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We identify fingerprints of a proximate quantum spin-liquid (QSL), observable by finite-
temperature dynamical thermal transport within a minimal version of the idealized Kitaev model
on a two-leg ladder, if subjected to inevitably present Heisenberg couplings. Using exact diag-
onalization and quantum typicality, we uncover (i) an insulator-conductor crossover induced by
recombination of fractionalized excitations at small Heisenberg couplings, (ii) low- and high-energy
signatures of fractionalized excitations, which survive far off the pure QSL point, and (iii) a non-
monotonous current life-time versus Heisenberg couplings. Guided by perturbation theory, we find
(iv) a Kitaev-exchange induced “one-magnon” contribution to the dynamical heat transport in the
strong Heisenberg rung limit.

I. INTRODUCTION

A quantum spin liquid (QSL) is an elusive state of
magnetic matter with the intriguing property of lacking
a local magnetic order parameter in the absence of exter-
nal fields at any temperature T 1,2. Instead, QSLs may
show quantum orders, massive entanglement and exotic
fractional elementary excitations, e.g. spinons3–5, Majo-
rana fermions, gauge vortices6,7 and alike. QSLs are a
consequence of frustrating exchange couplings, such that
the local magnetic moments cannot simultaneously sat-
isfy their mutual interactions8. In a seminal paper9, Ki-
taev introduced an exactly solvable Z2 QSL-model, where
spin-1/2 operators reside on the vertices of a honeycomb
lattice and are subject to exchange frustration from Ising
interactions of the type XX, Y Y , or ZZ depending on
the direction of the bond10. Early on, it was proposed
that such patterns can be realized in optical lattices11,
and shortly after also in Mott-Hubbard insulators with
strong spin orbit coupling12,13. In the quest for materi-
als which host Kitaev physics, several compounds have
surfaced, e.g. the iridates α-Na2IrO3 or α-Li2IrO3, as
well as α-RuCl3. The latter systems, however, all or-
der magnetically at low temperatures due to additional
interactions14–17. Recently, H3LiIr2O6 has been synthe-
sized, which reportedly shows no magnetic order at tem-
peratures & 10−4J , with J the exchange interaction18.

Low-T magnetic ordering is the common obstacle in
real materials, preempting the putative formation of a
QSL. Therefore, it is of tantamount importance to iden-
tify and interpret fingerprints, genuine to a QSL in sys-
tems which are subject to residual interactions obscuring
the QSL behavior. For Kitaev magnets, this is not trivial
and largely under debate19–24. In this endeavor, thermal
transport has also been employed. Unlike to other mag-
netic systems25,26, the longitudinal thermal conductivity
κxx in α-RuCl3 is predominantly phononic with, how-
ever, some hints of magnetic contributions27–31. Whether
this is due to remnants of Majorana fermions due to the
underlying Kitaev interactions, is not clear. Stronger ev-
idence of Kitaev physics might show up in finite external

magnetic fields (not considered here), because the low
temperature magnetic order is suppressed32 and it could
give rise to a quantized thermal Hall conductance33.

Theoretically, thermal transport studies in pure Kitaev
QSLs have been performed via quantum Monte Carlo
simulations in 2D34 or via exact diagonalization (ED) in
1D and 2D35,36. Moment expansions might also provide
high-temperature analytic results for thermal transport
of pure Kitaev QSLs in the future37. Thermal trans-
port was also studied in magnetically ordered phases of a
Kitaev-Heisenberg model using spin wave calculations38.
However, the impact of isotropic Heisenberg exchange
on thermal transport, perturbing a pure Kitaev QSL, is
a completely open issue. Here our work makes a step
forward. We study the thermal transport properties of a
Kitaev-Heisenberg ladder, using ED, dynamical quantum
typicality (DQT), and perturbation theory. By tuning
the exchange couplings between the limits of a pure Ki-
taev ladder (KL) and a Heisenberg ladder (HL), we pro-
vide a comprehensive view on the transport properties,
while crossing over from a Z2 QSL into a conventional
valence bond state with gapped triplon excitations. En
route, we emphasize characteristics which serve to iden-
tify signatures of Kitaev physics at moderate Heisenberg
couplings, describing a proximate QSL39,40.

II. MODEL

The Hamiltonian for the Kitaev-Heisenberg model on
a ladder of L rungs with boundary conditions is given by

H =
∑

a=x,y,z

∑
〈i,j〉

JaijS
a
i S

a
j + JijS

a
i S

a
j . (1)

Here S are spin-1/2 operators, and the restricted
sum over i, j reproduces the geometry depicted in
Fig. 1. Jaij = Jx, Jy, Jz denote the anisotropic Kitaev
interactions–only one of them is non-zero per bond–which
we parametrize in terms of the coupling strength JK . On
the other hand, Jij = JH , J

′
H are SU(2) invariant Heisen-

berg interactions. If JH 6= J ′H is considered we will note
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FIG. 1. The Kitaev-Heisenberg ladder. Jx, Jy, and Jz denote
Ising interactions, while JH and J ′H SU(2) invariant Heisen-
berg interactions. The local energy densities he

l and ho
l used

to define the energy current are highlighted.

this explicitly. Lastly, we set the lattice constant equal
to unity, as well as the Planck and Boltzmann constants.

In the absence of Heisenberg interactions (Jij = 0) the
system is a Z2 spin liquid7,41,42. The spin degrees of free-
dom fractionalize into two species of Majorana fermions
and the Hamiltonian acquires the form7

H = − i
4

∑
b

Jxcbcr + Jycbcr − Jz(ic̄bc̄r)cbcr . (2)

Here c, c̄ represent Majorana fermions, {ci, cj} = 2δij =
{c̄i, c̄j}, while the indices b and r correspond to the
“black” and “red” sites of the lattice respectively. The
quantity in the parenthesis is a good quantum number of
the model, η = ic̄bc̄r = ±1, and therefore the c̄ species
becomes static. By defining Dirac fermions from pairs
of Majorana fermions residing on the two sites of the
same rung, Hamiltonian (2) transforms to a tight-binding
chain with pairing terms in the presence of a Z2 gauge
field. The latter acts as a disorder potential. The ground
state of the system lies in the uniform η-sectors, and it
can either be gapless for |Jx − Jy| = Jz, or gapped oth-
erwise.

The transport properties of the quasi-1D KL were ana-
lyzed in Ref. [ 35]. It was shown, that the sole carriers of
heat, the Majorana fermions, scatter from the thermally
activated static gauge disorder such, that localization oc-
curs. I.e. the KL turns into an ideal heat insulator at all
temperatures. In the pure 2D Kitaev model similar scat-
tering occurs, but too weak to force localization, leading
to normal heat conduction34,36. In contrast, the HL ex-
hibits a ground state continuously connected to a rung-
singlet product (RSP) state, and triplon excitations43.
The energy transport of the HL has been analyzed ex-
haustively over wide ranges of coupling strengths and
temperatures and is well understood to be diffusive44,45.

To analyze the thermal transport properties of our
system, we obtain the energy current operator jε from
the time derivative of the polarization operator, P ε =∑
l 2lh2l

46, which yields jε = −2i
∑
l[h2l, h2(l−1)]. Here,

we choose h2l = (he2l + ho2l)/2, see Fig. 1. The real part
of the energy current correlation function is given by
C(t) = Re[〈jε(t)jε〉/L], where the brackets 〈· · · 〉 denote
the thermal mean value at temperature T . The thermal

Drude weight D as well as the regular part κ′ of the ther-
mal conductivity, κ(ω) = 2πDδ(ω) + κ′(ω), are obtained
via

D =
β2

2
C0, κ

′(ω) = P 2β

ω
tanh

βω

2

∫ ∞
0

dt cosωt C(t). (3)

Here, β = 1/T , P the principal value, and C0 the time
independent contribution of degenerate states to C(t).
The static value of the regular part is determined by the
limiting procedure κdc = κ′(ω → 0). A finite value of
D signifies dissipationless energy transport, whereas the
contribution of dissipative modes to the normal dc con-
ductivity is obtained by κdc. In the case where D and
κdc vanish simultaneously the system is an ideal heat
insulator47.

The thermal mean values are calculated numerically
either using ED by tracing over the full Hilbert space, or
by using DQT which is expected to work well for high-
dimensional Hilbert spaces and at not too low tempera-
tures. In DQT, the thermal mean value is approximated
by an expectation value obtained from a single pure ran-
dom state |ψ〉, drawn from a distribution that is invariant
under all unitary transformations in Hilbert space (Haar
measure), and evolved to |ψβ〉 = e−βH/2|ψ〉 to account
for finite temperatures48. The limiting temperature for
DQT is approximately the energy scale of the system
J , which is formally defined below45. The correlation

function is then evaluated via C(t) ≈ Re
〈ψβ |jε(t)jε|ψβ〉
L〈ψβ |ψβ〉 by

solving a standard differential equation problem for the
temperature and the time evolution. The error of DQT
scales inversely proportional to the square root of the
partition function, i.e. it decreases exponentially with
L. The time (temperature) evolution is performed with
a Jδt = 0.01 (Jδβ = 0.01) step [corresponding to an
accuracy of the order of O(10−8) in the fourth order
Runge-Kutta algorithm], and up to a maximum time
tmJ = 100π, giving a π/tm = 0.01J frequency resolu-
tion. We keep the same frequency resolution also for the
ED results in the binning of the δ functions.

III. THERMAL TRANSPORT

A. Infinite temperature

Now we detail a central point of this work, i.e. the
evolution of the Kitaev-Heisenberg ladder from the in-
sulating QSL regime of the pure KL to the diffusive
one of the HL close to the RSP state. To this end we
present in Fig. 2 the normalized thermal conductivity

κ(ω)/Θ, with Θ = πβ2

L 〈jεjε〉 the sum-rule44,49. We dis-
tinguish two cases with respect to the pure Kitaev lad-
der: (a) Jx,y,z = (2, 1, 1)JK , corresponding to one of its
gapless phases, Fig. 2(a); (b) Jx,y,z = (3, 1, 1)JK cor-
responding to one of its topological gapped phases41,
Fig. 2(b). For each of the two cases, we present results for
JH/JK = 0.05, 0.15, 0.35, 1 derived via DQT at β = 0 on
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FIG. 2. Thermal conductivity versus frequency on a ladder of
L = 12 rungs via DQT at β = 0 for: (a) Jx,y,z = (2, 1, 1)JK
and (b) Jx,y,z = (3, 1, 1)JK . For each case the Heisenberg
couplings JH/JK = 0.05, 0.15, 0.35, 1 are considered. As a
reference, the curves JK = 0 and JH = 0 are also shown,
where the latter is obtained using ED in the fermionic repre-
sentation of Eq. (2), for a chain length of L = 32 sites. The
corresponding insets zoom into the low (a) and high frequency
(b) parts of κ(ω).

a system of L = 12 rungs. As a reference, we also present
results for the HL (JK = 0), and for the KL (JH = 0). To
reduce large degeneracy effects, specific to the latter, we
resort to the effective fermionic representation of Eq. (2),
in that case, using chains with L = 32 fermionic sites and
ED calculations. The frequency axes are rescaled by the
“effective” coupling J = (Jx + Jy + Jz)/3 + JH .

Starting with absent Heisenberg interactions, κ(ω)
comprises two prominent structures. First, a low fre-
quency one, which can be interpreted as the Drude
weight, i.e. the quasiparticle contribution, spread over
a finite frequency region due to the scattering of the itin-
erant fermions on the gauge disorder potential. This lifts
the degeneracies of the translationally invariant system
yielding a broad low frequency hump. In 1D, itiner-
ant fermions scattering off a random (here binary) po-
tential leads to insulating behavior50, also for Eq. (2),
i.e. D = 0 and κdc = 0 in the thermodynamic limit. Con-
sequently, the correlation function exhibits a sharp low
frequency dip and the maximum of κ(ω) is shifted away
from ω = 0. Second, a high frequency hump arises due
to pair-breaking two-fermion contributions in jε, which
survives at all temperatures–in contrast to the quasipar-
ticle one which is suppressed at low temperatures due to
the fermionic occupation factors. The two structures are
continuously connected in the gapless case, while in the
gapped one the correlation function vanishes for interme-
diate frequencies showing that the gap persists even at
infinite temperatures.

Now we invoke Heisenberg coupling. This breaks the
Z2 symmetry, renders the gauge-fluxes mobile, and re-
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FIG. 3. (a) κdc/β
2 and (b) κdc/Θ versus the ratio JH/JK

at β = 0 via DQT. Open points correspond to L = 8 while
the filled ones to L = 12. (c) and (d), heatmap of κdc for
L = 10 versus temperature and the couplings JK , JH keeping
J fixed. (c) corresponds to Jx,y,z = (2, 1, 1)JK and (d) to
Jx,y,z = (3, 1, 1)JK .

stores translational invariance on some low-energy scale,
expanding as JH/JK increases. In fact, for all JH 6= 0
considered, localization breaks down, and a finite dc con-
ductivity emerges in Figs. 2(a,b) and the inset of Fig.
2(a). Yet, for a substantial range of JH/JK . 0.2, and
on a frequency scale of O(1) the low-ω hump and deple-
tion region persists, very suggestive of a fractionalized
two component “liquid” of light(heavy) mobile Majorana
fermions(gauge fluxes). Actually, the fluxes maintain a
finite expectation value for JH 6= 051. As JH is fur-
ther increased, the system enters the Heisenberg regime,
where the low-ω depletion is completely filled in and the
correlation function becomes monotonous at low frequen-
cies. Figs. 2(a,b) nicely support the naive expectation,
that the coupling ratio separating the Kitaev from the
Heisenberg regime should satisfy JH ≈ JK/3 even if
Jx 6= Jy, Jz, see also Fig. 3(b). Note that the artifi-
cial Drude weight depicted in the inset of Fig. 2(a) for
vanishing Kitaev interactions JK = 0 is an artefact of
the choice of fine frequency-resolution. The established
diffusive transport of a pure Heisenberg ladder44,45 is re-
covered upon decreasing the frequency-resolution.

While the low-ω depletion-hump structure is intri-
cately intertwined with the two-component nature of the
fractionalization, the high-ω pair-breaking peak directly
probes only one part of the fractional excitations, i.e. the
two-fermion density of states. As is obvious from the in-
set of Fig. 2(b), this feature persists well into the range of
finite Heisenberg interactions, namely 0 ≤ JH/JK . 0.6,
thereby providing not only an unequivocal fingerprint of
the original KL QSL in the presence of perturbing Heisen-
berg exchange, but also a measure for the crossover scale
JH/JK |rec, at which Majorana fermions and fluxes re-
combine to form triplons.
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B. Finite temperatures

Let us now focus on the dc part of the thermal trans-
port, both, versus the coupling constants, as well as the
temperature and for Jx,y,z/JK = (2, 1, 1), (3, 1, 1), i.e. for
a gapless and a gapped case. We begin with κdc/β

2 ver-
sus JK/JH at β = 0 in Fig. 3(a). A clearly monotonous
increase with increasing JH is observable, corroborating
not only the insulating behavior of the KL, but also a
critical coupling for localization of JH = 0. In fact the
data can be fitted very well by a fourth order polynomial
with minor offsets, strongly suggesting an insulator as
JH → 0. Next, we normalize to the sum-rule, displaying
κdc/Θ in Fig. 3(b). This can be viewed as a rough mea-
sure for a zero-frequency current life-time. Once again,
this figure shows a clear scale of JH ≈ JK/3, separating
the KL QSL from the HL RSP. The rapid decrease of
κdc/Θ below this scale is dictated by the onset of local-
ization, i.e. the vanishing of κdc. This is in sharp contrast
to the physics of the HL, where the current life-time at
β = 0 is a finite constant. Interestingly the two regimes
are connected non-monotonously. It is tempting to spec-
ulate that this may imply a reduction of current scat-
tering at the crossover to fractionalization. In passing,
Figs. 3(a,b) prove that finite size effects are negligible,
showing little difference between L = 8 and 12.

Next, we consider two contour plots of the temperature
dependence of κdc versus JH/J at Jx,y,z/JK = (2, 1, 1)
and (3, 1, 1) in Figs. 3(c) and (d). The data is represented
keeping the effective energy scale J constant. This figure
clearly shows how a low-temperature regime of enhanced
dc conductivity developing in the upper right hand corner
of the plot, as the system recombines localized Majorana
fermions into mobile triplons upon increasing JH/J . We
note that κdc ∝ β2 as β → 0,∀JH/J . This leads to the
blue regions in Figs. 3(c,d). The main point relating to
the latter is, that for JH = 0 this region extends over
all β, consistent with an insulator at all temperatures35.
Finally, in view of the similar appearance of Figs. 3(c,d),
differences between the gapped and gapless case, which
are certainly present for β > 1/J remain inaccessible to
our numerical approach.

C. Strong rung limit

Now we change the perspective, and shed light on the
impact of Kitaev exchange as a perturbation, starting
from the popular strong rung limit of the HL, i.e. for
J ′H � JK , JH . For JK , JH = 0 the ground state |GS〉
is a RSP state, with energy EGS/L = −3J ′H/4. Finite
JK , JH both shift EGS and induce dispersive triplon ex-
citations |k, s〉, with momentum k and magnetization s.
We evaluate by perturbation theory52–54 the one and two
triplon energies,

ω(1)(k)

J ′H
= 1 + λ cos k,

ω(2)(k)

J ′H
= 2

(
1± λ cos

k

2

)
, (4)
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FIG. 4. (a) and (b), κ(ω)/Θ versus frequency in the strong-
rung limit for Heisenberg JH/J

′
H = 0.1, 0.2, 0.5 and Kitaev

JK/J
′
H = 0.1, 0.2, 0.5 legs respectively obtained via ED at

β = 0. (c) and (d), low lying excitation spectrum derived from
perturbation theory in the strong-rung limit for Heisenberg
and Kitaev legs respectively. The light blue region denotes
the two-triplon continuum while the violet dashed lines two-
triplon bound states.

where ω(2)(k) stands for the boundaries of the two-triplon
continuum, while λ = JH/J

′
H and JK/2J

′
H , for Heisen-

berg [Fig. 4(c)] and Kitaev [Fig. 4(d)] leg interactions
respectively. While these figures include our results for
two-triplon bound states, they will not be considered fur-
ther, since they branch off the continuum only near the
zone boundary, and are not expected to contribute sig-
nificantly to κ(ω), see Appendix A.

From Figs. 4(c,d) and Eq. (4), we can now interpret ED
for κ(ω) with L = 8 at β = 0 for Heisenberg, versus Ki-
taev legs, in Figs. 4(a) versus (b). In both cases intensity
at ω ∼ 0 arises from thermally populated triplon states,
comprising a Drude weight on finite systems. Addition-
ally, jε|GS〉 generates a state in the two triplon manifold,
which combined with the selection rule ∆k = 0, dictated
by the symmetries of the Hamiltonians, results in tran-
sitions in the range ω ∼ 2J ′H(1 ± λ). This is clearly
seen in Figs. 4(a,b). Kitaev legs induce an additional
current mode at ω ∼ J ′H , visible in Fig. 4(b). This qual-
itative difference is a direct consequence of the loss of
SU(2) invariance, allowing for heat-current transitions
between one- and two-triplon states, which are forbidden
for Heisenberg interactions due to the ∆Sz = 0 selec-
tion rule. This one-triplon current intensity will feature
a strong temperature dependence ∼ exp(−J ′H/T ) as it
involves only excited states, see Fig. 6. As Figs. 4(a,b)
show our interpretation remains intact up to fairly strong
leg couplings JK,H/J

′
H ≈ 0.5. Finally, we note that exci-

tations to three triplon states induce low intensities, and
are not considered here.
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IV. SUMMARY

In conclusion, we have uncovered several fingerprints
of a proximate Kitaev QSL manifested at various en-
ergy scales in the dynamical thermal transport of the
Kitaev-Heisenberg ladder. While born out of a quasi-
1D model study, our results should be transferable to
2D except for the singular behavior at JH = 0 due to
the difference between localization in 1D and 2D. We
hope this may stimulate experiments, realizing that not
only dc thermal conductivity is a well established exper-
imental probe, but also dynamical heat transport can
be addressed, e.g. via fluorescent flash methods55,56 or
pump-probe techniques57. Moreover, a “tuning” of the
exchange couplings, discussed here theoretically, is also
experimentally feasible - within certain limits - by chem-
ical substitution or external pressure.

Acknowledgments.

We thank C. Hess, R. Steinigeweg, and M. Vojta, for
fruitful discussions. Work of W.B. has been supported
in part by the DFG through SFB 1143, project A02, and
by QUANOMET and CiNNds. W.B. also acknowledges
kind hospitality of the PSM, Dresden. This research was
supported in part by the National Science Foundation
under Grant No. NSF PHY-1748958.

Appendix A: Perturbation theory

This appendix highlights the details of the calculation
presented in Sec. III C. Our starting point is the Hamil-
tonian of decoupled dimers

HR = J ′H

N∑
i=1

SAi · SBi , (A1)

where SA,Bi denotes spin-1/2 operators located at the
i-th site of the A or B chain of the ladder, correspond-
ingly. The eigenstates of each rung, denoted in terms of
the total spin S and the total Sz component |S, Sz〉, are
singlets |0, 0〉 with energy Erung

0 /J ′H = −3/4 and triplets
|1, 0〉, |1, 1〉, |1,−1〉 with energy Erung

1 /J ′H = 1/4. The
ground state of the ladder is a direct product of spin-

singlet states |GS〉 =
∏N
i=1 |0, 0〉i, with energy EGS =

NErung
0 , while its excitations are triplets. In the follow-

ing, we consider the effect of coupling the dimers via
Heisenberg or Kitaev leg interactions.

1. Heisenberg leg interactions

We first analyze the ground state and low-lying ex-
citations in the presence of the perturbing Heisenberg

Hamiltonian H = HR +HH ,

HH/J
′
H = λH

N∑
i=1

B∑
α=A

Sαi · Sαi+1 , (A2)

with λH = JH/J
′
H the small parameter. Each bond of

the perturbing Hamiltonian excites two adjacent singlets
of the unperturbed ground state |GS〉 to spin-1 triplet
states, while the sum of the total Sz quantum number is
zero. The ground state energy up to third order in λH is
EH0 /(NJ

′
H) = − 3

4 − 3
8λ

2
H − 3

16λ
3
H , Ref.53.

The first excited state of the unperturbed ladder is
3N -fold degenerate and is obtained by promoting one
rung to a triplet state |s〉n = |1, s〉n

∏
j 6=n |0, 0〉j , with

s = 0,±1. States |s〉n are eigenstates of HR with energy
equal to Etr

0 = J ′H(1− 3
4N) for any n. HH has the effect

of moving the rung excitation to nearest-neighbor rungs,
thus the degeneracy is removed by constructing states
with definite crystal momentum

|k, s〉 =
1√
N

N∑
n=1

eikn|s〉n . (A3)

We shall refer to states (A3) as triplons to describe
a non-localized triplet excitation. The first order cor-
rection of the triplon energy is found to be equal to
Etr(k) = 1

J′
H
〈k, s|HH |k, s〉 = λH cos(k). Thus, the ex-

citation energy of the triplons up to first order is

ωH(k) = Etr
0 + Etr(k)− EGS = J ′H [1 + λH cos(k)] .

(A4)

We note that the single triplon dispersion relation has a
minimum at k = ±π.

We now turn our attention to two-body states, namely
states with total magnetization M = ±2 consisted of
two-triplons with Sz = ±1 correspondingly, states with
M = ±1 consisted of one triplon with Sz = 0 and one
with Sz = ±1 and states with M = 0, consisted of either
two triplons with Sz = 0 or one triplon with Sz = 1 and
one with Sz = −1. First we note that since the triplon
states are degenerate, the excitation energy of any two-
body state with one triplon with crystal momentum k1
and one with k2 fall into a two-body continuum with
energies ΩM = ±2

H (k1, k2) = ωH(k1) + ωH(k2). Folding
the wavevector k = k1 + k2 to the first Brillouin zone
[−π, π], the continuum extends between the two bound-
aries ΩH(k)/J ′H = 2[1 ± λH cos(k/2)], expressed up to
first order in λH . Although the two-body continuum
energies are the same for any two-body state, the two-
triplon bound state energy is expected to depend on the
M sector. Following the calculations of Ref.52 for the
spin-1 chain based on an elementary Bethe ansatz, we
find that the bound state energy of the M = ±2 sec-
tor is equal to ΩM = ±2

H (k)/J ′H = 2+λH
[
1
2 + 2 cos(k/2)2

]
which exists when 2π/3 ≤ |k| ≤ π, lies above the con-
tinuum and merges with it at the cut-off momentum
2π/3. Similarly for M = ±1 we find ΩM = ±1

H (k)/J ′H =
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FIG. 5. High frequency part of the high temperature ther-
mal conductivity for a Heisenberg (a) and Kitaev (b) ladder
with L = 8 rungs for JH/J

′
H = 0.1, 0.2, 0.5 or JK/J

′
H =

0.1, 0.2, 0.5. We refer the reader to the main text of the
present publication for definitions of the thermal conductivity
κ(ω).

2 − λH
[
1
2 + 2 cos(k/2)2

]
, which lies below the contin-

uum between wavevectors 2π/3 ≤ |k| ≤ π and finally
for M = 0 the bound state energy is ΩM = 0

H (k)/J ′H =
2−λH

[
1 + cos(k/2)2

]
which is stable for the whole zone

0 ≤ |k| ≤ π. We note that in Ref.54, analytical expres-
sions for the bound states of sector M = 0 and M = 1
are derived based on a mapping of the model onto a Bose
gas of hard-core triplets. The one- and two-particle exci-
tation spectrum of the Heisenberg leg Hamiltonian (A2)
are presented in Fig. 4(c) for λH = 0.1.

We note that the matrix elements 〈n|jε|m〉 are non-
vanishing for states |n〉, |m〉 that obey the selection rules
∆Sz = 0 and ∆k = 0. In addition, assuming that
the dominant contribution in the thermal conductivity
κ(ω) originate from the ground state |GS〉H to other ex-
cited states, we note that the operation jε|GS〉H gen-
erates a state which belongs to the manifold of states
with two excited triplons. Thus, the only possible tran-
sitions are between the ground state and the two-triplon

continuum (of two Sz = 0 triplons or a pair of Sz = 1
and Sz = −1 triplons) at k = 0 which results contri-
butions from a band of frequencies with boundary lines
ωH± = 2J ′H(1 ± λH). Figures 5(a) and (b) zoom to the
higher frequency features of Figs. 4(a) and (b) respec-
tively. A simple inspection of Fig. 5(a) reveals that in
the high temperature limit most of the intensity is con-
centrated near the ωH− limit which is likely due to the
fact that it involves transitions to the two-triplon con-
tinuum at its lowest gap and is thus more heavily pop-
ulated. This is further confirmed by the shifting of the
band to lower frequencies as the Heisenberg coupling JH
is increased. Bound states branch off the continuum near
the zone boundary and are not expected to give a distinct
signal in the thermal conductivity. Finally, the operation
jε|k, s〉 yields states with three excited triplons, thus we
do not observe any contribution coming from transitions
between single and two triplons.

2. Kitaev leg interactions

The remainder of this appendix is devoted in the anal-
ysis of the low-lying excitation spectrum in the presence
of the perturbing Kitaev Hamiltonian H = HR +HK ,

HK/J
′
H = λK

N/2∑
i=1

(
Sx2i,AS

x
2i+1,A + Sy2i,AS

y
2i−1,A

+ Sx2i,BS
x
2i−1,B + Sy2i,BS

y
2i+1,B

)
. (A5)

Based on similar considerations like before we find that
the ground state energy up to second order in λK is
EK0 /J

′
H = − 3

4

[
N + λ2K(N2 − 2)

]
. Moreover, we note

that the Kitaev Hamiltonian lifts the degeneracy of the
triplon modes with Sz = ±1 and the one with Sz = 0.
More specifically, the triplon excitation energy is

ωK±1(k) = J ′H

[
1 +

λK
2

cos(k)

]
, ωK0 = J ′H , (A6)

up to first order in λK . In (A6) we have omitted states
that contain more than one excited rung, as is appro-
priate to leading order. We now turn our attention to
two-triplon states, focusing first on two unbounded exci-
tations. The boundaries of the two-body continuum con-
sisted of any combination of two states with Sz = ±1 and
wavevectors k1 and k2 are ΩK(k)/J ′H = 2±λK cos(k/2),
with k = k1 + k2. A two-body state consisted of two
Sz = 0 triplons is N(N − 1)/2 degenerate with energy
ΩK0 = 2J ′H , while a two-body state consisted of one
Sz = 0 triplon and one with Sz = ±1 triplon with
crystal momentum k has an excitation energy equal to
ΩK1 /J

′
H = 2 + λK/2 cos(k). In addition, the bound state

energy in the M = ±2 sector is ΩM = ±2
K (k)/J ′H = 2 +

λK
2

[
1
2 + 2 cos(k/2)2

]
which exists when 2π/3 ≤ |k| ≤ π

while the bound state energy of a triplon with Sz = 1
and one with Sz = −1 belonging in the M = 0 sector is
ΩM = 0
K (k)/J ′H = 2−λK/2

[
1 + cos(k/2)2

]
. The one- and
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FIG. 6. Frequency dependence of the correlation function
C̃(ω)J ′H/Θ

′ around ω = 1 of a Kitaev ladder with L = 8 rungs
for λK = 0.1 and various values of the inverse temperatures
β. In the low temperature limit of β = 5 we note that the
dominant signal ∼ J ′H vanishes as expected, indicating that
it originates from transitions between excited states.

two-particle excitation spectrum of the Kitaev leg Hamil-
tonian (A5) are presented in Fig. 4(d) for λK = 0.1.
We note that the calculation of bound states involving
triplons with Sz = 0 is omitted because they lie for ener-
gies in-between the bound states energies of the M = 0
and M = ±2 sector and are not expected to give rise to
prominent signals in the κ(ω). Their calculation relies on
an involved degenerate perturbation theory.

The selection rules between states |n〉 and |m〉 to ob-
tain non-vanishing matrix elements 〈n|jε|m〉 depend on
the symmetries of the Hamiltonian under study. We note
that for the Kitaev Hamiltonian of Eq. (A5) with less
symmetries than the Heisenberg one, only the ∆k = 0

rule needs to be fulfilled. As anticipated, the high-
frequency part of κ(ω) contains contributions from the
ground state to the two-particle sector from a band of
frequencies with boundary lines ωK± /J

′
H = 2 ± λK . The

most unexpected feature of Fig. 5 is an additional dom-
inant signal for frequencies ∼ J ′H which is absent for
the Heisenberg perturbation scheme and originates from
transitions between excited states. More precisely, the
operation jε|k, s〉 generates states in the two-triplon man-
ifold with energies given by the two-triplon continuum
as well as the two-triplon bound states. To analyze the
resulting signal we need to take into account that tran-
sitions are allowed for every k in the first Brillouin zone
[−π, π] that will eventually produce a zoo of allowed fre-
quencies given by the difference of the energies of the
two-triplon and the single triplon states. To simplify
the picture, we note that by increasing the Kitaev cou-
pling JK the band shifts to higher frequencies, indicating
the fact that most of the intensity arises from transi-
tions at k = ±π where triplons have their lowest gap
and are thus more populated. At k = ±π the frequency
band lies between the lines ω1 = ΩM = ±2

K (π)− ωK±1(π) =

J ′H(1 + 3λK/4) and ω2 = ΩM = 0
K (π)− ωK±1(π) = J ′H .

In Fig. 6 we present the frequency dependence of the
correlation function C̃(ω)J

′

H/Θ
′, where

C̃(ω) = Re
1

L

∫ ∞
−∞

dω

2π
e−iωt〈jε(t)jε〉 , (A7)

and the corresponding sum-rule for the correlation func-
tion Θ′ = π

L 〈jεjε〉. The correlation function C̃(ω) and
the thermal conductivity defined in the main text are re-
lated as κ(ω) = C̃(ω)β(1 − e−βω)/ω. While the latter
vanishes for β = 0, the former is temperature dependent
with a clear decay of its weight with decreasing temper-
ature. The almost vanishing signal around J ′H in the
low temperature limit of β = 5 is a confirmation that it
involves transitions between excited states.
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P. Mendels, Y. Li, Q. M. Zhang, and A. Zorko, Phys. Rev.
Lett. 119, 137205 (2017).

6 M. Hermanns, K. O’Brien, and S. Trebst, Phys. Rev. Lett.
114, 157202 (2015).

7 K. Le Hur, A. Soret, and F. Yang, Phys. Rev. B 96, 205109
(2017).

8 P. A. Lee, Journal of Physics: Conference Series 529,
012001 (2014).

9 A. Kitaev, Annals of Physics 321, 2 (2006), January Spe-
cial Issue.

10 M. Hermanns, I. Kimchi, and J. Knolle, Annual Review
of Condensed Matter Physics 9, 17 (2018).

11 L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev.
Lett. 91, 090402 (2003).

12 G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

13 J. c. v. Chaloupka, G. Jackeli, and G. Khaliullin, Phys.
Rev. Lett. 105, 027204 (2010).

14 R. Yadav, N. A. Bogdanov, V. M. Katukuri, S. Nishimoto,
J. van den Brink, and L. Hozoi, Scientific Reports 6, 37925
(2016).

15 S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster,

mailto:a.metavitsiadis@tu-bs.de
mailto:christina.psaroudaki@unibas.ch
mailto:w.brenig@tu-bs.de
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.98.107204
http://dx.doi.org/10.1103/PhysRevLett.98.107204
http://dx.doi.org/10.1103/PhysRevLett.119.137205
http://dx.doi.org/10.1103/PhysRevLett.119.137205
http://dx.doi.org/10.1103/PhysRevLett.114.157202
http://dx.doi.org/10.1103/PhysRevLett.114.157202
http://dx.doi.org/10.1103/PhysRevB.96.205109
http://dx.doi.org/10.1103/PhysRevB.96.205109
http://stacks.iop.org/1742-6596/529/i=1/a=012001
http://stacks.iop.org/1742-6596/529/i=1/a=012001
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053934
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053934
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/ 10.1038/srep37925
http://dx.doi.org/ 10.1038/srep37925


8

I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh,
P. Gegenwart, K. R. Choi, S.-W. Cheong, P. J. Baker,
C. Stock, and J. Taylor, Phys. Rev. Lett. 108, 127204
(2012).

16 S. Nishimoto, V. M. Katukuri, V. Yushankhai, H. Stoll,
U. K. Rler, L. Hozoi, I. Rousochatzakis, and J. van den
Brink, Nature Communications 7, 10273 (2016).

17 F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A.
Fernandez-Baca, R. Custelcean, T. F. Qi, O. B. Korneta,
and G. Cao, Phys. Rev. B 85, 180403 (2012).

18 K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato,
R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier, G. Jack-
eli, and H. Takagi, Nature 554, 341 (2018).

19 A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li,
M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu,
J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner,
D. A. Tennant, D. G. Mandrus, and S. E. Nagler, Nature
Materials 15, 733 (2016).

20 L. J. Sandilands, Y. Tian, K. W. Plumb, Y.-J. Kim, and
K. S. Burch, Phys. Rev. Lett. 114, 147201 (2015).

21 A. Glamazda, P. Lemmens, S.-H. Do, Y. S. Kwon, and
K.-Y. Choi, Phys. Rev. B 95, 174429 (2017).

22 S. M. Winter, K. Riedl, D. Kaib, R. Coldea, and R. Va-
lent́ı, Phys. Rev. Lett. 120, 077203 (2018).

23 J. Nasu, J. Knolle, D. Kovrizhin, Y. Motome, and
R. Moessner, Nature Physics 12, 912 (2016).

24 S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev,
A. Honecker, and R. Valent́ı, Nature Communications 8,
1152 (2017).
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47 X. Zotos and P. Prelovšek, Phys. Rev. B 53, 983 (1996).
48 R. Steinigeweg, J. Gemmer, and W. Brenig, Phys. Rev.

Lett. 112, 120601 (2014).
49 B. S. Shastry, Phys. Rev. B 73, 085117 (2006).
50 P. W. Anderson, Phys. Rev. 109, 1492 (1958).
51 C. E. Agrapidis, J. van den Brink, and S. Nishimoto,

(unpublished).
52 N. Papanicolaou and P. Spathis, Journal of Physics: Con-

densed Matter 2, 6575 (1990).
53 M. Reigrotzki, H. Tsunetsugu, and T. M. Rice, Journal of

Physics: Condensed Matter 6, 9235 (1994).
54 V. N. Kotov, O. P. Sushkov, and R. Eder, Phys. Rev. B

59, 6266 (1999).
55 M. Montagnese, M. Otter, X. Zotos, D. A. Fishman,

N. Hlubek, O. Mityashkin, C. Hess, R. Saint-Martin,
S. Singh, A. Revcolevschi, and P. H. M. van Loosdrecht,
Phys. Rev. Lett. 110, 147206 (2013).

56 M. Otter, V. Krasnikov, D. Fishman, M. Pshenichnikov,
R. Saint-Martin, A. Revcolevschi, and P. van Loosdrecht,
Journal of Magnetism and Magnetic Materials 321, 796
(2009), proceedings of the Forth Moscow International
Symposium on Magnetism.

57 A. Schmidt, M. Chiesa, X. Chen, and G. Chen, Review of
Scientific Instruments 79, 064902 (2008).

http://dx.doi.org/ 10.1103/PhysRevLett.108.127204
http://dx.doi.org/ 10.1103/PhysRevLett.108.127204
http://dx.doi.org/ 10.1038/ncomms10273
http://dx.doi.org/10.1103/PhysRevB.85.180403
http://dx.doi.org/10.1038/nature25482
http://dx.doi.org/10.1038/nmat4604
http://dx.doi.org/10.1038/nmat4604
http://dx.doi.org/ 10.1103/PhysRevLett.114.147201
http://dx.doi.org/ 10.1103/PhysRevB.95.174429
http://dx.doi.org/ 10.1103/PhysRevLett.120.077203
http://dx.doi.org/ 10.1038/nphys3809
http://dx.doi.org/ 10.1103/PhysRevLett.90.197002
http://dx.doi.org/10.1103/PhysRevB.81.020405
http://dx.doi.org/10.1103/PhysRevB.81.020405
http://dx.doi.org/ 10.1103/PhysRevB.95.241112
http://dx.doi.org/10.1103/PhysRevLett.120.067202
http://dx.doi.org/10.1103/PhysRevLett.120.067202
http://dx.doi.org/ 10.1103/PhysRevLett.120.117204
http://dx.doi.org/ 10.1103/PhysRevLett.120.117204
http://dx.doi.org/10.1103/PhysRevLett.118.187203
http://dx.doi.org/10.1103/PhysRevLett.118.187203
http://arxiv.org/abs/1803.08162
http://dx.doi.org/ 10.1103/PhysRevLett.119.037201
http://arxiv.org/abs/1805.05022
http://dx.doi.org/10.1103/PhysRevLett.119.127204
http://dx.doi.org/10.1103/PhysRevLett.119.127204
http://dx.doi.org/10.1103/PhysRevB.96.041115
http://dx.doi.org/10.1103/PhysRevB.96.041115
http://dx.doi.org/10.1103/PhysRevB.96.205121
http://dx.doi.org/10.1103/PhysRevB.96.205121
http://dx.doi.org/10.1103/PhysRevB.97.064406
http://dx.doi.org/10.1103/PhysRevB.97.064406
http://dx.doi.org/10.1103/PhysRevB.95.064410
http://dx.doi.org/10.1103/PhysRevB.95.064410
http://dx.doi.org/10.1038/nphys3172
http://dx.doi.org/10.1038/nphys3172
https://link.aps.org/doi/10.1103/PhysRevLett.119.157203
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/http://dx.doi.org/10.1016/j.physleta.2012.10.016
http://dx.doi.org/10.1126/science.271.5249.618
http://dx.doi.org/10.1103/PhysRevLett.92.067202
http://dx.doi.org/10.1103/PhysRevLett.116.017202
http://dx.doi.org/ 10.1103/PhysRevB.53.983
http://dx.doi.org/10.1103/PhysRevLett.112.120601
http://dx.doi.org/10.1103/PhysRevLett.112.120601
http://dx.doi.org/10.1103/PhysRevB.73.085117
http://dx.doi.org/10.1103/PhysRev.109.1492
http://stacks.iop.org/0953-8984/2/i=31/a=011
http://stacks.iop.org/0953-8984/2/i=31/a=011
http://stacks.iop.org/0953-8984/6/i=43/a=021
http://stacks.iop.org/0953-8984/6/i=43/a=021
http://dx.doi.org/10.1103/PhysRevB.59.6266
http://dx.doi.org/10.1103/PhysRevB.59.6266
http://dx.doi.org/10.1103/PhysRevLett.110.147206
http://dx.doi.org/ https://doi.org/10.1016/j.jmmm.2008.11.075
http://dx.doi.org/ https://doi.org/10.1016/j.jmmm.2008.11.075
http://dx.doi.org/ 10.1063/1.2937458
http://dx.doi.org/ 10.1063/1.2937458

	Spin liquid fingerprints in the thermal transport of a Kitaev-Heisenberg ladder
	Abstract
	introduction
	Model
	Thermal transport
	Infinite temperature
	Finite temperatures
	Strong rung limit

	Summary
	Acknowledgments.

	Perturbation theory
	Heisenberg leg interactions
	Kitaev leg interactions

	References


