
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Numerical linked-cluster expansions for disordered lattice
models

M. D. Mulanix, Demetrius Almada, and Ehsan Khatami
Phys. Rev. B 99, 205113 — Published 10 May 2019

DOI: 10.1103/PhysRevB.99.205113

http://dx.doi.org/10.1103/PhysRevB.99.205113


Numerical Linked-Cluster Expansions for Disordered Lattice Models

Michael Mulanix,1, 2 Demetrius Almada,1 and Ehsan Khatami1

1Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192, USA
2Department of Physics, Rice University, Houston, TX 77005

Imperfections in correlated materials can alter their ground state as well as finite-temperature
properties in significant ways. Here, we develop a method based on numerical linked-cluster
expansions for calculating exact finite-temperature properties of disordered lattice models directly
in the thermodynamic limit. We show that a continuous distribution for disordered parameters can
be achieved using a set of carefully chosen discrete modes in the distribution, which allows for the
averaging of properties over all disorder realizations. We benchmark our results for thermodynamic
properties of the square lattice Ising and quantum Heisenberg models with bond disorder against
Monte Carlo simulations and study them as the strength of disorder changes. We also apply the
method to the disordered Heisenberg model on the frustrated checkerboard lattice, which is closely
connected to Sr2Cu(Te0.5W0.5)O6. Our method can be used to study finite-temperature properties
of other disordered quantum lattice models including those for interacting lattice fermions.

I. INTRODUCTION

Disorder, caused in materials by lattice defects,
distortions, or impurities, can have profound effects
on the properties of many-body systems. Even
though noninteracting systems experiencing disorder-
driven Anderson localization1 have fascinated scientists
for decades, it is the interplay of disorder and correlations
that has attracted much attention in recent years
mostly in the context of many-body localization2–4

including with site disorder in quantum spin models both
theoretically5,6 and experimentally.7–9 The phenomenon
is characterized by the absence of thermalization
and the breakdown of conventional statistical physics
descriptions of isolated systems.

Quenched bond disorder in magnetic models (affecting
the exchange interactions) can result in frustration and
glassy behavior,10,11 characterized by freezing of spins
in random directions over macroscopic times below a
critical freezing temperature. Short-range cases were first
studied in the mid 1970s12–14 where, for example, the
effect of increasing concentration of ferromagnetic bonds
with fixed strengths in an antiferromagnetic nearest-
neighbor Ising model on the critical temperature were
explored. More recently, bond disorder in quantum spin
models has also been associated with the formation of
gapless spin-liquids in frustrated geometries.15–21

In this work, we focus on the exact thermodynamic
properties of disordered magnetic models away from their
ground state. We employ the numerical linked-cluster
expansion (NLCE),22,23 which has been broadly used to
study exact finite-temperature properties of magnetic as
well as itinerant electron models in the thermodynamic
limit,24–26 and develop an algorithm that allows it to
be used for disordered lattice models with continuous
random distributions. A method to solve lattice models
with bimodal disorder within the NLCE was discussed
in Refs. 27 and 28. The authors demonstrated that
such systems can be solved exactly through averaging of
properties of finite clusters over all of their 2N disorder

realizations, where N is the cluster size. In other words,
in this approach full averaging is used to restore the
translational symmetry of the lattice model, a necessary
condition for the most common formulation of the NLCE.
The generalization of the above technique to

continuous random distributions of a model parameter
within the NLCE is not straightforward. A typical
numerical approach for a disordered system with
continuous uniform or non-uniform disorder involves
averaging of properties over a large enough number of
disorder realizations with randomly chosen parameters.
Such a sampling scheme would in principle introduce
statistical errors to the final properties whose magnitude
depend on the strength of the disorder, system
size, physics of the model and the property under
investigation. Such errors hinder the NLCE calculations
and can lead to huge rounding errors in the eventual
contribution of clusters to the series and in turn a rapid
loss of convergence.
Here, we approach the problem of continuous disorder

in the NLCE while trying to maintain the exact nature
of the calculations. We do this by (1) extending the
idea for the bimodal disorder to a multi-modal disorder,
and (2) allowing disorder modes to be distributed non-
uniformly. For (1), any distribution of a random model
parameter is replaced by a discrete distribution consisting
of m modes so that, if m is a small enough integer, full
disorder average over the mN realizations can still be
performed on any cluster in the series up to a practical
order. On the other hand, (2) allows for a careful choice
of the mode locations that results in a fast convergence of
properties to the continuous disorder limit by increasing
m in our discrete formalism. It is accomplished here by
choosing the mode locations such that moments of our
discrete distribution match those of the continuous one
for each m.
For example, when m = 2, the locations of the two

modes, x1 and x2, in a box distribution centered around
0 are determined through the knowledge of the first two
moments of the distribution; the first moment is zero,
which means x2 = −x1. The second moment is ∆2/3,
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where ∆ is the half width of the box, and when equated
with the second moment of our discrete distribution, x2

1,2,
yields unique x1,2. Since all the odd moments of such a
symmetric distribution are zero, it may be more efficient,
however, to work with absolute moments instead. This
is discussed in Sec. III B, where the mode values up to
m = 8 are calculated.
Applying the technique to the classical Ising and

quantum Heisenberg models on the square lattice, we
demonstrate this fast convergence by showing that a
typical m ≤ 6 can already provide results that are
valid for the random disorder at temperatures accessible
to the NLCE. We study the thermodynamic properties
of these models for several bond disorder strengths
and compare our data to those obtained from Monte
Carlo (MC) simulation of finite-size clusters. We then
employ the method to study properties of the disordered
Heisenberg model on the frustrated checkerboard
lattice that can be relevant to recent experiments on
Sr2Cu(Te1−xWx)O6

19–21. Our method paves the way
for exploring the exact finite-temperature properties
of disordered quantum lattice models, including those
of interacting fermions, directly in the thermodynamic
limit.

II. MODELS

A. 2D Ising Model

The Hamiltonian of the random-bond Ising model on
the square lattice is written as

HIsing =
∑
〈i,j〉

JijS
z
i S

z
j , (1)

where 〈i, j〉 denotes that i and j are nearest neighbors,
Jij = J + Rij with our choice of J = 1 as the
unit of energy, Rij is a random number drawn from
either a uniform box distribution in [−∆,∆] or a
normal distribution with standard deviation ∆, and Sz

i

represents the z-component of a spin-1/2 at site i. The
clean system Jij = J (∆ = 0) has a continuous phase
transition at a finite-temperature to the magnetically
ordered phase. With our choice of parameters, the
transition takes place at T = 1/2 ln(1 +

√
2) ∼ 0.57.

B. 2D Heisenberg Model

The Hamiltonian of the random-bond quantum
Heisenberg model is written as

HHeis =
∑
i,j

JijSi · Sj , (2)

where Si is the spin-1/2 vector at site i. Despite the lack
of a continuous phase transition at nonzero temperatures

according to the Mermin-Wagner theorem,29 the clean
version of the Heisenberg model on the square
lattice (nonzero Jij for nearest-neighbor bonds only)
develops strong antiferromagnetic correlations below the
temperature T ∼ 0.6 signaled by a peak in the specific
heat as a function of temperature. Unlike the classical
Ising model, the Heisenberg model does not have the
Jij → −Jij symmetry. On the checkerboard lattice, the
next-nearest-neighbor exchange interactions are nonzero
on every other 2× 2 plaquette.

III. METHODS

A. The NLCE Algorithm

The numerical linked-cluster expansion is a method in
which a given extensive property P (L ) is expressed as a
sum over the contributions to that property from every
cluster that can be embedded in the lattice L . This
series expansion is given below:

P (L ) =
∑
c

WP (c) (3)

where c is a cluster that can be embedded in L and
WP (c) is the corresponding contribution to property
P and is computed through the inclusion-exclusion
principle:

WP (c) = P (c)−
∑
s⊂c

WP (s), (4)

where s is a cluster that can be embedded in c (a sub-
cluster of c), and P (c) for finite clusters up to a certain
size are calculated using exact diagonalization (ED).
The true power of the method is demonstrated

in the thermodynamic limit where L → ∞. In
that limit, we would be interested in the property
per site, limL→∞ P (L )/L , which can be obtained
by considering contributions only from those clusters
that are not related by translational symmetry in
the right hand side of Eq. (3). More simplifications
are made by combining contributions from clusters
that are topologically or symmetrically the same
given the Hamiltonian and the lattice geometry under
investigation. Details of the algorithm can be found in
Ref. 23.

B. Random Disorder

In an expansion for disordered systems, cluster
properties P (c) are replaced by those averaged over
disorder realizations, as is done in Ref. 27, 28,
and 30 for bimodal disorder, leading to disorder-
averaged contributions and ultimately the disorder-
averaged property in the thermodynamic limit. In the
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FIG. 1. Locations of the discrete disorder modes used in the
NLCE for a box distribution that extends from -1 to 1. m
denotes the number of modes. For a givenm, the locations are
determined by matching an appropriate number of moments
of the discrete distribution on the positive half of the box with
those of the original continuous box distributions. See text
for details.

case of bimodal disorder, the disorder average could
be taken exactly; ED was performed on all disorder
realizations of every cluster in the series, and hence, no
statistical errors were introduced. The latter is crucial for
the NLCE since any small error in properties of clusters,
especially in low orders, can be amplified via the sub-
cluster subtraction in Eq. 4, rendering P (L ) useless.
The conventional treatment of continuous disorder in
numerical methods, namely, an ensemble average of
properties over a large number of random realizations
has also been tried using the NLCE in one dimension
to study the onset of many-body delocalization through
the calculation of area-law entanglement.31 The disorder
average for this specific property could be done on
P (L ), after the NLCE sums were performed for a given
realization, to avoid rounding errors due to the statistical
noise. That is because only a finite number of clusters
crossing a bipartitioning boundary contributed to the
series in each order even in the presence of disorder. In
other words, breaking the translational symmetry of the
lattice by introducing disorder did not greatly affect the
number of clusters to be diagonalized in each order.

The main idea of this paper is to extend the exact
treatment of disorder within the NLCE for a generic

property to the limit of continuous random distributions
by systematically increasing the number of disorder
“modes” in a multi-modal implementation of the discrete
disorder distribution. One may be tempted to keep
increasing the number of modes (m) on an equally-
spaced grid in the range [−∆,∆], for example, for the
box disorder and study the convergence of the disorder-
averaged properties as m → ∞. However, the number of
realizations grows as mN in the exact treatment of such
a disorder and one finds that the convergence in this case
is slow to the point that the limit of continuous disorder

m xi

2 ±0.5000

3 0.0000, ±0.7500

4 ±0.2113, ±0.7886

5 0.0000, ±0.4636, ±0.7863

6 ±0.1470, ±0.4993, ±0.8537

7 0.0000, ±0.4191, ±0.4346, ±0.8959

8 ±0.1020, ±0.4095, ±0.5901, ±0.8982

TABLE I. Same as in Fig. 1 for up to 8 modes.

remains unaccessible for most quantum lattice models of
interest.
This problem can be mitigated through an efficient

choice of locations of the disorder modes in the range
so that the discrete distribution and the continuous
distribution of interest share as many moments as
possible. This is motivated by the fact that any
physical distribution can be fully realized based on the
knowledge of its moments. The nth moment is defined

as 1
2∆

∆∫
−∆

xndx for the continuous and 1
m

m∑
i=1

xn
i for the

discrete distribution, where xi is the location of the ith
mode. However, in this formulation, the odd moments
are zero by symmetry, and so, we restrict ourselves to
the moments of the right half of the distributions only
and consider a mode value of zero (at the center of the
disorder box) for odd number of modes. We then obtain
the negative modes by multiplying xi’s on the positive
side by a minus sign. Hence, to calculate m mode values,
one would need to equate int(m/2) of the moments:

1

m

m∑
i=1

|xn
i | =

1

∆

∆∫

0

xndx =
∆n

1 + n
, (5)

for n = 1, . . . , int(m/2). Note that to avoid double
counting the zero mode, we average the absolute value
of xn

i over the entire box in the left hand side of the
above equation.
This yields x1,2 = ±∆/2 for the bimodal disorder;

by choosing the two modes to be at 50% of ∆ on each
side of the box, as opposed to at ±∆, one can already
obtain an approximation for the case of continuous box
disorder. For m = 3, we choose x2 = 0. The left hand
side of Eq. 5 for n = 1 will then be 2

3
|x1,3| and the right

hand side will be 1
2
∆, and hence, x1,3 = ± 3

4
∆. For a

larger number of modes, Eq. 5 will be a set of nonlinear
equations for xi, which may be solved numerically.
Figure 1 shows the location of modes for ∆ = 1 up to
m = 5. In Tab. I, we have listed the mode locations up
to m = 8, which is the maximum used in our study.

Our method of finding an efficient set of disorder
modes in the approach to the continuous distribution
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is not unique. One may come up with alternative
ways of implementing a multi-modal distribution. For
example, the location of the modes in the box can be
fixed to integer fractions of ∆ while their “strengths” are
calculated through the matching of the moments with the
continuous distribution in a similar procedure as above.
The disorder averaging process adds significant

computation time to the NLCE. However, the
introduction of disorder often leads to localization effects,
which in turn result in a faster convergence of the NLCE
at a given temperature. On the other hand, we find that
with the above choice of modes, the convergence in m is
very quick for a ∆ of the order of J . In practice, m . 6
is generally sufficient for convergence to the continuous
limit at temperatures where NLCE is converged. For
these reasons, one can carry out the calculations to low
enough temperatures for the disordered systems where
comparisons to the clean system are practical.

IV. RESULTS

A. Ising Model

As the first case study, we choose the 2D Ising
model with the uniform bond disorder described in
Sec. II A. Since the computations do not involve any
matrix diagonalization for this already diagonal model,
we are able to carry out the series to very high orders
for both the clean and disordered systems. Figure 2(a)
shows the convergence of the series for the average energy
(E) in temperature (T ) for several values of m from 2 to
8. It also shows results for the clean system. For the
latter, the convergence is lost just before the transition
temperature around 0.6J . As the disorder with the
strength of ∆ = 1.5 is introduced to the system, the sharp
drop in the energy at the critical point disappears and
the series converges down to slightly lower temperatures
between 0.4J and 0.5J . Interestingly, with a largerm the
last two orders of the series remain closer to each other
to much lower temperatures. The calculations for eachm
are carried out to a maximum order that would require a
few thousand hours of CPU time. As we increase m, we
are forced to truncate the series at lower orders because
of the mN scaling, where N is the same as the order in
our site expansion.
Figure 2(a) also demonstrates the rapid settlement of

the energy curves to a final form with increasing m. The
results for m > 4 and T > 0.5 are not distinguishable
from those for m = 4 in this figure. The convergence
to the limit of random disorder is quickly reached. For
comparison, we show results from a parallel tempering
MC simulation with a 20 × 20 periodic cluster for both
the clean and disordered systems. We have performed
an average over 200 disorder realizations for the latter.
There is a very good agreement between the MC and
NLCE results in the converged region of T > 0.5 and
for m ≥ 4. At lower temperatures, despite the lack of
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FIG. 2. Average energy of the clean and disordered 2D
Ising model from the NLCE in the thermodynamic limit vs
temperature. The strength of the bond disorder is set to
1.5J . The results for the disordered model are obtained
using discrete distributions for the disorder with different
numbers of modes m from 2 to 8. (a) and (b) correspond
to box distributions whereas (c) corresponds to the normal
distribution. Mode locations in (a) and (c) are chosen based
on criteria discussed in Sec. III B while those in (b) are
equidistant within the distribution box. In all cases, the one-
to-last and last orders of the NLCE for each m are shown as
dashed and solid lines, respectively. The largest order used
in the series for each m is indicated inside square brackets
in (a). Lines in (b) and (c) are the same as in (a), except
that 11 orders are used for m = 2. We also show Monte Carlo
results for a clean system of size 20×20 and for the continuous
box (red squares) and normal (blue diamonds) distributions
of disorder with the same disorder strength of 1.5J using the
parallel temperating method. Error bars are smaller than
the symbol sizes. In (a) and (c), the NLCE results rapidly
converge to the limit of infinite number of modes by increasing
m to about 4 while in (b), even m = 8 is not sufficient to
capture the exact results at high temperatures.

convergence, NLCE results from the last two orders of
the series for each m also seem to capture the essential
behavior of the energy.

In Fig. 2(b), we show that the trend in convergence
as m increases is significantly different when modes are
placed on a equidistant grid in the box distribution. Even
with 8 modes, the exact MC results cannot be recovered
even at very high temperatures.



5

2 3 4 5 6 7 8
m

-0.4

-0.35

-0.3

-0.25

-0.2
E

0 0.1 0.2 0.3 0.4 0.5

1/m

T=1.00

T=0.70

T=0.51

∆=1.5

(a) (b)

FIG. 3. Average energy of the disordered Ising model with
∆ = 1.5J at fixed temperatures vs (a) the number of disorder
modes, m, of the discrete disorder distribution, and (b)
1/m from the NLCE. The data show fast convergence with
m in all cases above the convergence temperatures of the
series. To gauge the latter, we plot the last and one-to-
last order of the expansion for each case as full and empty
symbols. Horizontal dashed lines in (a) are results from the
Monte Carlo simulations for the continuous box disorder for
a periodic 20 × 20 cluster with the same disorder strength.
Dotted lines in (b) are linear fits to data for m = 5 − 8,
except at T = 0.51, where m = 5 and 6 are used for the fit.

In order to demonstrate the applicability of our
method to cases where the distribution is other than
uniform, in Fig. 2(c) we use our criteria to find mode
locations for the normal (Gaussian) distribution and
redo the NLCE calculations for the disordered Ising
model using these modes. Like for the case of uniform
distribution, we find that here, the convergence to
the continuous disorder, indicated by diamond symbols
representing MC results, is quickly reached. The curves
for m > 2 essentially coincide with each other.
To analyze the way in which results converge as a

function of the number of disorder modes for the box
distribution, we plot in Fig. 3 the energy for the disorder
strength of 1.5J at three fixed temperatures as a function
of m and 1/m. Also plotted as dashed horizontal lines
in Fig. 3(a) are the MC results. A rapid convergence
to final values by increasing m is clear from these plots,
although the series is not completely converged form = 7
and 8 at T = 0.51. The NLCE results at the two
highest temperatures shown also agree with the parallel
tempering MC results within the statistical error bars of
the latter. By performing MC simulations with systems
sizes as large as 40 × 40, we have verified that the
systematic finite-size error is small compared to the
statistical errors at the temperatures we present. It is
remarkable that the NLCE with clusters up to only 8 sites
can project what the average energy of the disordered
system is in the thermodynamic limit with such a high
accuracy.
In Fig. 3(b), we fit the same results for the energy

plotted as a function of 1/m to a line. We use values
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FIG. 4. Thermodynamic properties of the clean and
disordered 2D Ising model from the NLCE vs temperature.
The results for the disordered model with ∆ = 0.5J, 1.0J , and
1.5J as labeled are for seven disorder modes (m = 7). The last
two orders of the series are shown as dashed and solid lines.
For ∆ > J (red curves), the series for the average energy (a),
entropy (b), and specific heat (c) converge to significantly
lower temperatures than for the other two cases where ∆ ≤ J
around T = 0.2. The convergence and the values of the
uniform susceptibility (d), however, are generally unaffected
by the strength of the disorder strength in the range we have
considered and follow those of the clean system.

from the last four m’s for the fit, except at T = 0.51,
where values for m = 5 and 6 are used due to lack of
convergence with m = 7 and 8. Such extrapolations to
the 1/m = 0 limit can be useful at low temperatures in
cases where the convergence in m is not achieved while
the convergence in the NLCE order is still present.

Having access to converged results for the disordered
Ising model already with m ∼ 7, we study next how
the thermodynamics of the system are affected as the
strength of the disorder ∆ varies. In Fig. 4, we show
the energy, the entropy S = lnZ + E/T , where Z is
the partition function, the heat capacity Cv obtained
from fluctuations in the energy32, and the uniform
spin susceptibility χ obtained from fluctuations in the
magnetization, as a function of temperature for ∆ =
0.5, 1.0, and 1.5. The disappearance of the divergence in
the heat capacity for large ∆ suggests that the second-
order phase transition is washed away. Our model
for ∆ is closely related to the one studied by Pekalski
and Oguchi13 in which the increase in the probability
of having ferromagnetic bonds in an antiferromagnetic
Ising model leads to a rapid decrease in the critical
temperature of the model. We also observe that
the entropy of the disordered system decreases more
gradually as the temperature decreases and starting at
higher temperatures in comparison to the clean system
with no sign of a phase transition.

Interestingly, the susceptibility seems completely
unaffected by disorder in the exchange constant
regardless of its strength in the temperature region
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FIG. 5. Average energy of the clean and disordered
2D Heisenberg model in the thermodynamic limit vs
temperature. The strength of the bond disorder for the latter
is set to 1.0J . Thin dashed and solid lines are the last
two orders of the raw NLCE results for different numbers
of disorder modes. The largest order used in the series for
each m is indicated inside square brackets. Thick dashed and
solid lines are results after numerical resummations; black or
color lines are last two orders after the Euler resummation,
and the brown line is the result after the Wynn resummation
for m = 4. Convergence in the number of disorder modes is
already achieved for this model with m = 4 above the lowest
convergence temperature.

we have access to. The system with mostly
antiferromagnetic tendencies is no more or less sensitive
to ferromagnetic ordering with disorder. This is a
fundamentally different behavior than that observed for
bimodal disorder.27 For the latter system, it was shown
analytically and numerically that the corresponding
susceptibility takes a simple 1/4T form as all the terms
in the expansion except for the single site exactly vanish.
However, an important distinction between the approach
in Ref. 27 and ours (when m = 2) is that our disorder
distribution for J is centered around its clean limit of 1
whereas Tang et al. use a bimodal distribution centered
around 0.

B. Heisenberg Model

To explore the effect of disorder and how the
convergence of the series to the limit of uniform box
disorder changes in the presence of quantum fluctuations,
we study the disordered quantum Heisenberg model on
the square lattice. We find that despite the increased
complexity of the model in comparison to the Ising model
and the fact that smaller number of disorder modes can
be considered due to the added computational cost for
the diagonalization, the NLCE results converge to the
limit of m = ∞ much more rapidly than for the classical
Ising model. As can be seen in Fig. 5, for ∆ = 1.0
the average energy is converged with only four disorder
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FIG. 6. (a) Average energy, (b) entropy, (c) specific heat,
and (d) uniform susceptibility of the clean and disordered
2D Heisenberg model from the NLCE vs temperature. The
results for the disordered model with ∆ = 0.5J, 1.0J , and
1.5J as labeled are for five disorder modes (m = 5). Thin
dashed and solid lines are the last two orders of the series.
Thick dashed and solid lines are the results after Euler and
Wynn resummations, respectively.

modes at temperatures as low as T ∼ 0.4. The results
for m = 5 and m = 6 (latter not shown) coincide with
those for the m = 4 in the above temperature range.

Here, the NLCE is generally carried out to lower orders
for a given m than for the Ising model. We indicate
the largest order in the square brackets in the legends
of Fig. 5. However fortunately, we find that numerical
resummations, such as the Euler or Wynn methods,23

typically used to extend the region of convergence of
the NCLEs to lower temperatures, perform very well for
this model. Figure 5 shows that the lowest convergence
temperature decreases from T ∼ 1 to T = 0.3 − 0.4
depending on m when resummations are used. To
eliminate the possibility of introducing systematic errors
through numerical resummations, we take the lowest
convergence temperature to be the point at which results
from the Euler and Wynn techniques agree with each
other. They are shown as thick lines in Fig. 5. We show
that the results after resummations match those obtained
from stochastic series expansion quantum Monte Carlo
(QMC) simulations33,34 of the model on a periodic 20×20
site cluster (see circles in Fig. 5). Interestingly, the
results after the Wynn resummation form = 4 (gray line)
agree with those from the QMC down to a much lower
temperature than what we can independently verify to
be converged within the NLCE.

We find that the effect of disorder is felt generally
more strongly and starting at higher temperatures in the
Heisenberg model than in the Ising model. In Fig. 6,
we show converged results for the disordered systems
with m = 5 for three different disorder strengths. As
soon as the strength becomes comparable to the average
value for the exchange interaction, the energy deviates
significantly from that in the clean limit starting at
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temperatures as high as 10. Unlike for the Ising model,
we do not find a superior convergence in the series
extending to much lower temperatures as the disorder
strength increases to ∆ = 1.5, even with resummations.
However, the results point to a peak in the specific heat
that gets suppressed and moves to higher temperatures as
∆ increases. The peak, at least in the clean limit, marks
the onset of short-range antiferromagnetic correlations
developing in a system that lacks long-range order at
finite temperatures.

In the disordered system the peak is likely associated
with the freezing temperatures (exceeding it by about
20%11). The shift to higher temperatures for such a
tendency can be understood intuitively from the fact
that, on average in the disordered system, half of
the antiferromagnetic nearest-neighbor bonds are much
stronger than the other half, which may also become
ferromagnetic if ∆ > J . Having two bonds per site on
a square lattice, the random configuration of weak and
strong bonds can create a situation for spins to happily
form dimers with neighbors they are most strongly
coupled to and lower the entropy at higher temperatures
at the expense of long-range Neél order at T = 0.
The picture is similar to the “random-singlet” state
proposed for the ground state of Heisenberg models
with the same type of disorder as in our study but on
frustrated lattices.15,16,18 It is important to point out
that a ∆ > J will lead to realizations that have a mix of
anti-ferromagnetic and ferromagnetic bonds resulting in
frustration, which complicates the QMC simulations due
to the “sign problem”35 and in turn limits its access to
low temperatures.

Whether any nonzero ∆ would be detrimental to the
ground state long-range order is an interesting question,
which we cannot address with the present approach. It
may be possible, however, to employ a zero-temperature
NLCE with the Lanczos algorithm for the diagonalization
step to explore ground state properties, including the fate
of the Neél order, starting in the limit of large ∆, where
one may expect the series to converge at T = 0 due to
the local nature of dimers, and gradually decreasing ∆. A
similar idea was implemented to study the valence-bond
solid to spin liquid transition of the pinwheel distorted
kagome lattice Heisenberg model.36

As a final case study we turn to the disordered
frustrated Heisenberg model on the checkerboard lattice.
We adopt the NLCE with a square expansion, where
the building block is the corner-sharing 2 × 2 plaquette
with crossed next-nearest-neighbor bonds as opposed
to a single site; the order of the expansion indicates
the maximum number of plaquettes used. We take
both the nearest-neighbor (J) and the next-nearest-
neighbor (J ′) exchange interactions to be one. The
geometry is also referred to as planar pyrochlore lattice
and thermodynamic properties of the Heisenberg model
on it have been previously studied extensively using
the NLCE in the clean limit.37 The model can be
relevant to Sr2Cu(Te1−xWx)O6, where at x = 0.5 a

FIG. 7. Average energy and the specific heat (bottom
inset) of the clean and disordered 2D Heisenberg model
on the checkerboard lattice in the thermodynamic limit vs
temperature. The average exchange interaction on all the
bonds is set to J = J ′ = 1.0. The disorder with strength
1.0 is introduced to the next-nearest-neighbor bonds only.
Lines are the same as in Fig. 5, except that the largest orders
(numbers of squares) used in the series for the clean system,
and the disordered system with m = 2, 3, 4 and 5 are 6, 5, 4, 4,
and 4, respectively. Results for the clean system are from
Ref. [37]. Top inset: A finite portion of the checkerboard
lattice. Dashed lines denote J ′ on every other plaquette.

“clean” version can be thought of as half of plaquettes
(Sr2CuTeO6) promoting Neél ordering whereas the other
half (Sr2CuWO6), in a checkerboard pattern, promoting
a columnar order. Both frustration and randomness
seem to play important roles in the low-temperature
properties, including possible spin liquid or columnar
states.19–21 There are several ways disorder can be
introduced. For simplicity, we choose a random J ′ with
a disorder strength of ∆J′ = 1.0, leaving J intact.38

We show the average energy and the specific heat vs
temperature in Fig. 7. Similar to the un-frustrated
square lattice model, the convergence to the random
disorder limit with increasing m is fast. The m =
4 and m = 5 energy curves in the main panel are
indistinguishable. Unlike in the case of the square lattice,
here, the peak in the specific heat seems to rise as a result
of disorder, signaling a reduction in frustration.

V. SUMMARY AND DISCUSSION

We have developed an algorithm within NLCEs that
enables us to study disordered quantum lattice models
with continuous disorder distributions. We have shown
that the continuous limit can be approached using a
multi-modal discrete distribution scheme with an efficient
choice for the mode locations and by systematically
increasing the number of modes. The exact averaging
of properties over all disorder realizations prevents the
NLCE from breaking down due to statistical noise
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associated with random sampling from a continuous
distribution, often used in numerical treatments of these
systems, and allows one to obtain highly-precise results
for the disordered system in the thermodynamic limit.
We show that despite the exponentially large number
of disorder realizations that exist for every cluster in
the series, the calculations remain feasible owing to the
fact that the convergence to the continuous limit by
increasing the number of modes is quite fast (between
4 and 7 modes are necessary).
We apply the new technique to the classical Ising

model and the quantum Heisenberg model on the square
lattice and study their exact thermodynamic properties
at finite temperatures as the strength of the disorder
changes. We find that the effect of disorder is more
prominent for the Heisenberg model in comparison to
the Ising model at intermediate temperatures away from
the critical region of the Ising model in the clean limit.
While the uniform susceptibilities of both models were
unaffected by disorder at our accessible temperatures, the
specific heat of the Heisenberg model displays a shift in
the location of the peak to higher temperatures, which we
interpret based on the promotion of random short-range
antiferromagnetic dimer formations due to the existence
of weak and strong bonds in the disordered system.
We also apply the method to the disordered Heisenberg
model on the frustrated checkerboard lattice, relevant to
recent experiments on Sr2Cu(Te1−xWx)O6, and study
the effect of disorder in the next-nearest-neighbor bonds
on the energy and heat capacity.
The idea for choosing the optimal location of the

disorder modes based on moments of the distribution is
not unique to the box distribution. As demonstrated,
other deviates, such as a normal deviate for the
disordered model parameters, often used in spin glass

models, can be simulated using the NLCE following a
similar procedure as for the uniform distribution. The
technique can be used to study other disordered quantum
lattice models, such as the t − J or Hubbard models on
the square lattice or other geometries. The method has
a great potential for models where the infamous “sign
problem”35,39 hinders QMC simulations. These will be
the subject of our future studies.

NLCEs have been widely used to provide highly-
precise results for ultracold fermionic atoms in optical
lattices.40–48 The treatment of random disorder on the
same footing as the Coulomb interactions in these
fermionic systems can have great implications for
experiments in which disorder can be simulated using
optical speckles49,50 or quasiperiodic potentials.51–53

Finally, the use of faster solvers, such as the Lanczos
algorithm for partial diagonalization, can be employed
to access higher orders (and hence, lower temperatures)
without the loss of any information at currently accessible
temperatures.54
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5 M. Žnidarič, T. Prosen, and P. Prelovšek,
Phys. Rev. B 77, 064426 (2008).

6 A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
7 J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W.
Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe,
Nature Physics 12, 907 EP (2016).

8 K. X. Wei, C. Ramanathan, and P. Cappellaro,
Phys. Rev. Lett. 120, 070501 (2018).

9 K. Xu, J.-J. Chen, Y. Zeng, Y.-R. Zhang, C. Song,
W. Liu, Q. Guo, P. Zhang, D. Xu, H. Deng,
K. Huang, H. Wang, X. Zhu, D. Zheng, and H. Fan,
Phys. Rev. Lett. 120, 050507 (2018).

10 S. F. Edwards and P. W. Anderson,
Journal of Physics F: Metal Physics 5, 965 (1975).

11 K. Binder and A. P. Young,
Rev. Mod. Phys. 58, 801 (1986).

12 S. Katsura and F. Matsubara,
Canadian Journal of Physics 52, 120 (1974),
https://doi.org/10.1139/p74-019.

13 A. Pekalski and T. Oguchi,
Progress of Theoretical Physics 54, 1021 (1975).

14 F. Matsubara and M. Sakata,
Progress of Theoretical Physics 55, 672 (1976).

15 K. Watanabe, H. Kawamura, H. Nakano, and T. Sakai,
Journal of the Physical Society of Japan 83, 034714 (2014),
https://doi.org/10.7566/JPSJ.83.034714.

16 H. Kawamura, K. Watanabe, and T. Shimokawa,
Journal of the Physical Society of Japan 83, 103704 (2014),
https://doi.org/10.7566/JPSJ.83.103704.

17 T. Shimokawa, K. Watanabe, and H. Kawamura,
Phys. Rev. B 92, 134407 (2015).

18 K. Uematsu and H. Kawamura,
Journal of the Physical Society of Japan 86, 044704 (2017),
https://doi.org/10.7566/JPSJ.86.044704.

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.76.052203
http://dx.doi.org/ 10.1103/PhysRevB.77.064426
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1038/nphys3783
http://dx.doi.org/10.1103/PhysRevLett.120.070501
http://dx.doi.org/ 10.1103/PhysRevLett.120.050507
http://stacks.iop.org/0305-4608/5/i=5/a=017
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1139/p74-019
http://arxiv.org/abs/https://doi.org/10.1139/p74-019
http://dx.doi.org/10.1143/PTP.54.1021
http://dx.doi.org/10.1143/PTP.55.672
http://dx.doi.org/ 10.7566/JPSJ.83.034714
http://arxiv.org/abs/https://doi.org/10.7566/JPSJ.83.034714
http://dx.doi.org/10.7566/JPSJ.83.103704
http://arxiv.org/abs/https://doi.org/10.7566/JPSJ.83.103704
http://dx.doi.org/10.1103/PhysRevB.92.134407
http://dx.doi.org/10.7566/JPSJ.86.044704
http://arxiv.org/abs/https://doi.org/10.7566/JPSJ.86.044704


9

19 O. Mustonen, S. Vasala, E. Sadrollahi, K. P.
Schmidt, C. Baines, H. C. Walker, I. Terasaki, F. J.
Litterst, E. Baggio-Saitovitch, and M. Karppinen,
Nature Communications 9, 1085 (2018).

20 O. Mustonen, S. Vasala, K. P. Schmidt,
E. Sadrollahi, H. C. Walker, I. Terasaki, F. J.
Litterst, E. Baggio-Saitovitch, and M. Karppinen,
Phys. Rev. B 98, 064411 (2018).

21 K. Uematsu and H. Kawamura,
Phys. Rev. B 98, 134427 (2018).

22 M. Rigol, T. Bryant, and R. R. P. Singh,
Phys. Rev. Lett. 97, 187202 (2006).

23 B. Tang, E. Khatami, and M. Rigol,
Computer Physics Communications 184, 557 (2013).

24 M. Rigol, T. Bryant, and R. R. P. Singh,
Phys. Rev. E 75, 061118 (2007).

25 M. Rigol, T. Bryant, and R. R. P. Singh,
Phys. Rev. E 75, 061119 (2007).

26 E. Khatami and M. Rigol,
Phys. Rev. A 84, 053611 (2011).

27 B. Tang, D. Iyer, and M. Rigol,
Phys. Rev. B 91, 174413 (2015).

28 B. Tang, D. Iyer, and M. Rigol,
Phys. Rev. B 91, 161109 (2015).

29 N. D. Mermin and H. Wagner,
Phys. Rev. Lett. 17, 1133 (1966).

30 R. R. P. Singh and S. Chakravarty,
Phys. Rev. Lett. 57, 245 (1986).

31 T. Devakul and R. R. P. Singh,
Phys. Rev. Lett. 115, 187201 (2015).

32 E. Khatami and M. Rigol,
Phys. Rev. A 86, 023633 (2012).

33 A. W. Sandvik, Phys. Rev. B 59, R14157 (1999).
34 We have used the code by Anders W. Sandvik, available at

http://physics.bu.edu/~sandvik/programs/index.html ,
and have modified it to account for disorder in the bond
strengths.

35 P. Henelius and A. W. Sandvik,
Phys. Rev. B 62, 1102 (2000).

36 E. Khatami, R. R. P. Singh, and M. Rigol,
Phys. Rev. B 84, 224411 (2011).

37 E. Khatami and M. Rigol,
Phys. Rev. B 83, 134431 (2011).

38 The randomness in Sr2Cu(Te0.5W0.5)O6 stems from the
cation mixing Te/W, which may lend itself more to a
random J1 − J2 model. However, the development of a
NLCE for the latter model is beyond the scope of this

work and will be a topic of future studies.
39 E. Y. Loh, J. E. Gubernatis, R. T. Scalettar,

S. R. White, D. J. Scalapino, and R. L. Sugar,
Phys. Rev. B 41, 9301 (1990).

40 R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva,
E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and
R. G. Hulet, Nature 519, 211 (2015).

41 L. W. Cheuk, M. A. Nichols, K. R. Lawrence,
M. Okan, H. Zhang, E. Khatami, N. Trivedi, T. Paiva,
M. Rigol, and M. W. Zwierlein, Science 353, 1260 (2016),
http://science.sciencemag.org/content/353/6305/1260.full.pdf.

42 M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji,
D. Greif, and M. Greiner, Science 353, 1253 (2016),
http://science.sciencemag.org/content/353/6305/1253.full.pdf.

43 J. H. Drewes, E. Cocchi, L. A. Miller, C. F.
Chan, D. Pertot, F. Brennecke, and M. Köhl,
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