

where

C (1)(γ, τ |λ0, k) = (~vF k)2 + 2
[
∆2

(λ) − 2c0λ0 γ τ
√

(~vF k)2 + ∆2
(λ)

]
, (20)

C (2)(γ, τ |λ0, k) =
√

2 γ (~vF k)
[√

(~vF k)2 + ∆2
(λ) − γ τ ∆ (λ)

]
,

N (γ)(τ |λ0 � 1, k) w 2
{

2 (~vF k)4 − 5γ τ c0λ0(~vF k)3 + 9 [c0λ0 (~vF k)]
2
}
.

Parameter ∆ (λ) = 2λ0 c0/(4 + λ2
0) is not equivalent to the actual energy bandgap 2∆0(β = 1, λ0) = λ0c0.
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For the flat band, we obtain

Ψ
(E)
d (γ = 0, τ |λ0,k) =

1√
N (0)


ke−iτθk

2
√

2λ0 (4− λ2
0) c0/(~vF )

ke+iτθk

 , (21)

where

N (0)(λ0 � 1, k) w 2

[
k2 +

(
8λ0

c0
~vF

)2
]

+ ... . (22)

Here, the middle component of wavefunction (21) is non-zero only in the presence of circularly polarized irradiation.
One can easily verify that the wave functions (19) and (21) in the limit of vanishing electron-light interaction λ0 → 0
agree with the results in Eqs. (2) and (3).

Electronic states with a finite energy gap between the valence, “flat” and conduction bands are critical for electron
confinement, gate control, as well as the investigation of excitons in our considered materials. The latter notion
becomes extremely important, since pursuant to our results, one should now be able to construct an excitonic state and
analyze their collective properties, such as Bose-Einstein condensation, 53 depending on various lattice and electron-
light interaction parameters. In fact, excitons simply do not exist without a band gap, and we believe that our work
indeed, for the first time, paves a new route to pursue this type of research in α-T3.

C. Linear polarization of the incoming radiation

We now turn our attention to an alternative situation in which linearly polarized radiation will be incorporated
into the α-T3 model Hamiltonian. Being essentially anisotropic, such optical fields are known to transform the Dirac
cone into an asymmetric elliptical cone without creating an energy gap between the valence and conduction bands. 34

Whereas for anisotropic phosphorene the direction of the linear polarization is important, 17 for the isotropic energy
dispersions in α-T3 lattices we can assume the field polarization lies along the x axis without loss of any generality,
yielding

A(L)(t) =

[
A

(L)
x (t)

0

]
=
E0
ω

[
cos(ωt)

0

]
. (23)

Assuming a linear k-dependence to the field-free Hamiltonian Ĥφτ (k), we find the total Hamiltonian Ĥ(L)(k, t| τ, φ)
for dressed particles only acquires an additional k-independent term, given by

Ĥφτ (k) =⇒ Ĥ(L)(k, t| τ, φ) = Ĥφτ (k) + Ĥ(L)
A (t| τ, φ) , (24)

where

Ĥ(L)
A (t| τ, φ) = −τc0 cos(ωt)

 0 cosφ 0
cosφ 0 sinφ

0 sinφ 0

 . (25)

Here, the coupling constant c0 = eE0vF /ω is the same as that in the case of elliptically or circularly polarized light.
However, each element of the matrix in Eq. (25) has the identical periodic time dependence in comparison with a
circularly polarized radiation field.

The case of linearly polarized dressing field is distinguished because the time-dependent Schrődinger equation at K
(or K ′) point for k = 0 could be solved analytically. This implies that our result regarding the absence of an energy
bandgap is precise and, more importantly, wave functions with explicit time dependence could be obtained in contrast
to the previous case for elliptically polarized light.

The detailed derivation of the quasienergy dispersions and the wave function for the linearly polarized dressing field
is provided in Appendix B. Specifically, the τ -independent dressed-state quasiparticle energy dispersions are found as
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FIG. 5: (Color online) Angular dependence of the valley-independent dressed-state energy dispersions ε
(L)
d,γ (k|φ) from Eq. (26) for

the case of linearly polarized radiation applied to an α-T3 lattice, as schematically shown in panel (a) with θk = arctan (ky/kx).
Plot (b) demonstrates how the angular function A(θk |φ), given by Eq. (27), depends on hopping-scale parameter α at various
angles θk, where curves for θk = π/6 (red), π/4 (blue) and π/3 (green) are displayed for λ0 = 0.5 in addition to the black line

A(θk |φ) ≡ 1 for θk = 0. The two lower polar plots (c) and (d) show θk dependence in Eq. (26) for fixed ε
(L)
d,γ (k|φ)/EF ≡ 0.5,

where λ0 = 0, 0.2, 0.4, 0.6 are selected for black, red, blue, green curves.

ε
(L)
d,γ=0(k|φ) = 0 and

ε
(L)
d,γ=±1(k|φ) = ±~vF k

√
A(θk |φ) (26)

with an angular function

A(θ |φ) = cos2 θ +
{

[J0(2λ0) cos(2φ)]
2

+ [J0(λ0) sin(2φ)]
2
}

sin2 θ (27)

to highlight field-induced anisotropy. The dispersion relations for graphene, obtained in Ref. [34], are easily recovered
by setting φ to zero. In the opposite limit for a dice lattice with φ = π/4, only the second term J0(λ0) sin(2φ) in
Eq. (27) is kept, so that the effect of electron-field interaction becomes the weakest with respect to all φ values.

Since the off-resonant radiation with λ0 = c0/~ω � 1 is considered, the zero-order Bessel function of the first kind
could be expanded up to the order of O(λ2

0), and therefore the dispersions of conduction and valence bands in Eq. (26)
are further approximated as

ε
(L)
d,γ=±1(k|φ) w ±~vF k

{
1− λ2

0

8
[5 + 3 cos(4φ)] sin2 θk

}
. (28)

Even for an infinitesimal coupling constant λ0, the anisotropy, and therefore the difference in Fermi velocities along
the kx- and ky-directions, becomes the largest for graphene (φ = 0) and the smallest for a dice lattice (φ = π/4).

Most importantly, we find the flat band ε
(L)
d,γ=0(k|φ) = 0 is not affected under linearly polarized irradiation for

all wave-vectors k. The valence and conduction bands, on the other hand, display anisotropy with respect to k.
As a result, the standard right-circular Dirac cone is transformed into an elliptic cone with its major axis parallel
to the direction of incident light-field polarization. We also notice that the complete electron-hole symmetry of the
upper and lower cones is preserved and there exists no energy gap between the valence and conduction bands. These
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features are quite similar to corresponding results of graphene. 34 However, an important new feature comes from

the φ-dependence in k dispersion of ε
(L)
d,γ=±1(k|φ). As demonstrated in Fig. 4, the significance of induced anisotropy

depends on the chosen parameter φ.

After a lengthy calculation as presented in Appendix B, the two wave functions, corresponding to the valence and
conduction band energies with γ = ±1 are as follows

Ψγ=±1
d (k, t| τ) = e∓ivF kf1(θk)t f1(θk) + cos θk

4f1(θk)

e±izλ(t)

 τ

±
√

2
τ

 (29)

−2iJ0(λ0) sin θk
f1(θk) + cos θk

 1
0
−1

− ( J0(λ0) sin θk
f1(θk) + cos θk

)2
 τ

∓
√

2
τ

 e∓izλ(t)

 ,

where

f1(θk) = f(θk|φ = π/4) =

√
cos2 θk + sin2 θk J 2

0 (λ0) (30)

and zλ(t) = λ0 sin(ωt). The wave function in Eq. (29) at t = 0 can be further simplified as

Ψγ=±1
d (λ0,k) =

1

2

 τe−iΦ1(θk| τ)

γ
√

2
τeiΦ1(θk| τ)

 , (31)

Φ1(θk| τ) = 2 arctan

{
τ
J0(λ0) sin θk
f1(θk) + cos θk

}
w τ

{
θk −

λ2
0

8
sin2(2θk) + · · ·

}
.

The two components of the wave function in Eq. (31) are identical to each other, except for a different phase, similar
to that for non-interacting dice lattice in Eq. (2) with φ = π/4. Here, the renormalized phase Φ1(θk| τ) contains the
leading-order correction proportional to the intensity of imposed radiation.

The remaining wave function for the flat band with γ = 0 is given by

Ψγ=0
d (k, t| τ) =

1√
2f1(θk)

− iτ2 sin θk J0(λ0)
∑
α=±1

eiαzλ(t)

 1√
2ατ
1

+ cos θk

 1
0
−1

 . (32)

Here, the wave function in Eq. (32) also consists of two nonzero components of equal amplitude but with a different
phase Φ2(θk| τ) in comparison with Eq. (3). Similarly, the wave function in Eq. (32) at t = 0 can be simply written as

Ψγ=0
d (k| τ) =

1√
2

 e−iΦ2(θk| τ)

0
−eiΦ2(θk| τ)

 , (33)

Φ2(θk| τ) = arctan {τJ0(λ0) tan θk} w τ

{
θk −

λ2
0

2
sin(2θk) + · · ·

}
.

It is interesting to compare our current results for a dice lattice with the corresponding wave function for graphene in
Ref. [34]. The Dirac electron in graphene, interacting with a linearly polarized and off-resonant dressing field acquires
the following energy dispersions

εγ=±1
d (k) = γ~vF kf0(θk) , (34)

f0(θk) =

√
cos2 θk + J 2

0 (2λ0) sin2 θk ,
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where the anisotropy factor f0(θk) for graphene is equivalent to our derived expression in Eq. (B22) with φ = 0. This
is an opposite limit for the angular dependence in Eq. (B22) compared to the dice lattice with φ = π/4 and given by
Eq. (B24). In addition, the two corresponding wave functions for graphene at t = 0 take the form

Ψγ=±1
d (k) =

1√
2

[
1

γ eiΦ0(θk)

]
, (35)

Φ0(θk) = 2 arctan

{
J0(λ0) sin θk

cos θk + f0(θk)

}
w θk −

λ2
0

2
sin(2θk) + · · · .

As expected for a distorted anisotropic Dirac cone, its wave function in Eq. (35) possesses an equal amplitude for two
components, while their renormalized phase factor Φ0(θk) depends on the interaction coefficient λ0.

For the most general case of an α-T3 lattice, its wave function is obtained as

Ψγ=±1
d (k| τ, φ) =

1√
N1(k| τ, φ)

e∓ivF kf(θk|φ)t (36)

×

r11(k|φ)√
2

 τ cosφ
±1

τ sinφ

 e±izλ(t) + r12(k| τ, φ)

 sinφ
0

− cosφ

+
r13(k| τ, φ)√

2

 τ cosφ
∓1

τ sinφ

 e∓izλ(t)

 ,

where the coefficients r11(k|φ), r12(k| τ, φ), r13(k| τ, φ) and the normalization function N1(k| τ, φ) are defined in
Appendix B.

For the flat band with γ = 0, the wave function takes the form

Ψγ=0
d (k| τ, φ) =

1√
2N0(k|φ)

r01(k|φ) τ√
2

∑
α=±1

eiαzλ(t)

 cosφ
ατ

sinφ

+ r02(k|φ)

 sinφ
0

− cosφ

 , (37)

where

r01(k|φ) = −i sin(2φ) sin θk J0(λ0) , (38)

r02(k|φ) =
√

2 [cos θk + iτ cos(2φ) sin θk J0(2λ0)] .

The components of the wave function in Eq. (37) are not equal to each other since this condition does not hold true
even in the absence of irradiation, while all the previously obtained wave functions have components which differ only
by a phase factor. This becomes explicit once the components of this wave function are reformulated as

Ψ0
d(λ0,k) =

1√
N 0

(φ)(λ0, θk)


sinφ

[
cos θk − iτ sin θk X (φ)

θ (λ0)
]

0

− cosφ
[
cos θk + iτ sin θk

(
2J0(λ0)− X (φ)

θ (λ0)
) ]
 , (39)

X (φ)
θ (λ0) = 2 cos2 φJ0(λ0)− cos(2φ)J0(2λ0) w 1− λ2

0

4
[1− 3 cos(2φ)] ,

2J0(λ0)− X (φ)
θ (λ0) w 1− λ2

0

4
[1 + 3 cos(2φ)] ,

N 0
(φ)(λ0, θk) = cos2 θk + sin2 θk

{[
sinφ X (φ)

θ (λ0)
]2

+
[
cosφ

{
2J0(λ0)− X (φ)

θ (λ0)
}]2}

w

w 1− λ2
0

4
sin2 θk [5 + 3 cos(4φ)] + ...

Here, for the most straightforward case of a flat band, we can explicitly demonstrate how the wave function is
changed in the presence of linearly polarized irradiation, yielding
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Ψγ=0
d (λ0,k) w

1√
N 0

(φ)(λ0, θk)


 sinφ e−iτθk

0
− cosφ eiτθk

+ iτ
λ2

0

4
sin θk

 sinφ {1− 3 cos(2φ)}
0

cosφ {1 + 3 cos(2φ)}

+ ...

 , (40)

N 0
(φ)(λ0, θk) w 1− λ2

0

4
sin2 θk {5 + 3 cos(4φ)}+ ... .

Obviously, the components of this wave function are not equal to each other, in contrast to all previously considered
cases involving a linearly polarized field. The way they are modified in the presence of electron-photon interaction is
not correlated with their initial values. The normalization factors for all obtained wave functions in both Eqs. (29),
(32) and in Eqs. (36), (37) do not depend on time. It is quite simple to show that in the case of zero electron-light
interaction λ0 → 0, the wave function in Eq. (36) is equivalent to that of non-irradiate α-T3, given by Eq. (2).
However, one should also keep in mind that the results for the wave function components are determined only to a
finite complex phase factor.

III. FIELD-INDUCED MODIFICATION OF THE BERRY PHASES, CONNECTIONS AND
CURVATURES

As an application of our derived photon-dressed electronic states in Sec. II, we explore how the Berry phase of
an α-T3 or a dice lattice is affected in the presence of an off-resonance dressing field with different polarizations.
Specifically, we are interested in studying its dependence on geometry α and coupling λ0 parameters.

We are also going to calculate the Berry connections and curvatures in vareious α-T3 materials and demonstrate
that for the case of linearly polarized field, the Chern number always remains zero, and a topological phase transition
between a semimetal and Haldane insulator does not take place.

The Berry phase is defined as a geometrical phase difference, which a purely quantum system receives over a complete
cycle of adiabatic, or isoenergetic evolution. 54–56 All physically meaningful parameters, except for a quantum phase,
are expected to return to their initial values over such a loop-like transformation. The Berry phase is logically
connected to a jump of the Aharonov and Bohm phase for a charged particle moving along an arbitrary closed path,
which partially includes either electrostatic or magnetic field. Such a topological phase can strongly affect transport
properties and lead to a finite conductivity at the band crossing even if the density of propagating waves at this point
vanishes. 57

As a first step to this study, we are going to carry out a detailed investigation of the time-independent eigenstates,
corresponding to the distorted Dirac cone due to strong interaction of electrons with an optical field. This could
lead to either opening a band gap under an elliptically or circularly polarized field or creating an anisotropy in the
dispersion relations due to the presence of linearly polarized light. While in the former case the energy dispersion in
Eq. (18) are obtained by using a time-independent effective perturbation Hamiltonian in Eq. (10), the wave functions
for the latter case involving linearly polarized light acquire a complete time dependence, and therefore need to be
clarified further. Such a picture could be regarded as a simplified model with an additional Σ̂z Hamiltonian term
for graphene under circularly polarized light 17, which provides some insights to our considered phenomena including
irradiated graphene. 34 We will suppress the time dependence in Eqs. (36) and (37) by using their expressions at t = 0
for all further computations. This allows us to address a wider class of field-induced electronic states, not necessarily
equivalent to dressed states under conditions discussed above.

In most cases, the time dependence in the obtained eigenstates, such as Eqs. (36) and (37), takes an exponential
form exp[±iλ0 sin(ωt)] in some of their components. For our case with an off-resonant field λ0 � 1, this dependence
would produce noticeable modification to these wave function components. Surprisingly, the normalization factors
N0,1(k) for all types of α-T3 materials under linearly polarized irradiation, including the dice lattice limit, do not
depend on time. Another direct time dependence is in the initial phase factor exp [∓ivF ktf(θk)] of Eqs. (36) and (29),
which does not affect most of its physical properties but leads to a linear increase of its Berry phase ∝ vF ktf(θk).

The described situation of the time dependence above is strikingly similar to the electrostatic Aharonov-Bohm
interference effect. 58 The wave function of a conventional Schrődinger particle of energy E has a phase factor exp[iφ]
with φ = −Et/~. If such a particle is confined in the region with a constant electrostatic potential V0, and then a
zero electrostatic field, this potential produces an additional phase φ(t)−φ(t = 0) = −eV0t/~ to its eigenstate, which
can influence actual properties of the particle and the outcome of a double-slit interference experiment.

As is well known, we can write down a general expression for Berry phase ΦB(γ,k| τ, φ) as 55,56
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FIG. 6: (Color online) Numerically calculated Berry phase Φ
(e)
B (γ,k| τ, φ) from Eq. (41) for irradiated α-T3 lattices at τ = 1

valley. Panel (a) corresponds to circularly polarized light (labeled by c), while panels (b)-(f) correspond to linearly polarized

light (labeled by L). Panel (a) presents φ
(c)
B (γ, |k| = k0|φ) having β = 1 with φ = π/4 for γ = 1 (three positive curves), γ = 0

(middle red curve), γ = −1 (three negative curves), where k0/kF = 0.5, 0.6, 0.7 are selected for green, black, blue curves.

Berry phases Φ
(L)
B (γ,k|φ) having β = γ = 0 in plot (c) with k0/kF ≡ 0.5 and plot (e) with φ ≡ π/4 on the left display λ0

dependence for φ = 30o (green), 35o (blue), 40o (black), 45o (red) in panel (c) and for k0/kF = 0.5 (green), k0/kF = 0.6 (black),
k0/kF = 0.7 (blue) in panel (e). All the right panels (b), (d), (f) are for β = 0 and γ = 1, where k0/kF = 0.5 is chosen in (b) to
show λ0 dependence for φ = 25o (green), 35o (blue), 40o (black), 45o (red); k0/kF = 0.5 is chosen in (d) to show α dependence
for λ0 = 0.1 (green), 0.2 (blue), 0.3 (black), 0.4 (red); and φ = π/4 is chosen in (f) to show λ0 dependence for k0/kF = 0.5
(green), 0.55 (blue), 0.6 (black), 0.65 (red).

ΦB(γ,k| τ, φ) = −i
∮
C
dk · [Ψγ

d(k| τ, φ)]
†∇kΨγ

d(k| τ, φ) , (41)

where C represents an arbitrary closed path within a lattice plane. For the case of non-irradiated wave functions of
an α-T3 lattice presented in Eqs. (2) and (3), we immediately find the results as ΦB(γ = ±1,k| τ, φ) = τπ cos(2φ)
for the conduction and valence bands, and ΦB(γ = 0,k| τ, φ) = 2πτ cos(2φ) for the flat band at two valleys. These
conclusions do not depend on the choice of a closed curve C, which in general cannot be true since the wave function
components are k dependent. We also remark that the Berry phase is gauge invariant and its value is unique up to
multiples of ±2π.

The details on how to evaluate the integral with respect to k in Eq. (41) using polar coordinates are provided in
Appendix C for various types of incoming light polarization. In the case of circularly polarized light, components of
the wave function are only k-dependent except for e±iθk factors, which are similar to those for the non-irradiated
eigenstates in Eqs. (2) and (3). Therefore, the path of such isoenergetic linear integration is a circle of radius k0. As
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a result, the Berry phase for a dice lattice irradiated by circularly polarized light takes the analytical expression as

Φ
(c)
B (γ, k0| τ = 1) =

C2
1(γ, k0)− 1

N (γ, k0)

2π∫
0

dθk w π
c0

~vF k(0)
λ0

(
γ +

c0
~vF k0

λ0

)
. (42)

These Berry phases are not symmetric, but opposite for electron and hole states except for the first-order term in

the λ0 expansion. However, this expression is symmetric for valleys, i.e., Φ
(c)
B (γ, k0| τ = −1) = −Φ

(c)
B (γ, k0| τ = 1),

as seen in Fig. 6(a), which is in analogy with the dice lattice in the absence of irradiation. 56 Even for a dice lattice
which has a zero Berry phase, a finite Berry phase can still be established by an elliptically or a circularly polarized
dressing field which opens an energy gap for the dice lattice. Although the dispersions in a dice lattice are symmetric,
the wave function components, and therefore the Berry phases do not share this property. The corresponding phase
for the flat band remains zero with respect to valley index and intensity of incoming radiation.

Finally, we have numerically calculated the Berry phase for the α-T3 lattice with an arbitrary φ in the presence of
linearly polarized radiation. Our numerical results are presented in Fig. 6. Panels (c) and (e) represent the results for
the flat band, while the three right plots (b), (d) and (f) are for the conduction band. In both cases, the phase is zero
for a dice lattice, disregarding the light intensity or the parameters k0 of isoenergetic elliptic integral path so that all
the curves in panel (d) approach zero in the limit of α→ 1, which confirms our analytical result in Appendix C for a
dice lattice under a linearly polarized dressing field. The results for the flat band demonstrate a stronger dependence
on the coupling constant, as well as on the parameters k0. As we see from Fig. 6(d), the λ0 dependence of the Berry
phase becomes non-monotonic for various α values. Such unique dependence has not been reported for the case of
circularly polarized irradiation.

Recently, topological effects in connection with various optical phenomena have become a crucial research subject
for photonic crystals, quasicrystals and metamaterials. In Ref. [59], the authors discussed creating interface supported
new states of light based on topologies in wave-vector space and unidirectional waveguides that allow unimpeded
propagation of light around large imperfections in a photonic crystal. An investigation on longitudinally-driven
photonic lattices in connection with Lieb and kagome lattices, based on a tight-binding model, has been reported in
Ref. [60]. A topological phase transition in α-T3 materials under a circularly polarized irradiation was also addressed
in a recent paper. 61 Consequently, in the present calculation, we will focus solely on a linear polarization for incoming
light.

The Berry connection vector field Aγ
τ,φ(k, λ0) and the Berry curvature Ωγ

τ,φ(k, λ0) are defined as

Aγ
τ,φ(k, λ0) ≡ 〈Ψγ

d(k, λ0| τ, φ)| i∇k |Ψγ
d(k, λ0| τ, φ)〉 , (43)

Ωγ
τ,φ(k, λ0) ≡∇k ×Aγ

τ,φ(k, λ0) .

In the absence of incident light, the Berry connections for the cone bands with γ = ±1 are Aγ=±1
τ,φ (k, λ0) =

+(τ/2) cos(2φ)∇kθk and Aγ=0
τ,φ (k, λ0) = −2Aγ=±1

τ,φ (k, λ0) for the flat band. Here, the ×2 difference comes from
the normalization of different wave functions.

In Appendix C, we show that without external irradiation 52

Ωγ=±1
τ,φ (k, λ0 = 0) = τπ cos(2φ) δ(k) , (44)

Ωγ=0
τ,φ (k, λ0 = 0) = −2τπ cos(2φ) δ(k) .

The two-dimensional delta function δ(k) of a vector k has a dimension of 1/k2 and is expressed as δ(k) =
δ(kx) δ(ky) = 1/(2πk) δ(k) if there is no angular dependence. Therefore, the Berry connection for a dice lattice
will always remain zero even in the presence of a linearly polarized dressing field.

Now let us address a general case for α-T3 lattices with an arbitrary α value within the range of 0 < α < 1. Here,
however, the absolute values of non-zero components of a wave function are no longer equal to each other, not just

different phase factors. In this general case, the wave function acquires a form Ψγ
d(λ0,k) = {c γ1 , c

γ
2 , c

γ
3 }

T
with its

three components c γi ≡ c
γ
i (τ, φ | θk, λ0) for i = 1, 2, 3.

Therefore, the Berry field for γ = 0 is calculated as
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FIG. 7: (Color online) Angular factor F γ=0(τ, φ | θk, λ0) from Eq. (45) for the flat band with γ = 0 at the τ = 1 valley under
a finite electron-light interaction 0 < λ0 � 1. Panel (a) shows the dependence of F γ=0 on the geometry phase φ at θk = π/8,
where each curve represents different λ0 values. Panel (b) demonstrates its dependence on λ0 at θk = π/8 for various phases
φ. Contour plots (c) and (d) display F γ=0 as a function of both angle θk and phase φ, where λ0 = 0.05 and λ0 = 0.25 are
assumed, respectively, in (c) and (d).

Aγ=0
τ,φ (k, λ0) =

1

k
F γ=0(τ, φ | θk, λ0) êθ ,

F γ=0(τ, φ | θk, λ0) =

3∑
i=1

(
c γ=0
i

)∗ ∂c γ=0
i

dθk
. (45)

For this case, the derivation is greatly simplified due to the fact that each component and the normalization factor of
the states (including those for γ = ±1) only depend on the angle θk. The next step is the derivative of Aγ=0

τ,φ (k, λ0)
with respect to k, which leads to an additional delta function, while the k-dependent term is kept unchanged.

Finally, the Berry curvature is found to be

Ωγ=0
τ,φ (k, λ0) =

1

k

∂

∂k

[
k(Aγ=0

−,φ )θ

]
êz =

δ(k)

k
F γ=0(τ, φ | θk, λ0) êz . (46)

Similar results can be obtained for γ = ±1 wave functions. Since there is an angular dependence and F γ(τ, φ | θk, λ0)
becomes anisotropic in Eq. (45), the identity δ(k)/k = 2πδ(k) can not be applied to F γ(τ, φ | θk, λ0) anymore.

We see from Figs. 7 and 8 that the obtained angular factor is only slightly modified by the presence of a dressing
field because we only consider the weak-coupling case with λ0 � 1. This agrees with the assumption that the field
frequency lies within the off-resonance region. In addition, the anisotropic dependence of F on θk, as well as in other
observable quantities, appears only under an irradiation since its isotropic dependence in the λ0 → 0 limit can be
verified directly from Eq. (44). From panels (a) and (b) of both figures, we can further verify F γ = 0 for dice lattice
(φ = π/4) even with an electron-light interaction. The results for γ = −1 are not shown here since they are nearly
the same as those for γ = 1 in Fig. 8. The φ dependence becomes visible only for φ close to 0 or π/4 and small θk
with an enhanced electron-light coupling in Figs. 7(d) and 8(d). For λ0 → 0, on the other hand, the results for γ = ±1
become half of that for γ = 0 with an opposite sign, as predicted by Eq. (44).

For all three bands and allowable intensities of an imposed irradiation, the most important observed feature is that
the Berry curvature always retains the valley symmetry, i.e., Ωγ

τ,φ(k, λ0) is proportional to τ , just as we have found

in Eq. (44) for a non-irradiated α-T3. In contrast to the previously studied case, the current work clearly indicates
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FIG. 8: (Color online) Calculated F γ=1(τ, φ | θk, λ0) for τ = 1 under a finite electron-light interaction, where all the parameters,
panels and curves are presented in the same way as in Fig. 7.

that a linearly polarized dressing field can not change the Chern number of α-T3 materials due to its conserved valley
symmetry. This conclusion can be compared with bilayer graphene as discussed in Ref. [62]. However, our results for
both Berry connection and curvature are very useful for exploring the electronic properties of crystalline solids. 55 We
also need to point out that in the case of linearly polarized irradiation there is no breaking of time reversal symmetry.

Now we are ready to analyze the way in which the topological properties of α-T3 materials are modified by a
dressing field. For all types of irradiation which open a finite bandgap, a semimetal is transformed into a Chern
insulator, accompanied by a phase transition. This includes the case for a circularly polarized irradiation with β = 1,
as described in the above mentioned Arxiv preprint by B. Dey and K. Ghosh, and the case for a general elliptic
polarization with 0 < β < 1, where 0 < β < 1 is the ratio of field strengths along the two axes of a polarization ellipse,
introduced in Eq. (4) and discussed below. Since two obtained bandgaps, given by Eqs. (11) and (12), are proportional
to βc0, the Chern number would always be varied, as long as at least one or two gaps occur in the energy dispersions
of a material considered.

On the contrary, in the opposite limit of β → 0 for a linearly polarized dressing field, the Chern number can not be
changed and remains to be zero due to the valley symmetry remained in the calculated Berry curvature. Using this
unique feature, one is able to manage a tunable topological phase transition in an actual optoelectronic device.

IV. CONCLUDING REMARKS

In this paper, we have executed a thorough investigation into electron-photon dressed states in α-T3 lattices for
all possible polarizations (elliptical, circular and linear) of the impinging radiation. We have derived closed-form
expressions and analytic approximations of the quasiparticle energy dispersions for all types of such optical states.

We have demonstrated that the geometry phase φ or the hopping-scale parameter α plays a crucial role and
affects the low-energy band structure for various types of polarizations of incident light. The obtained dressed states
demonstrate both similarity and strong distinction compared to those earlier results obtained for graphene or buckled
honeycomb lattices. As an example, elliptically polarized irradiation is connected to opening a bandgap in the energy
dispersions of α-T3 lattices, as well as symmetry breaking between the valence and conduction bands. For the case
with a linearly polarized light field, the parameter α has also been shown to modify significantly the radiation-induced
anisotropy and the angular dependence of the dressed quasiparticle dispersions in k space. Generally speaking, we
find that the band-structure anisotropy due to electron-light coupling becomes the strongest for graphene with α→ 0
and the weakest for a dice lattice with α = 1 for both circular and linear polarizations of incoming light.
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We have also found that for an elliptically polarized field applied to α-T3 lattices with α 6= 1, its low-energy band
structure, including opened bandgaps, explicitly depends on the valley indexes τ = ±1. This gives rise to valleytronics
applications, which now could be developed based on irradiated α-T3 lattices and enables electrically-controlled valley
filtering as a milestone for such technologies and applications.

In addition to calculated energy dispersion relations, we have analytically obtained the corresponding wave function
for electrons dressed by an optical field with different polarizations. For elliptically polarized light, the components
of eigenstates obtained are shown to be inequivalent beyond a simple phase factor as seen from Eqs. (2) and (3) in
the absence of irradiation. Instead, these components depend on both the wave-vector k and the band index γ. As
a result, the modifications to the eigenstates of the valence, conduction and flat bands are completely different. Our
current study presents the first explicit expression for the dressed-state wave function of a dice lattice with an opened
energy gap under external irradiation.

Unlike the previous discussion for circularly polarized irradiation, our obtained eigenvalue equation, including a
linearly polarized dressing field, permits an exact solution for energy dispersions with respect to k. This leads us to
the following conclusions: (i) there is no energy gap between the conduction and valence bands; (ii) the flat band
stays forever at zero energy; (iii) a complete symmetry between conduction and valence bands is retained. However,
the presence of linearly polarized dressing induces an α-dependent anisotropy of the Dirac cone in k space, similar
to graphene. Therefore, we are able to tune the anisotropy and angular dependence of the energy band structure
by adjusting the hopping-scale parameter α. Although some discussions on the breaking of band symmetry in the
irradiated α-T3 model were reported earlier in Ref. [2], we reveal a number of other crucial symmetries in the dressed
states, and more importantly, these symmetries could be either broken or retained depending on the type and intensity
of the selected dressing field and on the value of hopping-scale parameter α.

Throughout the paper, we have continually compared our results with the limiting case of a dice lattice for which
α = 1 or φ = π/4. Due to the fact that dice lattices were discovered much earlier than α-T3 and could be synthesized
in a relative easy way, there has already been a substantial amount of research effort devoted specifically to the dice,
such as Ref. [1]. In contrast with general α-T3 materials, the dice lattice preserves the valence/conduction band
symmetry under irradiation of any polarization. Only because of this unusual property, the electronic states could
be presented in such a concise way. Our results suggest that in the presence of a linearly polarized irradiation, each
component of the wave function only receives an additional phase depending on the electron-light coupling. Therefore,
the actual complex phase is no longer equivalent to the wave vector angle θk, as shown in Eq. (33). Consequently, all
observables, such as, electron momentum, current, etc., will be modified in a specific and predictable way.

The wave functions are shown to be drastically different for the dice lattice (α = 1) and all other possible α-T3

lattices (α 6= 1). In the former case, the wave function components of such a dressed state are equivalent and differ
only by a phase factor, which are similar to anisotropic Dirac fermions in few-layer black phosphorus 35 and expected
to reveal non-head-on asymmetric Klein paradox. In contrast, the wave function components for arbitrary 0 < α < 1
differ from each other beyond a simple phase factor, which will bring in considerable modifications to tunneling and
transport properties in general α-T3 lattices. Particularly, to highlight such imbalance in components, we also present
explicit initial wave functions at t = 0 to elucidate a wider class of phenomena pertaining to light-induced distortions
in Dirac cone dispersions for general α-T3 lattices.

We investigates the Berry phases of dressed electron eigenstates in connection with their unusual composition and
symmetric properties. The Berry phase is shown to be a specific quantum characteristic of an electronic state, which
is greatly sensitive to a particle’s environment and adiabatic change of external fields or their potentials.

Berry phases are directly related to the wave function k dependence, its components and the phase difference
between them. For instance, the phases corresponding to the valence and conduction bands for a gap-opening
elliptically- or circularly polarized irradiation for the simplest dice lattice are not just different by an opposite,
quite different from their energy dispersions. We have uncovered the complex connection between dressed states of
conduction and valence bands and demonstrated a zero phase for the flat-band electronic state. For a dice lattice with
φ = π/4, the Berry phases are all zero for three bands even in the presence of linearly polarized light. For all other
values of φ 6= π/4, on the other hand, we have found moderate dependence of Berry phase on electron-light coupling
λ0, hopping-scale parameter α and the selection of closed integration path as expected from the Aharonov-Bohm
effect. We have noted that modified Berry phases by specific electron-light coupled states can affect some important
physical properties of a system, e.g., results of a double-slit interference experiment.

We have also calculated the Berry connections and curvatures for the case of linearly polarized irradiation and
demonstrated that for linear polarization, which does not lead to the creation of a finite bandgap, the Chern numbers
remain to be zero and topological phase transition will not occur.
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In closing, by studying the band structure of such dressed electron states, we have developed a useful methodology
for laser-induced engineering of energy bands and dressed electronic states, as well as tuning most significant char-
acteristics of α-T3 innovative materials. Our results in this paper are expected to have a profound influence on the
fabrication of modern optoelectronic and photonic devices.
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Appendix A: Electron-field dressed states for elliptically- and circularly-polarizations applied to a dice lattice
(φ = π/4)

For a dice lattice, the time-independent perturbation operator introduced in Eq. (9) is

P̂ τ = − τc0

2
√

2

∑
α=±

(1− ατβ) Σ̂(1)
α , (A1)

where we have defined

Σ̂
(1)
+ =

 0
0

Î2×2

0 0 0

 =

 0 1 0
0 0 1
0 0 0

 and Σ̂
(1)
− =

 0 0 0

Î2×2
0
0

 =

 0 0 0
1 0 0
0 1 0

 . (A2)

The operators Σ̂
(1)
± can be built from the spin-1 matrices

Σ̂(1)
x =

1√
2

 0 1 0
1 0 1
0 1 0

 and Σ̂(1)
y =

1√
2

 0 −i 0
i 0 −i
0 i 0

 , (A3)

and Σ̂
(1)
± = Σ̂

(1)
x ± iΣ̂(1)

y , similarly to the case of 2 × 2 Pauli matrices for spin-1/2 used for graphene. Moreover, the

energy gap exists if a Σ̂
(1)
z matrix is present in the Hamiltonian. For our case, this matrix is in the form

Σ̂(1)
z =

1√
2

 1 0 0
0 0 0
0 0 −1

 . (A4)

Using the above results in Eqs. (A1)-(A4), from Eq. (8) we get the effective pertubation Hamiltonian presented in
Eq. (10)

Ĥ(e)
eff (k| τ) =

~vF√
2

∑
α=±

(τkx − iαky) Σ(1)
α −

τβ

2
λ0 Σ̂(1)

z +
τ~vF

4
√

2λ2
0

∑
α=±

(
β2τkx − iαky

)
Σ(1)
α . (A5)

Furthermore, for the Hamiltonian in Eq. (A5), we arrive at the following eigenvalue equation for energy-band disper-

sions ε
(e)
d (k| τ)

[
ε

(e)
d (k| τ)

]3
−
(
βc0λ0

2

)2

ε
(e)
d (k| τ)− (~vF )

2


[

1 +

(
βλ0

2

)2
]2

k2
x +

[
1 +

(
λ0

2

)2
]2

k2
y

 ε
(e)
d (k| τ) = 0 . (A6)
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Here, we see the dispersions ε
(e)
d (k| τ) acquire a complete e-h symmetry and a renormalized isotropic Fermi velocity

v̄F given by

v̄F = vF

[
1 +

λ2
0

2

(
1 +

λ2
0

8

)]
= vf

[
1 +

(
λ0

2

)2
]2

, (A7)

and we will omit the λ0 dependence hereafter in other expressions for simplicity.

Appendix B: Linearly polarized irradiation on a α-T3 lattice

First, the total Hamiltonian of a quasiparticle interacting with linearly polarized field is

Ĥ(k, t| τ, φ) = Ĥφτ (k) + Ĥ(L)
A (t| τ, φ) , (B1)

which contains an additional time-dependent interaction term

Ĥ(L)
A (t| τ, φ) = −τc0 cos(ωt)

 0 cosφ 0
cosφ 0 sinφ

0 sinφ 0

 , (B2)

where the coupling amplitude c0 = eE0vF /ω is identical to that in the case of elliptically- or circularly polarized light.

Therefore, for k = 0, and then Ĥφτ (k) = 0, the Schrődinger equation becomes

i~
dψ0(t| τ, φ)

dt
= Ĥ(L)

A (t| τ, φ)ψ0(t| τ, φ) . (B3)

The solutions of Eq. (B3) for the valence and conduction bandedges with γ = ±1 at k = 0 are

ψγ=±1
0 (t| τ, φ) =

1√
2

 τ cosφ
±1

τ sinφ

 e±iλ0 sin(ωt) , (B4)

and for the flat band with γ = 0 is

ψγ=0
0 (t| τ, φ) =

 sinφ
0

− cosφ

 . (B5)

The wave functions in Eqs. (B4) and (B5) are obviously orthonormal to each other and these expressions respectively
resemble the k-dependent results in Eqs. (2) and (3) in the absence of light interaction.

The next step is to extend our solution for k = 0 to a finite wave-vector k. For this purpose, we would solve the
following time-dependent Schrődinger equation

i~
∂

∂t
Ψ(k, t| τ, φ) = Ĥ(k, t| τ, φ) Ψ(k, t| τ, φ) (B6)

for the full Hamiltonian in Eq. (B1). We look for its solution in the following expansion form

Ψ(k, t| τ, φ) =
∑
γ

F (γ)(k, t| τ, φ)ψγ0 (t| τ, φ) , (B7)

in which γ = 0, ±1 and the unknown time- and k-dependent expansion coefficients F (γ)(k, t) need to be determined.
By using Eq. (B3) for k = 0 and the orthogonality of ψγ0 (t| τ, φ), Eq. (B6) can be rewritten perturbatively as
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i~
∂

∂t
F (γ)(k, t| τ, φ) =

∑
ρ

F (ρ)(k, t| τ, φ) 〈ψγ0 (t| τ, φ) | Ĥφτ (k) |ψρ0(t| τ, φ)〉 . (B8)

This leads to three coupled linear partial-differential equations

i

vF

∂

∂t
F (∓1) = ∓kx F (∓1) ∓ i√

2
e±izλ(t) sin(2φ) ky F (0) ∓ ie±2izλ(t) τ cos(2φ) ky F (±1) ,

∂

∂t
F (0) =

vF√
2

sin(2φ) ky
∑
α=±1

α e−iαzλ(t) F (−α) , (B9)

where zλ(t) = λ0 sin(ωt) and we omit the k and t dependence in F (γ) for simplicity. Using Floquet theorem, we look
for the dressed state in the form of 2,17,34

F (γ)(k, t| τ, φ) = exp

{
− i
~
εd(k| τ, φ) t

} ∞∑
n=−∞

f (γ)
n einωt , (B10)

where εd(k| τ, φ) represents the dressed-state energy dispersion to be decided. The second factor in Eq. (B10) is a
periodic function of time (with the period T0 = 2π/ω), which can be expanded in a Fourier series. A nested exponential
function is traditionally reduced by the Jacobi-Anger series expansion, i.e.,

exp {±ζ sin(ωt)} =

∞∑
m=−∞

Jm (±ζ) eimωt , (B11)

where Jm(ζ) is the Bessel function of the first kind. We will also apply the orthogonality condition for the Fourier
expansion function, namely,

T0∫
0

dt einωt · e−imωt = δn,m

for any fixed integer −∞ < m <∞. As a result, we arrive at the following set of coupled linear algebraic equations,
i.e.,

{
∓kx −

εd(k| τ, φ)

~vF
+ lω

}
f

(∓1)
l ∓ iky√

2

∞∑
m=−∞

{
sin(2φ) f

(0)
l−m Jm (±λ0) +

√
2τ cos(2φ) f

(±1)
l−m Jm (±2λ0)

}
= 0 ,

{
−εd(k| τ, φ)

~vF
+ lω

}
f

(0)
l +

iky√
2

sin(2φ)

∞∑
m=−∞

∑
α=±1

αJm (−αλ0) f
(−α)
l−m = 0 . (B12)

Furthermore, we notice that two terms in the front brackets of Eq. (B12) all reduce to lω for l 6= 0 since ~ω �
εd(k| τ, φ) and ~vF kx,y in the case of off-resonant interaction. Therefore, Eq. (B12) is simplified into

lωf
(∓1)
l = ± iky√

2

∞∑
m=−∞

{
sin(2φ) f

(0)
l−m Jm (±λ0) +

√
2τ cos(2φ) f

(±1)
l−m Jm (±2λ0)

}
,

lωf
(0)
l = − iky√

2
sin(2φ)

∞∑
m=−∞

∑
α=±1

αJm (−αλ0) f
(−α)
l−m . (B13)

Equation (B13) cannot be satisfied unless all the expansion coefficients f
(0,±1)
l = 0 for l 6= 0. For this reason, we will

just follow the standard procedure 17,34 by eliminating all the terms f
(0,±1)
l for l 6= 0. Once only the l = 0 terms are

retained in Eq. (B13), we simply get
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{
K
↔

(k| τ, φ)− εd(k| τ, φ)

~vF
I
↔
}
⊗

 f
(−1)
0

f
(0)
0

f
(1)
0

 = 0 , (B14)

where I
↔

is the unit matrix, and

K
↔

(k| τ, φ) =

 −kx/2 −(iky/
√

2) sin(2φ)J0(λ0) −iτky cos(2φ)J0(2λ0)

0 0 −(iky/
√

2) sin(2φ)J0(λ0)
0 0 kx/2

 + h. c. . (B15)

Here, h. c. means adding a Hermitian conjugate matrix, and we have also used the fact that J0(ξ) = J0(−ξ) w 1−ξ2/4
for ξ = λ0 and 2λ0.

Finally, the eigenvalue equation in Eq. (B14) can be easily solved to give

εγ=0
d (k|φ) = 0 , (B16)

εγ=±1
d (k|φ) = ±~vF k f(θk|φ) ,

which becomes independent of τ , where f(θk|φ) =
√

A(θk|φ), and the angular function is

A(θ|φ) = cos2 θ +
{

[J0(2λ0) cos(2φ)]
2

+ [J0(λ0) sin(2φ)]
2
}

sin2 θ . (B17)

Here, A(θ|φ) displays an anisotropy in the energy dispersions due to electron-photon interaction, which reduces to
J 2

0 (2λ0) for graphene 34 with φ = 0. For a dice lattice with φ = π/4, on the other hand, only the term J 2
0 (λ0)

remains, which is found weaker than the electron-photon interaction in graphene.

For off-resonant radiation with low intensity, i.e., λ0 = c0/~ω � 1, the conduction and valence bands energy
dispersions are further approximated as

εγ=±1
d (k|φ) w γ~vF

√
k2 − λ2

0

4
[5 + 3 cos(4φ)] k2

y . (B18)

The anisotropy and difference between the Fermi velocities in the kx and ky directions for both valence and conduction
bands reach the maximum for graphene with φ = 0 and the minimum for a dice lattice with φ = π/4.

The corresponding wave function for the dressed-state quasiparticle, obtained from Eq. (B7), is

Ψγ=±1
d (k| τ, φ) =

1√
N1(k| τ, φ)

e∓ivF kf(θk|φ)t (B19)

×

r11(k|φ)√
2

 τ cosφ
±1

τ sinφ

 e±izλ(t) + r12(k| τ, φ)

 sinφ
0

− cosφ

+
r13(k| τ, φ)√

2

 τ cosφ
∓1

τ sinφ

 e∓izλ(t)

 ,

where

r11(k|φ) = 2f(θk|φ) [f(θk|φ) + cos θk]− J 2
0 (λ0) sin2 θk sin2(2φ) , (B20)

r12(k| τ, φ) = −i
√

2 sin θk sin(2φ)J0(λ0) [f(θk|φ) + cos θk + iτ sin θk cos(2φ)J (2λ0)] ,

r13(k| τ, φ) = − sin θk
[
sin θk sin2(2φ)J 2

0 (λ0) + 2iτf(θk|φ) cos(2φ)J0(2λ0)
]
,

and the normalization factor is just N1(k| τ, φ) =
∣∣∣Ψγ=±1

d (k| τ, φ)
∣∣∣2.
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For the flat band with γ = 0, on the other hand, the wave function takes the form

Ψγ=0
d (k| τ, φ) =

1√
2N0(k|φ)

×

r01(k|φ) τ√
2

∑
α=±1

eiαzλ(t)

 cosφ
ατ

sinφ

+ r02(k| τ, φ)

 sinφ
0

− cosφ

 , (B21)

where

r01(k|φ) = −i sin(2φ) sin θk J0(λ0) ,

r02(k| τ, φ) =
√

2 [cos θk + iτ cos(2φ) sin θk J0(2λ0)] . (B22)

For the case of a dice lattice with φ = π/4, we get from Eq. (B19) that

Ψγ=±1
d (k, t| τ) = e∓ivF kf1(θk)t f1(θk) + cos θk

4f1(θk)

e±izλ(t)

 τ

±
√

2
τ


− 2iJ0(λ0) sin θk
f1(θk) + cos θk

 1
0
−1

− ( J0(λ0) sin θk
f1(θk) + cos θk

)2
 τ

∓
√

2
τ

 e∓izλ(t)

 , (B23)

where

f1(θk) = f(θk|φ = π/4) =

√
cos2 θk + sin2 θk J 2

0 (λ0) (B24)

and zλ(t) = λ0 sin(ωt). The wave function in Eq. (B23) at t = 0 could be presented in a simplified way, yielding

Ψγ=±1
d (k| τ) =

1

2

 τe−iΦ1(θk| τ)

γ
√

2
τeiΦ1(θk| τ)

 , (B25)

Φ1(θk| τ) = 2 arctan

{
τJ0(λ0) sin θk
f1(θk) + cos θk

}
w τ

{
θk −

λ2
0

8
sin2(2θk) + · · ·

}
.

where the phase Φ1(θk| τ) for dice lattices differs from that in graphene by the correction from the weak-coupling
constant λ0 � 1.

The remaining wave function for the flat band with γ = 0 takes the form

Ψγ=0
d (k, t| τ) =

1√
2f1(θk)

− iτ2 sin θk J0(λ0)
∑
α=±1

eiαzλ(t)

 1√
2ατ
1

+ cos θk

 1
0
−1

 . (B26)

The structure of the wave function in Eq. (B26) is such that at t = 0 it consists of two components of equal amplitudes
and phase difference Φ0(θk| τ), and could be rewritten as

Ψγ=0
d (k| τ) =

1√
2

 e−iΦ0(θk| τ)

0
−eiΦ0(θk| τ)

 , (B27)

Φ0(θk| τ) = arctan {τJ0(λ0) tan θk} w τ

{
θk −

λ2
0

2
sin(2θk) + · · ·

}
.
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Appendix C: Dressing field-induced modifications to Berry phases

In this part, we provide details of the Berry phase evaluation for the dressed-state wave functions in Eqs. (19) and
(21) with a circularly polarized field applied to a dice lattice, as well as for the eigenstates in Eqs. (29)-(32) and in
Eqs. (36) and (37), corresponding to various types of α-T3 lattices interacting with a linearly polarized field. We also
explain the derivation of the Berry connection and curvature.

By using polar coordinates, the general expression for gradient ∇k and the vector length element dk can be
expressed as 63

∇k =
∂

∂k
êk +

1

k

∂

∂θk
êθ , (C1)

dk = dk êk + k dθk êθ .

As a first step, we must choose the proper closed integration path for Eq. (41). In order to satisfy the requirement of
an adiabatic (or isoenergetic) evolution of a quantum system, during which a Berry phase is accumulated, we have to

choose a path with a constant energy of our quasiparticle, i.e., with a constraint of εγ=±1
d (k| τ, φ) = ε0 = const.

For the first case of a dice lattice interacting with circularly polarized light, the energy dispersions in Eq. (18) and
the corresponding eigenstates in Eqs. (19) and (21) are isotropic in k space, so that the required path can be chosen
as a circle of radius k0. While the wave function components and their scalar product in this case still depend on
k and θk, the integration variable in Eq. (41) is simply written as dk = k0 dθk êθ. We begin with the eigenstates in
Eq. (19) associated with valence and conduction bands. For any circular path of radius k0, the Berry phase defined
in Eq. (41) is calculated as

Φ
(c)
B (γ, k0| τ = 1) =

C2
1(γ, k0)− 1

N (γ, k0)

2π∫
0

dθk w πγ
c0

~vF k0
λ0 . (C2)

In addition, we have Φ
(c)
B (γ, k0| τ = −1) = −Φ

(c)
B (γ, k0| τ = 1) for the K ′ valley, similar to the case of a non-irradiated

α-T3 lattice. In the absence of the circularly polarized irradiation, however, the Berry phase for a dice lattice is zero

due to the fact 56 that Φ
(0)
B (γ, k0| τ) = τπ cos(π/2) = 0. Furthermore, the Berry phase of the flat band remains zero

in the presence of circularly polarized light, which could be easily verified by evaluating the integral in Eq. (41) with
respect to the wave function in Eq. (21).

In contrast, for α-T3 lattices the constant-energy cut of dispersions in Eq. (26) with angular dependence given by
Eq. (27) has an elliptic shape, as displayed in Fig. 4(a). Such an ellipse is described by

[
k1(θk) cos(θk)

a

]2

+

[
k1(θk) sin(θk)

b(φ)

]2

= 1 , (C3)

where

a =
ε0

~vF
, (C4)

b(φ) =
ε0

~vF

{
[J0(2λ0) cos(2φ)]

2
+ [J0(λ0) sin(2φ)]

2
}−1

w a

{
1 +

λ2
0

8
[5 + 3 cos(4φ)]

}
> a .

Moreover, we have defined

k1(θk) =
b(φ) a√

a2 cos2 θk + b2(φ) sin2 θk

=
b(φ)√

1− e2(φ) cos2 θk
, (C5)

where a and b(φ) are major and minor semi-axes of an ellipse in k space and e(φ) =
√

1− b2(φ)/a2 is its eccentricity.
We see that each specific elliptical path, as well as its eccentricity, also depends on the intensity of incoming radiation or
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coupling constant λ0. Our notation θk = arctan(ky/kx) should not lead to confusion since the angle θk is independent
of the radial component k in polar coordinates. For the current case, we find

dk1(θk) = −1

2
b(φ) e2(φ)

sin(2θk)

[1− e2(φ) cos θk]
2/3

dθk , (C6)

dk =
b(φ)√

1− e2(φ) cos θk

{
êθ −

e2(φ) sin(2θk)

2 [1− e2(φ) cos θk]
êk

}
dθk . (C7)

Particularly, in the case of linearly polarized light, we notice that the wave function components in Eqs. (31) and
(33) depend only on θk but not on the radial component k for all possible values of φ. Therefore, we find from Eq. (31)
that

∇kΨγ=±1
d (k| τ) =

1

k1(θk)

∂

∂θk
Ψγ=±1
d (k| τ) =

iτ

2k1(θk)

∂Φ0,1(θk| τ)

∂θk

 −e−iΦ0,1(θk| τ)

0
eiΦ0,1(θk| τ)

 , (C8)

so that
[
Ψγ=±1
d (k| τ)

]†
∇kΨγ=±1

d (k| τ) ≡ 0. The only difference between the flat and the valence/conduction bands is

the explicit expressions for Φ0(θk| τ) and Φ1(θk| τ), which will not change the fact of a zero Berry phase from Eq. (41).

In the remaining part of Appendix C, we would like to show details of the calculation on the Berry connection
vector field Aγ

τ,φ(k, λ0) and the Berry curvature Ωγ
τ,φ(k, λ0), which are defined by

Aγ
τ,φ(k, λ0) ≡ 〈Ψγ

d(k, λ0| τ, φ)| i∇k |Ψγ
d(k, λ0| τ, φ)〉 , (C9)

Ωγ
τ,φ(k, λ0) ≡∇k ×Aγ

τ,φ(k, λ0) .

In the absence of incident light, the Berry connections for the cone bands with γ = ±1 are Aγ=±1
τ,φ (k, λ0) =

+(τ/2) cos(2φ)∇kθk and Aγ=0
τ,φ (k, λ0) = −2Aγ=±1

τ,φ (k, λ0) for the flat band. The ×2 difference comes from the
normalization of different wave functions.

In polar coordinates, according to Eq. (C1), ∇kθk = (1/k) êθ is directed along the êθ unit vector. We immediately
find that for all bands (γ = 0, ±1) the Berry field is always zero for a dice lattice with φ = π/4.

It is straightforward to verify that for a dice lattice the Berry connection will remain zero even in the
presence of a linearly polarized dressing field. As described above, for a dice lattice with α = 1, we get[
Ψγ=±1
d (k| τ)

]†
∇kΨγ=±1

d (k| τ) ≡ 0. Here, the only difference between the flat and valence/conduction bands is

the explicit expressions of phases Φ0(θk| τ) for γ = 0 and Φ1(θk| τ) for γ = ±1. We would also like to emphasize
that the Berry connection is closely connected to the Berry phase defined in Eq. (41), except that the closed-linear
integration is not performed.

Furthermore, the Berry curvature is calculated as

êz ·
[
∇k ×Aγ

τ,φ(k, λ0)
]

=
1

k

(
∂[k(Aγ−,φ)θ]

∂k
−
∂(Aγ−,φ)k

∂θk

)
=

τ

2k
cos(2φ)

d

dk
Θ(k) , (C10)

where Θ(k) is a step function which is introduced because k/k is always 1 if k is finite but undetermined for k = 0. Here,
we also make use of the following identity in the polar coordinates, i.e., δ(k) = δ(k)/(2πk), where δ(k) = dΘ(k)/dk is
the Dirac delta function. Finally, from Eq. (C10) we obtain

Ωγ=±1
τ,φ (k, λ0 = 0) = τπ cos(2φ) δ(k) , (C11)

Ωγ=0
τ,φ (k, λ0 = 0) = −2τπ cos(2φ) δ(k) .
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These results imply a complete valley symmetry since each of them is proportional to the valley-index τ .
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60 M. J. Ablowitz and J. T. Cole, Physical Review A 99, 033821 (2019).
61 B. Dey and T. K. Ghosh, arXiv preprint arXiv:1901.10778 (2019).
62 F. Zhang, A. H. MacDonald, and E. J. Mele, Proceedings of the National Academy of Sciences 110, 10546 (2013).
63 G. B. Arfken and H. J. Weber, Mathematical methods for physicists (1999).
64 The actual irradiation frequencies, suggested for the experimental verification of our results depend on the initial bandgap

of the material considered. Specifically, since non-irradiated α-T3 does not acquires an energy gap between the valence,
conduction and flat bands, our predicted features could be verified in the THz frequency range.


