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We consider Mott insulators driven by periodic coherent laser radiation, using both single orbital
and multi-orbital models, noting that the latter is of more interest in solid state systems. We derive
general expressions for the resulting periodically driven spin models and spin-orbital models using
time-dependent perturbation theory. First, we show that the effective exchange interactions of the
Floquet Hamiltonians are highly tunable by the frequency, amplitude, and polarization of the laser.
Second, we take the effect of finite bandwidth of excitations into account and study possible heating
effects. Using the same formalism with a slight modification we also consider the small frequency
regime and study the dielectric breakdown of Mott insulators.

The study of periodically driven quantum systems has
received significant attention in recent years. A com-
mon theoretical prescription is the Floquet formalism
[1, 2], which amounts to finding the eigenstates of the
time evolution operator U (T +t,t) from time ¢ to t + T,
where T is the period of the drive. These states have
the form e~ *"?|n),, with |n); a periodic state with the
same period as that of the drive and ¢, called the quasi-
energy. This form for eigenstates ultimately allows for
a description of a time-periodic system using some time-
independent Hamiltonian dubbed as the “Floquet Hamil-
tonian”, Hr = ihlogU(T,0)/T, where U(T,0) is the
stroboscopic time-evolution operator from time 0 to a
full period T. One can further write down the evolu-
tion operator from arbitrary time ¢y to another arbitrary
time ¢ with the use of the operators called the micromo-
tion operators, as U(t,tg) = Up(t) e " t=10) Tl (t,),
where H ff is a time-independent effective Hamiltonian
and Up(t), the micromotion operator, is a periodic oper-
ator yielding intraperiod dynamics [3, 4].

A natural way to periodically drive a condensed mat-
ter system is with electromagnetic radiation. Since the
details of the Floquet Hamiltonian describing this situa-
tion are crucially dependent on the frequency, amplitude
and polarization of the external drive, one is able to en-
gineer the physical properties of a quantum system to a
large extent using laser-light radiation[5]. Such “Floquet
engineering” has been extensively studied in the con-
text of both single-particle and many-body condensed-
matter physics. In non-interacting systems, the light ra-
diation dresses the electronic band structure, which may
change the topological character, leading to various ex-
otic phenomenal6-16]. On the other hand, in interacting
systems the Floquet physics has been explored in the con-
text of the light-induced/light-enhanced superconduct-
ing [17-21], charge-density-wave [22], and spin-density-
wave [23] Fermi-surface instabilities. Laser controlled ex-
change interactions in single-band Mott insulators [24],
topological phase transitions in Kondo insulators [25],
and the possible periodically driven topologically ordered
states [26, 27] have also been discussed. There are also
many papers exploring Floquet engineering in bosonic

Hubband models based on the high frequency Floquet-
Magnus expansion which assumes the drive frequency w
is much larger than the hopping ¢[28-30]. In that regime,
an effective bosonic Hubbard model can be derived with
occupation-dependent hopping, amenable to more stan-
dard analysis. This approach is complimentary to the
one we will adopt below, in which we focus on fermions
(i.e. electrons), keep the frequency of the same order as
the Hubbard repulsion, but assume that the hopping is
small compared to the Hubbard repulsion, and that the
particle density is close to single-occupancy, which is the
criterion for the Mott state.

In the presence of interactions, one expects a peri-
odically driven system to eventually heat up to infinite
temperature at long times [31, 32], i.e. that the den-
sity operator of any finite subsystem become maximally
mixed and featureless at long times. However, as has
been shown rigorously, the heating rate can be (quasi-
Jexponentially slow [33, 34] in the ratio of the driving
frequency to the local energy scales. As a result of this,
one expects such system to show interesting prethermal
behavior. One can even think of the possibility for a
system to first relax into a steady prethermal state at in-
termediate times ¢ 7, then ultimately evolve into the
infinite temperature state at long times ¢t £ 7*. Such a
prethermal regime is realized numerically in [35], where
it has been shown in a lattice spin model that such a
system can first equilibrate to a (pre)thermal state with
respect to a time-independent effective Hamiltonian be-
fore it reaches the infinite temperature state. Such time-
independent effective Hamiltonians are dubbed as “Flo-
quet Hamiltonians” in the literature, and are typically
expressed as series expansions in 1/w. Furthermore, it
has been explicitly shown in [35] using numerics, that
the characteristic infinite temperature time scales 7% in
their models grow exponentially with the increase of the
driving frequency.

We will study periodically driven Mott insulators in
this work. We start with single-orbital Mott insulators,
i.e. the Hubbard model, at half filling. The effective
spin Floquet Hamiltonian for periodically driven half-
filled Hubbard model has been derived [24, 26, 36]. In



the static case, in an insulator, the Hubbard model has
two relevant energy scales: (i) the energy scale of spin
dynamics, i.e. exchange interaction J between the elec-
trons at neighboring sites, and (ii) the onsite electron-
electron interaction energy U which comes into play when
there are doubly occupied sites. In the Mott insulat-
ing regime, the latter is much larger than the former,
U > J. The periodically driven Hubbard model, on the
other hand, has another energy scale that is the driv-
ing frequency w. Following similar arguments as in the
previous paragraph, one should be concerned about the
regime in which a rapid heating does not occur in this
system. There are two classes of processes that can lead
to heating of the system due to the absorption of photons:
one is by multi-spin re-orderings, and the other is by cre-
ation of doubly-occupied sites in the system. Consider-
ing the second case, one can think of the doubly occupied
sites (doublons) and the empty sites (holons) which are
created as a consequence as new dynamical degrees of
freedom. Due to the hopping of electrons in the original
Hubbard model, the doublons and the holons are able
to hop around and thus these excitations of the system
have a non-vanishing bandwidth [37, 38]. If photons that
strike the system are able to supply an energy that lies
within this bandwidth, one expects to see a rapid heat-
ing due to creation of doublon-holon (DH) pairs in the
system. As we will see, heating can be avoided if the fre-
quency is kept outside of certain resonant windows, and
at the same time also kept much larger than the effective
spin exchange. In this paper, we will restrict our atten-
tion to states with very low density of DH pairs, and will
develop a time dependent perturbation theory that will
take the above points into account.

Most of the previous theoretical studies of similar Flo-
quet systems have been focused on spin degrees of free-
dom and the electron-phonon couplings. To the best of
our knowledge, the orbital degrees of freedom and their
interplay with the spins have never been addressed in
the context of Floquet physics. This is most relevant
to solid-state Mott insulators like titanates, nickelates,
and manganites. Given that the orbitals play essential
roles in strongly correlated transition-metal oxides [39-
41], in this paper we next consider driving multi-orbital
Mott insulators using laser radiation. We use multi-
orbital Hubbard models to describe such systems, with
the on-site electron interactions much greater than the
hopping parameters, and we consider the filling equal to
one electron per site. In a multi-orbital Mott insulator,
the on-site interaction energy depends on the spin and
orbital configurations of the electrons at a multiply oc-
cupied site. Furthermore, for a hopping event between
two given sites, the hopping parameters can also depend
on the initial and final orbital configurations of the sites.
This added complexity of multi-orbital Mott insulators
has an upside: it introduces more freedom to engineer
the exchange interactions in the effective Floquet Hamit-
lonian.

Based on time-dependent perturbation theory, we first

derive general expressions for the time evolution in the
periodically driven spin and spin-orbital models. Includ-
ing the effects of the DH hoppings, i.e. taking the ef-
fect of the bandwidth of excitations into account in our
perturbation theory, we find that the Floquet Hamilto-
nian projected onto a generic state in the zero-doublon
subspace contains both real and imaginary parts. The
real part is interpreted as an effective spin or spin-orbital
model, and the corresponding exchange interactions are
renormalized by the periodic driving, which allows for the
Floquet engineering of the interactions. The imaginary
part on the other hand is related to the rate of generation
of DH pairs, and thus can capture the effects of heating,
due to the increase in the density of DH pairs. With all
this said, one can work in two different regimes using the
formalism of this paper. Either one is away from a reso-
nance and not too many DH pairs are created and thus a
spin(-orbital) effective Hamiltonian captures the physics
well, or one is inside one of the resonant windows and the
physics of the system, at least for short time, is described
by studying how DH pairs density increases as a result
of resonant radiation. We furthermore study, by slightly
altering the formalism, the creation rate of DH pairs at
very small frequencies, and show that indeed a non-trivial
zero-frequency limit exists. The results in this limit can
be interpreted as the behavior of the system when ex-
posed to static external field, and thus is a reflection of
the (static) field-induced breakdown of a Mott insulator.

In a prior short paper[42], some parts of this formal-
ism were presented, and applied to the orthorhombic ti-
tanates YTiO3 and LaTiOg using first-principles calcu-
lations. It was observed that as a result of multi-orbital
interactions, ferromagnetic and antiferromagnetic Mott
insulators exhibit distinct responses to laser radiation.
The effective exchange interactions in these titanates may
be engineered to a large extent, and may be even flipped
at moderate electric-field energies. The present paper
derives and extends the formalism of this earlier work,
and discusses in much more detail the physics of doublon
generation.

The remainder of this paper is organized as follows.
In Section I we discuss the formalism of the Floquet
spin model derived from the periodically driven Hubbard
model and apply it to single orbital Hubbard model. In
Section IT we generalize the formalism to the case of mul-
tiorbital Mott insulators. We finally present a summary
of what has been done in the paper.

I. FLOQUET SPIN MODEL

We start the discussion with a half-filled single-orbital
Hubbard model which is periodically driven by laser radi-
ation. Such a problem has been discussed in [24, 26, 36].
Here we re-derive the effective Floquet spin Hamiltonian
using time-dependent perturbation theory, and show that
one can capture novel physics if one takes the effect of the
finite bandwidth of the excitations into account. We later



will use similar methods to generalize the discussions to
multi-orbital Mott insulators.

A. Time Dependent Perturbation Theory

We consider the following periodically driven Hubbard
model:

H(t) — Z (th eiuij sin wt CzTUCjU + hC)+ Uzﬁﬁ*ﬁ/ll )

(ij)o 7

(1)
where t;, is the hopping amplitude between sites ¢ and
7, and U > tj, is the onsite Coulomb repulsion energy.
u;j = eEg - r;j/w (we have set h = 1), where |Eg| de-
notes the magnitude of the oscillating electric field of a
laser with frequency w, E(t) = Eg coswt, and r;; is the
displacement vector between two lattice sites ¢ and j.
Only the nearest neighbor hopping is taken into account
here and the model is studied at half-filling. Note that

10 Wo)y = Py H |W)y = Py T,|¥1), |

Hermiticity requires w;; = —u;.

In equilibrium without driving it is well known that at
half filling the system stays in the Mott insulating phase
in the limit U >t;,. Then the low energy physics is dom-
inated by the spin dynamics, and is well described by a
Heisenberg model with antiferromagnetic nearest neigh-
bor exchange J;; = 4t7 /U, this result can be derived us-
ing a second-order time independent perturbation theory
[43]. We generalize the discussions to the case with pe-
riodic laser radiation, and derive a time-dependent spin
model using time-dependent second-order perturbation
theory.

A generic many-body state |¥); can be expressed as
a linear superposition of states with n doubly occu-
pied sites (which are dubbed as “doublons”): |¥), =
> o |¥n)t, where |¥,); represents the component
of the state of the system with n doublons, i.e.,
U, nirnif|¥n)e = nU|V,),. The Schrédinger equa-
tion for the evolution of the different components of the
state of the system reads:

0 W1)s = P H W)y = U |[W1); + Ti|Wo)e + Pr Ty U1)s + Pr T4|Wa)s 2)

where T} = — E<ij>a (th et uij sinwt cIchg + h.c.) is the
time dependent hopping term in the Hamiltonian (1) and
P, is the projector onto the subspace with n double oc-
cupancies.

Since we are interested in the dynamics of states with
a small local density of doublons and holons, we approx-
imately consider only the dynamics induced by |¥4), for
the component |¥g);, and neglect corrections due to the
effects of |¥,,),, with n > 1. We claim that the essential
properties of the dynamics of the system can be cap-
tured by this approximation. Thus we will continue by
neglecting the P5|¥), P5;|¥),... components of the time
dependent state in the above Schrodinger equation and
focusing on how |¥() and |¥;) evolve mutually. Note
that these higher order components will contribute with
at least the fourth order of ¢, to the time evolution of
the spin state. The truncated equations of motion take
the following form:

i6t|\110)t = PO Tt|\111>t7

: A 3)

18t|\111>t = U |\I/1>t + Tt|\Ifo>t + P1 Tt|\I/1>t.
The hopping operator P; T} in the second line of (3) can
be replaced by T; = P, TP since it is acting on the one
double occupancy subspace. One can think of the action
of the operator T} as the hopping operator of the doublon

and holon restricted to the 1 doublon-holon (DH) pair
subspace. Note that we have kept the term T3|¥;); in
the above equation, although it will give the same order
corrections to the dynamics of |¥g); as the terms that are
neglected. The reason is that it accounts for the effects
of the finite bandwidth of excitations, which can give rise
to a form of heating due to the creation of doublon holon
pairs. We will discuss these matters more in what follows.

We will restrict our attention for now to the regime
in which the frequency is much larger than the hopping
amplitude t5; one continues with (3), by approximating
the hopping operator within the single DH subspace T,
by its time average, (Appendix A)

27/ w

@ dt’ Ty
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where 7, stands for the Bessel function of the first kind
and ¥;; = (— Yoo c;facjg) is the hopping operator for the

(4)

electrons. The operator P Dy Py is the hopping operator
for the doublon and the holon. The second equation of
(3) reads thus:

e—i(U+T)E i, (ei(U+T)t|\I,1>t) =Ty W) (5)



Integrating both sides, and fixing the initial conditions
such that the lower limits of the integrals cancel each
other, one arrives at:

i} ¢ P
; (ei(U+T)t|\I]1>t) :th/ g iU+ Z

(ig),m

[ (Tonlug) ™" b) + (6 0 5) || W)
G
In the above equation we have used e4sinwt —
S0 TIn(A) et Noting that [¥); is a slow func-
tion of time, one can integrate by parts and drop the
resulting integral, as being higher order in ¢5:

—inwt

W) = —th{ > (0t - ol

ij),n
+ (i Hj)} + 0 (t/U?)
(7)

The remainder is O (t7 /U?), because it comes from ne-
glecting an integral which contains a factor of 1/(U —nw)
and a time derivative of |¥g);, which has leading order
contribution proportional to t; /U?, as we will see. Note
also that we are collectively showing all U — nw by U in
the argument of @. One can plug this back into the first
equation of (3) to get the following relation for the time
evolution equation of |¥g);:

0 Wo)e = Y

(ig) (i’ 3"),mn

[( 70 () Girgri (U — nw) |‘1’0>t)

+(i<—>j)] L e ),
(8)
where

i(m—n)wtj

mno(t)=—e —n(ij) Tm (wirjr), (9)
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and the operator
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creates a DH pair at (i,;), propagates it according to
(E +T)~!, and finally annihilates the pair at (j’,').

Let us first consider a situation where U — nw > t),
in equation (8), under this condition one is able to ne-
glect T" in the operator + = which appears in G (U -
nw) and thus G(U — nw) can be well approximated by
t,% Py 011 = anUPO} Noting that the fraction ﬁ
is a number, and that Pyt;; 0P = (% —-28,;- Sj) Py,
the evolution equation for |¥g); becomes:

=% a0 (3 -

(i7)

7 8t|\110 S’L : SJ) |\I/0>ta (11)

with,
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Since J;;(t) is periodic, the above equation of motion
can be treated using the Floquet formalism. By virtue
of a high frequency expansion, the Floquet effective
Hamiltonian can be expanded in a power series in 1/w,
Het = 3> H,/w", where H, is (’)(J"+1) When the
driving frequency w is much larger than the exchange en-
ergy, the leading term is given by time averaging [3, 4]:

w 27r/w

o )y |20

(i5)

e = + O3 Jw) .

(12)
Here we have dropped the constant term. With time
averaging one arrives at the effective exchange parameter:

oo

27w
- w
Jij = %/O dt J(t) =

n=—oo

At} T3 (ui) (13)
U—-—nw
This shows that the effective spin exchange interaction of
the Floquet spin Hamiltonian associated with the bond 7j
is renormalized due to the periodic driving, and becomes
dependent on both the frequency and amplitude of the
drive, Jyjy = 07 4t7 T2 (ui;) /(U — nw). Moreover,
the summation over n shows the contribution of all the
virtual DH excitation processes which absorb/emit inte-
ger numbers of photons, and each n—photon process is
weighted by J,2(u;;). The energy of the virtually created
DH pair which absorbs/emits n photons is just U — nw
because the effects of DH hoppings are neglected. Note
that this is a reproduction of the results reported in pre-
vious studies [24, 26, 36].

One expects the above result to be valid up to large
times [34], i.e. (quasi-)exponential in the ratio of fre-
quency to effective exchange energy scale, t,% /U, and not
after that due to Floquet thermalization of the system;
the system becomes featureless and locally indistinguish-
able from an infinite temperature system, due to the ab-
sorption of energy in the form of reorderings in the spin
configuration of the system.

However, the system would also be heated up by ab-
sorbing photons to create doublon-holon pairs. When the
rate of DH generations is non-negligble, the local prop-
erties of the system can no longer be captured by the
low-energy spin dynamics.

The result in equation (13) shows no imaginary part for
the effective exchange interaction, hence the effective Flo-
quet Hamiltonian dynamics in the 0-doublon subspace
shows no departure from this subspace; thus the physics
of doublon-holon creation is not captured by this result.
The reason for this is that the finite band-width of the
virtual doublon-holon pairs in the time dependent pertur-
bation theory is neglected by dropping 7" in the definition
of G (equation (10)) . We will study the effects that arise



from restoring the finite bandwidth of these excitations
next.
With the above considerations in mind, one can think

The above series indicates that one should take into ac-
count all the possible virtual hopping processes taking
place for the virtual doublon holon pair. The effect
of considering all virtual hopping processes is two-fold.
First, it introduces subleading corrections to the evolu-
tion equation for |¥y); (analogue of (11)) — these correc-
tions can be of the same Heisenberg-interaction form as
n (11), and may include new forms like four-spin inter-
actions. Note that we have already dropped comparable
corrections by working up to the second order in our time
dependent perturbation theory. Second and most impor-
tant for our purposes, they account for the effects of a
finite band width of the virtual excitations involved. To
treat this in what follows we make a key assumption: we
only consider the hopping processes which bring the DH
pairs back to where they were created, with a final spin
configuration which is identical to the initial configura-
tion. Taking the other nonlocal processes into account
will bring in higher order effects in the interaction terms
and also the bandwidth of excitations. With the above
assumption, it follows that

10 Wo)e = E: (HE™ ()| Wo)e) +

zJ) m,n=—00

(i < j), (15)

where

mn T
H}Y U/cw/ ¢ioCio gan(U — nw) ,

=2 tfy
(16)

and gan(FE) :t<\I/0|c;Ucw (B+T)~! cjgcjg|\llo)t is the DH
Green’s function, and f/7"(¢) is defined in equation (9).
Note that the dependence of gan on (4, j,0,0") and also
the state |¥q); is understood despite the notation not
showing it.

B. The Green’s function

To calculate the Green’s function of the virtual dou-
blon holon pair, we decompose the time-averaged DH
pair hopping operator T into a sum of a doublon-hopping
and a holon-hopping term, T =Ty + Ty, with Ty and Ty,
the hopping operator for the doublon and the holon in the
1-doublon subspace. In principle, the motions induced
by T (which is the time-averaged hopping restricted to

of expanding G in equation (10), in a power series as
follows:

the 1-doublon subspace), for the doublons and for the
holons are correlated, but following [44], we neglect the
correlations between the motions of the doublons and
the holons. We also add an infinitesimal negative imag-
inary part to the denominator of the Green’s function
which can be interpreted as the reciprocal of the time
over which the drive is turned on.

. 1
gan (B —i6) = (Wole i (55 ) locsal )

E+T—i

ds) 1
—i [ = wlet ey ———e
Z/ o (YoleieCio s
1
. —
Foat T, GtV
dQ)
—i/2— gn(Q2 — i0) ga(E — Q —id),
™
(17)
where gq and g, are the doublon and the holon Green’s
functions:

1
gn(E —id) = <\I/0|CJU ——== ¢jo|Vo),
E+T, —id (18)
E— 6 = \IJ O S —— T qj .
ga(E —id) = (Yolc Er T, i ¢ie| Vo)

Let us emphasize once more that in order to obtain the
result of equation (17), we have assumed a mean field
approximation to be valid and that the motion of the
doublon and that of the holon are not correlated. [44]
To calculate the Green’s functions defined above, we
work in the retraceable path (RP) approximation pro-
posed by Brinkman and Rice[37]. To compute the
Green’s function for a holon, for example, with the same
initial and final locations and spin configurations (as in
(18)), one needs to consider all the hopping processes
which bring the particle back to its original location, and
in the meanwhile bring the spin configuration back to the
original one; in the RP approximation scheme, this can
be done if one takes every path that starts at the given
location and terminates at the same point, with the con-
straint that the hopping holon should exactly retrace its
forward going path in its way back to the original loca-
tion. With this constraint, every spin reordering that is
done in the forward going path is corrected when the par-
ticle is getting back to its original position. Note that this
prescription does not capture all the possible processes;



what is missing is the contribution by the paths that are
closed loops and keep the final and initial spin configu-
rations the same. As Brinkman and Rice showed, such
closed loops will contribute first at order t,lf in the anti-
ferromagnetic spin background for example, and are thus
negligible. Note that the single doublon Green’s function
has the same analytical form as the holon Green’s func-
tion.

Finally gqn for a generic state on the right hand side of
the first line of (15) can be approximated using the con-
volution integral in (17) in terms of g, and gq, which are
calculated using RP approximation. With this prescrip-
tion, as we will see, the state dependence and also site
dependence of the Green’s functions gy, ga and therefore
gdn, when non-zero, are dropped. For a brief review of
the RP approximation, we refer the reader to Appendix
B.

As is shown in the appendix, after Ref. 37, one has the
following form for the holon Green’s function in the RP
approximation:

0 (E) = s )
E [(z —9) 42T 4z — 1)13,21/E2}

where z is the coordination number 5, =t5,Jo(u;;) is the
time-averaged hopping amplitude between sites ¢ and j.
Here, we take the polarization of the radiation such that
the electric field amplitude is isotropic and thus u;; does
not depend on the bond directions, for the sake of sim-
plicity. However, in principle u;; is different for different
bonds which makes the hopping #; anisotropic, and one
needs to solve coupled self-energy equations for different
bond directions self consistently in order to calculate the
holon’s Green’s function. A first approximation in that
case will be to average the hopping amplitudes along the
different bond directions. (Please refer to Appendix B for
more discussion.) This kind of treatment is also adopted
in the case of multi-orbital Mott insulators as will be
discussed in Sec. II.

It is obvious from the form in equation (19) that gy (FE)

behaves as + for large values of E. Furthermore, gn(F)

when viewed in the complex E = E/(2f,v/z — 1) plane
has a branch cut with the two end points E =1 and
FE = —1. Note that gq has the same analytic expression
as gn. With the above form of the Green’s function for
the doublon and the holon, gqy, is calculated as discussed
in Appendix C. A plot of gqn for z = 6 obtained this way
can be found in Figure 1.

With gqn at hand, it is easy to derive the effective ex-
change parameter, similar to what was done previously:

D AT (wig) gan(U —nw) . (20)

n=—oo

It can be seen from Figure 1 that gqn(U — nw) has both
real and imaginary parts when |U — nw| < 4tpv/z — 1;
the real part contributes to the ordinary exchange pa-
rameter, while the imaginary part can be related to the

— Re

——-Im
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4 (QE}L\/Z — 1)41
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FIG. 1: Real and imaginary part of the Green’s function com-
puted with the Retraceable Path approximation. The Green’s

function go(E) = & is plotted for reference. The value of

E
z = 6 is chosen for this plot.

doublon-holon creation rate at bond (ij) and thus also to
the increase in the local density of DH pairs. From Fig. 1
it is inferred that the imaginary part of gqy, is always pos-
itive, this along with the fact that the effective Hamilto-
nian has a term like Lj (—% + S;- Sj) for every bond
guarantees that the creation rate is always positive; in
fact the creation rate is zero for neighboring triplets and
positive for neighboring singlets. Note that the exchange
interaction parameter derived in the previous section (13)
by neglecting DH hoppings, can be consistently recovered
by noting that gqn (U — nw) behaves similar to U — for

sufficiently large values of (U —nw) / (vz — th)

The above considerations show that the Floquet spin
model breaks down when the photon energy w (setting
h=1) is in resonance with the interaction energy U, i.e.
nw is around U. In such resonant regime, the periodic
driving would generate real DH pairs, and the descrip-
tion of the system by the low-energy spin dynamics is
no longer valid. As shown in Appendix C and discussed
above, the excitation spectrum has a finite bandwidth
4+/z — 1t;, due to the hoppings of the DH pairs. As a re-
sult of this, within the approximation scheme used here,
real DH pairs are generated as long as the frequency is
within this excitation band. On the contrary, when w is
outside the DH band, the DH creation rate is tiny and
the description of the system by an effective Floquet spin
Hamiltonian is still valid, but the expression of of Jy;j
would be modified due to the DH hoppings.

One can further find an expression for the rate of the
local DH pair creation (when close to a resonance) using
the above formalism. The imaginary part of gan, when
non-zero, has a typical value of order + ol this corresponds
to an imaginary effective Hamiltonian of order th, and
thus a time scale for DH pair creation rate ~ ;—; while
on the other hand, the time scale for spin dynamlcs due
to the effective Hamiltonian is of order g . Clearly the

latter is much larger in the insulating limit. Thus in or-
der to find the DH pair creation rate, we would restrict




our attention to the ground state spin configuration of
the static Hamiltonian, which is antiferromagnetic order
in our case. In other words, the Floquet spin dynam-
ics which is induced by turning on the laser radiation
can safely be neglected. As pointed above, the rate of
increase in the density of DH pairs pgn is basically the
doublon creation rate in this spin ground state; this is
nothing but the decay rate of the spin ground state cal-
culated using the imaginary part of the Green’s function
described above, and thus takes the following form:

) 1 N 0.0
PP = DY 477 () T gan(U — nw)

(ij) n==00 (21)
1
X <\I/0| |:Z — Si . S]:| |\I/0>

where one can use the spin ground state of the static
Hamiltonian for |¥y) in this relation. A consistent result
can also be derived using Fermi’s golden rule.

One should note that in order to take the effect of
bandwidth of DH pairs into account we have made a
partial summation over virtual hopping processes, while
neglecting other terms in the perturbation theory which
can be of the same order; this can be justified as fol-
lows: because the hopping parameter is considered small,
all these lower order contributions (including the virtual
DH hoppings) play subleading roles when compared to
the dominant exchange term which is derived using strict
perturbative expansion, unless one is close to a resonance;
in this situation the strict perturbation expansion gives
a divergent result, which can be made finite if the higher
order effects of DH virtual hoppings are taken into ac-
count, this corresponds to the terms that are retained in
our considerations. Other higher order corrections, on
the other hand, can be argued to have small contribu-
tions everywhere. One can also argue in more technical
terms that the higher order contributions that are kept
here, i.e. virtual hoppings of the doublon and holon that
take the two particles back to their original positions, are
present for every process considered. In a diagrammatic
perturbation theory language, every virtual hopping pro-
cess can be dressed by the above contributions at each
step, and thus we are in fact calculating the normalized
hopping parameter by the partial sum performed here.

C. Small frequency regime

With the form (21) for the creation rate of DH pairs
at hand, we would like to turn attention to the study
of doublon creation rate at small frequencies. At very
small frequencies, one expects the absorption of a high
number of photons for supplying the energy needed for
the creation of a DH pair, as a result of this one expects
large values of n (of order U/w) to only contribute to
the sum in equation (21). One can further justify this
point by Noting that the function Imgqn (U —nw) in (21)
is nonzero when its argument is in a window around 0

(figure 1), and thus only terms with n ~ U/w contribute
to the sum.

Turning to the Bessel function in the sum, we note that
a Bessel function of large order is essentially zero until
its argument gets comparable to its order, this can be
seen by checking the integral representation of a Bessel

function J,, (A) = W 2 fw dt etAsinwt —inwt.

o ; when n is

large and A is not, the factor e oscillates rapidly
and in one of its periods, e*¥"“? is almost constant,
this makes the integral negligible. The integral becomes
not very small, only when A becomes comparable to n.
As argued above, n should be of order U/w and thus
noting that the argument of the Bessel functions in (21)
is w;; = eFa/w, with a being the lattice constant, one
needs eFa ~ U for a non-negligible absorption.

To present a more accurate treatment, we will focus
on a given bond and assume that the spins on the two
ends of the bond are aligned antiferromagnetically. The
change in the local density of DH pairs due to creation
of a pair at the two ends of a given bond (ij) reads[50]:

—inwt

(22)

N~

Z 4¢2 J (uij) Im gan(U — nw) x

n=—oo

(r%pdh

The site indices will be suppressed in the what follows.
First, we present a numerical evaluation of the sum in
(22) for small values of w, and different values of the
electric field energy ® = eFa = uw.

The rate of change in the density of DH pairs given
by equation (22) is evaluated numerically for a range of
small frequencies, while the electric field energy is var-
ied. In this section, all energies are expresssed in units
of 2tj,v/z — 1, and all times in units of its inverse. A plot
of DH creation rate for U = 10 can be found in figure 2.
Figure 2 shows that among many field dependent behav-
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FIG. 2: Semi-logarithmic plot of DH pair creation rate at a given
bond. This plot shows how the DH creation rate behaves for
small frequencies, for different values of electric field energy near
U = 10. All energies are expressed in units of 2t,+/z — 1 and thus
ﬁ % Pdn Versus Mﬁ is actually plotted here.



iors, something similar happens for different field ener-
gies, at very small frequencies; the creation rate shows a
saturation for different values of field energy, i.e., a con-
stant value is maintained over two orders of magnitude of
change in frequency. This suggests the possibility for ex-
istence of a zero-frequency limit in the DH pair creation
rate.

The small frequency saturation value can be extracted
numerically for different electric field strengths, a plot of
which is presented in figure 3 as the data points. First,
this plot shows that a nonvanishing zero-frequency limit
exists only if ®/U > 0.8, i.e., when the electric field en-
ergy is above the lower bound of the DH excitations,
and below this value it is negligible (zero within our ap-
proach). Second, it also shows that the maximum zero-
frequency limit of the DH creation rate occurs at an elec-
tric field strength just slightly higher than U. This zero-
frequency limit of DH creation rate can also be inter-
preted as the rate for the breakdown of a Mott insulator,
when exposed to a static electric field and thus we indeed
expect from figure 3 that the maximum static breakdown
rate happens when @ is very close to U.

0.02 |-

FIG. 3: The zero-frequency limit of DH creation rate plotted as
a function of electric field strength. The data points correspond
to the values of zero-frequency limit, obtained by finding the sat-
uration values at small frequencies for different field strengths nu-
merically. The solid line on the other hand shows the prediction
of the analytical result (24). This shows that there is a very good
agreement between the two results.

We then turn our focus to an analytical study of the
asymptotic behavior of the sum in equation (22). Since
the imaginary part of the Green’s function gqn(F) is only
nonzero when its argument sits in the window (U -2, U+
2), the sum can be rewritten as:

Z jf(q)/w) Imgan (U — nw)

n=—oo

U/w+2/w (23)
Z T2(®/w) Imgan (U — nw).

n~U/w—2/w

S

In the limit of very small frequency, n is a large number
for all the terms in the above sum, and thus one can use
an asymptotic form for Bessel functions of high order
(Appendix D). After substituting the Bessel functions
with the asymptotic forms, the sum can further be con-
verted to an integral, and thus finally the quantity S in
the zero-frequency limit takes the form (Appendix D):

& 1/2
= [ (1
w—0 ™ Ju—2 (%) —1
(24)

This analytical form for the zero-frequency limit is
plotted and compared to the numerical result in figure
3 as the solid line, and it can be seen that there is a very
good agreement between this analytical result and the
saturation values found numerically. Indeed, this shows
that there is a zero-frequency limit for the creation rate
of DH pairs and thus as mentioned above, the breakdown
rate of the Mott insulator due to a static electric field,
can be read from figure 3. These results can be easily
generalized to the multi-orbital Mott insulators by the
treatments introduced in section II B.

Imgan (U — 7).

R =

II. FLOQUET SPIN-ORBITAL MODEL
A. Time Dependent Perturbation Theory

The previous discussion of the periodically driven Hub-
bard Model can be generalized to the case of periodically
driven multi-orbital Mott insulators with Kanamori local
interactions [45]

Hyx =U Y fiathioy + U Y

i, i,a<f3,0,0'

— Jg Z

i,a<fB,0,0'

+JP Z C-iraacja—aciﬁa’ciﬁ*ff’ (25)
i,a< 3,0

NiaoNiBo’
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where U and U’ are the intra-orbital and inter-orbital
direct Coulomb interactions. Jy and Jp denote the on-
site exchange interaction (Hunds’ coupling) and the pair
hopping respectively; the sets of indices {i,7}, {a, 8},
{o,0"} denote the lattice sites, orbitals and spin degrees
of freedom. As in the case of Hubbard model, the effect
of the laser radiation is manifested in the kinetic energy
via the so called Peierls substitution,

Ti= 3 (toss €5 ey, +he), (26)

(ij),0B,0

where t;,, jg represents the hopping amplitude from or-
bital 8 at site j to orbital « at site i. Note that Her-
miticity dictates t;q ;3 = t;ﬂ,w along with u;; = —uj;.
In the multi-orbital case, we also need to consider the
crystal-field splittings (Hcor). In addition to the giant



tog — €4 splitting in typical perovskite transition-metal
oxides, there may be additional splittings within the ¢,
and/or e, manifold due to the octahedral rotations, tilt-
ings [46] and Jahn-Teller distortions [39]. The crystal
field splitting between to, and e, levels is on the order of
a few eV, but the splittings due to octahedral rotations
and Jahn-Teller distortions are typically much smaller.
Throughout this paper we only consider the t5, orbitals.
Within the quasi-degenerate to4 levels we further include
the crystal-field splittings from various octahedral distor-
tions and tiltings,

HCF = Z Z €i,aB Cjacrci,@a . (27)

i afo

Including all these terms, we find the total periodically
driven Hamiltonian as H; = T; + Hg + Hcp.

We consider the limit that the typical interaction en-
ergy scale (a few eV) is much greater than the hopping
energy scale (~0.1eV in 3d transition-metal oxides), and
consider T; as a perturbation to Hgk. In the non-driven
case, the low-energy physics is dominated by the spin and
orbital dynamics, which is well described by the Kugel-
Khomskii [39, 47] and similar spin-orbital models, and
can be derived using time independent second-order per-

i3t|‘110>t = — Z Z TIn (ng) Tm (uﬂ) ei(m—n)wt Z

n,m (ij) aBoa’Blo’

where Hy is the Kanamori interaction operator defined
in (25).

The Floquet spin-orbital effective Hamiltonian can
now be obtained by time-averaging:

Hef = Z Z T2 (uij) Aij(nw), (30)

n (ij)

with A;; defined as:

A, () = — b !
Al] (TLW) - [Z (thjﬁt]a’zﬁ’ Ciaro'Cipror Hx — nw

cjaacjﬂa) + (Z A .7) Poa

(31)
with the summation done over the set of indices
{a,B,0,d/,5,0’'}. To calculate the operator A;;, one
should note that it creates a doublon-holon pair at sites
1,7, then acts on the resulting state with the inverse
Kanamori Hamiltonian, and annihilates the pair finally.
It is a 0-doublon to 0-doublon operator and thus can be
written in terms of spin and orbital operators acting on
the 0-doublon subspace. As mentioned above we will
compute this operator for the case of three orbitals.

turbation theory. bly-occupied states have different en-
ergies for different spin and orbital configurations. We
also neglect the Hcr in the calculation of energies of the
virtual double-occupancy states, since Hcorp has a much
smaller energy scale than H.

To find an effective equation of motion in this model, in
an approach similar to the one used in the single orbital
case, we expand a generic state of the system in terms of
the states with different numbers of double occupancies.
We then truncate the equations of motion similarly to
arrive at:

i8t|\110)t = PO Tt|\IJl>t7

- 28

10¢|V1)s = Hy |V1): + Ti|Wo)s + 17| W) %)
where T = ]31Tt1f’1, and the hopping operator T} in this
case is multi-orbital. First, we consider the case where
the effect of hopping of virtual excitations is negligi-
ble, which occurs when one is sufficiently away from a
resonance. In this case, one can safely drop the term
Py T;|T4); in the second equation of (28), and with the
same manipulations done in the single orbital case, one
arrives at the following form for the effective equation of
motion of [¥q)y:

1 t

tiajﬁtja’iﬁ’ C;'a’cr’ci,@’a/ HK _n Cioza'c_j,@a |\I/0>t + (Z AN .]) )

w

(29)

Noting that Hyx has four distinct eigenvalues Fk 1 =
U —Ju, Fxko=U+Ju, Exs=U—Jp, Exau=U+
2.Jp, one is able to expand Ay;(nw) as follows

) Aiis Aiio
A, _ ig, ig,
J(no.)) U—-—Jg—nw U +Jg—nw (32)
+ Aij,g Aij,4
U—-Jp—nw U+2Jp—nw’

where Aijﬂn is the spin-orbital operator corresponding to
eigenvalue number m. One can further decompose these
operators into spin and orbital parts as follows:

3 N N

Aija = (Z +8;- Sj) [Fij2 — Aijal
" 1 . . .
Aijo={—-7+8:5; (Fij2 + Fija — Yijsl s

1 (33
Aijs = (_Z +8Si- Sj) [Fis.3 — Yijoal
R 1 A
Aij74 = _Z + Sl . Sj Yij,4-

In the above equations, 7;;», are the following orbital



operators:
71.771 - Z A Bi ZOMJBJ Jﬂjiﬁi + (l e .7)7
azﬁ 5]

Yij2 = 2 Z AzaiﬁiAijﬂj tia;iB; tia,iBis
a;iBia B

71] 3= =2 Z AalBZ g tiaijaj tjajiﬁi =+ (7’ A j)a
alﬁla]

Yija = 3 Z Al 5 AL gty tiyis + (16 ).
alﬁla]ﬁj

(34)
We have introduced the orbital operators Afl g =
" Cjaia'c’iﬁia' Pi, with a;, 8; = 1,2,3, as a basis for or-
bital operations at each site 7, that contains only one
electron. Note that P} is the projector onto the states
with one electron at site i. With the above manipulations
one is able to derive an effective exchange J;;, which is
an orbital operator in the present case:

> T2 (uig)

n=—oo
» Vig2 — ¥ig1 | Yige + Vi1 — %
U — Jg — nw U + Jg — nw
+ Yij,3 = Vija Yij,4
U—-—Jp—nw U+2Jp—nw
(35)

It can be seen from (33) that the last three contribu-
tions only arise when the adjacent spins at (ij) are in
a singlet state, this means that the virtual processes re-
sponsible for these terms only occur when the state of
the adjacent spins is a singlet.

It is also worthwhile to study the special case U’ =
U — Jg and Jp =0 [41]. With such an assumption Hg
is rotationally invariant and there are only two distinct
multiplet energy levels: Eginglet = U for spin singlets, and
FEiviplet = U —2Jy for spin triplets [41]. Indeed, with this
assumption Fx 1 = U —2Jg and Ex o = Ex 3 = Fxa =
U, and the effective exchange operator becomes:

2 71]2_'-)/”1
Z T (t35) < —2JH—nw+

n=—oo

Yij2 + Vij1
U—nw ’
(36)

B. Bandwidth of Excitations

Now we will take into account the effects of the multi-
orbital doublon-holon bandwidth. This is quite complex
in comparison to the single-orbital Hubbard model and
we will consequently make a number of simplifying as-
sumptions in order to obtain a tractable result. While
these approximations are not fully controlled, we believe
they do not qualitatively affect the results. First, we spe-
cialize in this part to the case U’ = U—.Jy and Jp =0, and
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note again that in this case there are only two different
eigenvalues for the Kanamori Hamiltonian correspond-
ing to singlet and triplet virtual states: Esinglet = U, and
Etriplet =U —2Jy.

We have to consider the multi-orbital equations of mo-
tion (28) once more and this time we will not neglect
the hopping term for the excitations, to see the effect
of finite band-width of excitations in the multi-orbital
model. To this end, we expand the 1-doublon component
as |U1); = [¥5); + |PY);, where |¥5) and |¥}) denote the
single-doublon states with their doublon in a spin singlet
state and a spin triplet state. As discussed before, we
neglect the excited states with more than one doublon.
The equations of motion can be written as:

i0;| o) = Py T (w5)e + [Wh)y),
0| W3), = U |W3), + PP Ty W),

+ TS ), + TS )y, (37)
0 W5)e = (U = 2Ju) |W4): + Pf Ty W),

+ T )y + T[Sy

Here f’f and Pf are the triplet and singlet projection
operators. The hopping operators are defined as Tt‘lb =
POTy PP (a,b = s,t). We continue by replacing 71 and
Ttss by their time averages, similar to the single orbital
case, and also by neglecting the two cross hoppings Tft
and T}* (see Appendix A). One is now able to write down
the 1-doublon components in terms of the 0-doublon com-
ponent at arbitrary time, and through manipulations
similar to those in the single orbital case one arrives at the
following form for the time evolution equation of [¥g); in
the multi-orbital case:

i0,|To),

= Z [( imj?ij(t) G?’j’ij(nw) |‘I’0>t)
(i3)('5"),mn,a (38)

+(i<—>j)} +[i' < 5]
+ Her [Po)

where fI (1) = ="M= T (w0 ) T (uig), and the
index a in the sum runs over {s,t}. Note that we did
not include the Hep term in equation (37), as we are
neglecting it compared to Hk, but it has been included

n (38). The operator GZ,J,U( w) is defined as

afa’B o0’
(U —nw+T=)~1
afa’B’ o0’

(U = 2Jg — nw + T~ Pt el

(tiajp tirgr grar) Pochigrgiciraror

PlS Cjaacjﬁa' PO ’

(tiajp tirsr grar) Pochigrgiciraror

iaoCiBo PO
(39)



Similar to the single-orbital case, we also make the fol-
lowing assumption for the operators G7 ;/,;; and Gg,j,ij:
we only consider the hopping processes which create DH
pairs at the given sites, propagate them around and bring
them to their initial positions and annihilate them, with
a final spin-orbital configuration which is identical to the
initial configuration. Under this assumption, equation

(39) can be expressed as

G(lezg (nw) = Z

afa’p o0’

tia,jp tjpiar 9an(U* — nw)

po C;’B’U’cia’U’ Pla Cjacrcjﬂa po’
(40)
with a being either s or t, with U = U and U* = U —2.Jy
and where
gcbih(U - TLOJ) = <\I]0|C;'50-Ciaa
Ps
X 71_01.
U—nw+Tss '°
gctih(U - 2JH - TLOJ) = <\I]0|C;'50-Ciaa
P} i
U—2Jg — nw+ Tt '@

Cjﬁ0|\110>5

X Cj30|\110> .

In the multi-orbital case, g;(hs) is calculated using the

analogues of equations (17) and (18), assuming the mo-
tions of the doublons and holons are uncorrelated:

s . [ dQ . s )
98 (B - is) = —z/g gn(Q —i6) g\ (E — Q —id),
(42)
where g, and gg(s) are the holon and the doublon Green’s

functions which are defined in a similar fashion to the
single-orbital case:

1
gh(E - 26) - <\I}0|cjﬁg F + Th — i C]BU|\I]O>7 ( )
~ 43
s . Pr
g(E —i6) = (Yolcias ol W),

E+T® —is

where P{Id projects onto subspace with zero holon and
one a-type doublon and like the single orbital case, we
have assumed a decompostion for the hopping operator
T = T(‘f + T,. We will try to compute the doublon
and the holon Green’s functions using the retraceable
path approximation in a similar approach to the one pre-
sented in section I. One should note that in the multi-
orbital case gy and gq defined above, unlike the single
orbital model, highly depend on the state in question. In
other words, since there are orbital degrees of freedom,
even with the RP approximation g, and gg(s) do not turn
out to be independent of the state |¥() since in general
hopping parameters can be different for hopping events
between different initial and final orbitals.

Noting the above fact, we work in a limit that the
crystal field splitting (within the ¢2, or e, manifold) is
much larger than the intersite exchange energy, so that
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the occupied orbital at each site is uniquely determined
by the crystal field term and is denoted by the orbital
index a = 1. We would like to consider an effective holon
hopping parameter between two adjacent lattice sites ¢
and j as an input to our Green’s functions calculated
using RP approximation; in the classical-orbital regime
discussed above, it is legitimate to introduce an effective
hopping which accounts for hoppings from orbitals [1);;)

to |@) () and then back, which is denoted as tz‘?]ff:

s 1

eff 2 2
(t551)? = §Z(|ti1.,ja| + [tj1ial7)- (44)

(07

In a semiclassical approximation the doublon effective
hopping for both of the cases (s, t) is also taken to be
equal to the above value. The effective hopping defined
above is anisotropic along different bond directions in
general and furthermore, time-averaging (7)) intro-
duces a factor of Jy(u;;) into the hopping amplitudes.
For simplicity we further average over the hopping am-
plitudes along different bond directions, resulting in an
effective isotropic DH hopping parameter for a given site
i

_ 1
t; = ~ Z t%ffjo(uij), (45)

J €En.n.

where “n.n.” is the abbreviation for nearest neighbor.
One calculates the Green’s functions on the right hand
side of (42), with this value of hopping: with this pre-
scription the DH Green’s functions for both singlet and
triplet cases, i.e. g5, and g%, will have the same form,
and this form agrees with the one discussed in the single
orbital case, except for a different effective hopping here;
the imaginary and real parts of such Green’s function can
be found in figure 1.

With all this at hand, using manipulations similar to
those leading to (35) and (36), one is able to write down
the effective Hamiltonian describing the dynamics of the
0-doublon subspace for the multi-orbital case which in-
cludes the effect of bandwidth of excitations:

H =" [Jf(uz‘j) (Fij,2 + Fij1) gan(U — nw)

(ig)n
Lis.s,
T RS (46)

+ T2 (uig) Fij2 = Figa) 9an(U — 2Ju — nw)

3
(iones)]

in which, we have used the orbital operators defined in
(34).

It is worthwhile here to make connection with our
result for the multi-orbital case when the frequency is
away from resonances, i.e. equation (36). The functional
form for the Green’s functions used in the above effective
Hamiltonian can be seen in figure 1; as we discussed for



the single orbital case, when the argument of the Green’s
function is much larger than the effective hopping, and
hence one is away from a resonance, the Green’s functions
95, (U* —nw) look very similar to 1/(U® — nw), and thus
one recovers the previous form (36). Furthermore, when
this argument is close enough to zero, or more precisely
in a window of width of the same order as the effective
hopping, one expects to see nonzero imaginary part for
the Green’s function; this can happen when one of the
excitation energies is close enough to a multiple of the
frequency. Because the Green’s funtion is complex, the
above effective Hamiltonian becomes non-Hermitian and
thus the effective evolution of |¥); becomes non-unitary;
the stronger this non-unitarity becomes, the more dou-
blons are created. Indeed, a DH pair creation rate for the
multi-orbital case can also be derived given a spin-orbital
configuration which will look similar to the one derived
for the single orbital case (21).

In order for the Floquet engineering of the spin-orbital
dynamics to be relevant, one needs to be in a regime
where not many doublons are created and thus one needs
to avoid certain ranges of parameters in which the non-
unitarity of the effective Hamiltonian results in a large
rate of doublon creation. Let us consider a concrete ex-
ample to show how one can study this quantitatively: as
mentioned before, the above effective Hamiltonian is ap-
plied to the orthorhombic titanates YTiO3 and LaTiOg
using first-principles calculations in [42]. There, we show
that the effective exchange interaction for neighboring
sites can be engineered to a high degree but the effective
exchange parameter turns out to be a complex number;
this complex exchange parameter can be interpreted as
follows, its real part shows the strength of the physical
exchange interaction between neighboring sites and its
imaginary part quantifies the rate of change in DH pairs
density. Therefore and as we discuss in length in that
letter, one will be interested in regimes where the real
part of the effective exchange parameter is much larger
than its imaginary part; this results in a much smaller
time scale for the physical exchange interaction dynam-
ics than the time scale for DH creation; this leads the
exchange interaction to be the dominant physical effect
in such a setting.

We believe that the above formalism with slight modifi-
cations can be applied to many other realistic situations
involving driven multi-orbital Mott insulators. In this
formalism, not only the effect of Floquet engineering can
be computed, but also the rate for a channel of heating,
i.e. DH pair creation, can be quantitatively evaluated.

One should finally note that all the discussion assumes
that the system is prevented from heating due to absorp-
tion of photons, i.e. it is kept in the subspace of interest
(the lower Hubbard band is considered here). We have
only studied one channel of photon absorption and heat-
ing in this work, i.e. the one happening due to creation
of real DH pairs in the system. However, there can be
other absorption mechanisms present that will lead to
unwanted heating such as phonon creation, excitation to
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higher bands, etc. We have not considered the latter
mechanisms in this work since these effects depend on
the details of the material in question and thus should
be considered case by case. On the other hand, the heat-
ing due to creation of DH pairs can be studied in a unified
fashion for all materials described by a Hubbard model
at low energies as considered here. In applications to
specific materials, the effect of other unwanted heating
channels must also certainly be accounted for.

III. CONCLUSION

In this work, we have studied the effects of coherent
laser driving of single-orbital and multi-orbital Mott in-
sulators. We have developed the formalism and methods
for calculating the Floquet spin and spin-orbital Hamilto-
nians in single-orbtial and multi-orbital Mott insulators
respectively. We have shown that the effective exchange
interactions are not only dependent on the intrinsic prop-
erties of the materials but also on the properties of the
laser radiation. The increased number of parameters de-
scribing multi-orbital physics enriches the possibilities for
Floquet engineering in such systems. Applications to the
orthorhombic titanates are studied in [42], where it is
shown by realistic calculations that Floquet engineering
in these compounds can be implemented to a high ex-
tent. In particular, even the sign of the static exchange
interaction can be flipped in the Floquet regime if one
uses radiation with properly chosen frequency and elec-
tric field strength.

We have further argued that if the frequency of the
radiation (and its multiples) is kept away from the Hub-
bard interaction scale, collectively shown as U, the heat-
ing due to creation of doublon holon pairs can be avoided
and an effective spin or spin-orbital (in the multi-orbital
case) Hamiltonian can capture the physics of the sys-
tem. In fact, the finite bandwidth of the excitations,
i.e. doublon-holon pairs, which we have shown is of order
vz — 1ty specifies a window for w around U which should
be avoided so that heating is supressed. Using this no-
tion, we have given a criterion for how distant one needs
the laser frequency to be from the interaction energies in
the Hamiltonian describing the material: a complex val-
ued effective exchange parameter is calculated, with its
real part interpreted as the physical exchange interaction
strength; one requires the real part to dominate over the
imaginary part in order for the doublon creation to be
negligible.

We have also derived relations for the doublon holon
creation rates using the imaginary part of the complex
valued exchange parameter mentioned above. Using
these relations, we have additionally studied the rate of
creation of doublon-holon pairs in very small frequency
regime and derived a zero-frequency limit of absorption
which can be related to the breakdown of the Mott insu-
lator in presence of a static electric field. The maximum
rate occurs when the electric field energy between neigh-



boring sites is comparable to the Hubbard interaction
energy scale. This may be observable experimentally.
A potentially interesting subject for future theoretical
study is the effects of selective doublon-holon generation
with specific quantum numbers, i.e. preferential gener-
ation of singlets or triplets, forming a gas of excitations
with controllable internal degrees of freedom. Our equa-
tions for the generation rates of these excitations provide
a starting point for such a study.
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Appendix A: Time averaging the virtual hoppings

In this appendix, we justify the time averaging of virtual hoppings in the time dependent Schrédinger equations
(3) and (37) of the main text.

We first consider the single-orbital case. Consider the left hand side of the second line of equation (3) written in a
different way:

i (at iU+ m) T1), = T Ty):. (A1)
The unitary evolution operator Sy = P, S, Py, defined as satisfying an equation analogous to the above:
i (at iU+ m) Sy =0, (A2)

can be useful, in the sense that if one finds Sy, the solution to the equation (A2), with initial condition S;—g = 1 one
can write (Al) as:

Si 0y (S; 1)) = Ty Wo)e, (A3)
where S~! only acts on states in the subspace invariant under Py. The equation of motion of S; can be written as:
i@t (eiUt St) = eiUt Tt e_iUt (eiUt St) . (A4)

This is similar to an interaction picture time evolution. Noting that the exponentials commute with T,, one notices
that the above equation is of Floquet type and thus the corresponding effective Hamiltonian to leading order is
obtained by time averaging[3, 4]. This fact can also be seen by the following manipulations. Using the Fourier series
for the hopping operator Ty = 3, €™“!T},, eq. (A4) reads:

i@t (eiUt St) = ZeinWtTn (eiUt St) . (A5)
Noting T, = T, one has:
Z-e—i’ft o (ei(U-i-T)t St) _ Z einthn (eiUt St) ) (AG)
n#0

Moving the factor e~iTt to the right hand side, one can integrate the above equation and do integration by parts on
the right hand side, keeping in mind that the derivative of (eZUt S’t) is of order ¢, (this is similar to what was done
in the main text):

n#0

t _

_/ dt' ei(T—i—nw)t'Tnat, (eiUt/ St/) } (A?)
0

o)

The first line on the right hand side is of first order and the second line of second order and thus the right hand side
is first order over all.
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Finally, the solution can be obtained to leading order:

w

S, = (Ut L o (t_h> , (A8)

and plugging this back into (A3), one obtains the desired result.
One can generalize this to the multi-orbital case also, noting the fact that the multi-orbital doublon can be in a
singlet or triplet state and so the following decompositions should be considered:

P=P+ P!, U=UP+(U-2J)P, (A9)

Tt _ Ttss + Ttst + Ttts + Tttt7 (AlO)
with 72> = PAT, PP, The analogue of eq. (A4), can be written as:
id, (eiUt S’t) — (Ut =il (eim gt)

. (A11)
_ |:Ttss T g T 2Tty st efi2,]t} (eiUt gt) .

A similar argument like the one carried out for the case of a single orbital can be applied here also, except that when
2J and nw are not close to each other (compared with ), T, 2/t and T5* e=%2/t do not have constant terms. Thus

the final form for S‘t reads:

g = e H(U+T=+T")t 4 <t_h> , (A12)

wWo

where t;, in O show the typical hopping parameter and wq in the denominator stands for either of w and J.

Appendix B: Overview of the Retraceable Path approximation

In this appendix we present a short discussion of the Retraceable Path (RP) approximation of Brinkman and Rice
[37]. With the notation of the main text, one can write the Green’s function of a single hole in a single band Hubbard
model as:

1
gn(E) = (Wolcl, ELT. ¢jo| Vo)

T, T\ T\’
e (-3)+ (-8) +(-3) +-
Note that [Wo) has one electron per site and thus the state cjo,|Wo) has a hole at site j, with o; showing the spin at
site j in state |¥g). The series on the right hand side shows that one should consider all the possible paths including
arbitrary number of holon hoppings that connect the state with a hole to itself. Moreover, the final spin configuration
should be the same as the initial. The RP approximation amounts to considering only paths that start at j and
terminate at the same point, with the constraint that the hopping holon should exactly retrace its forward going path
in its way back to the original location. With this constraint, every spin reordering that is done in the forward going
path is corrected when the particle is getting back. What one is missing here is the contribution by the paths that
are closed loops and correct all the spin reorderings in some way.
We use the following ansatz for the one holon Green function, with the introduction of a self energy:

(B1)
(Olch,,

Cja'j |O>

== q

1

»0 = gr—s@)

(B2)

Since we are considering paths with any number of hoppings, at each step of a path for the remainder of the path,
one should consider all the paths that start at the given point and come back to the same position, except for the
one going backward. This is very similar to what we are trying to compute, and thus in order to perform an infinite
summation over the retraceable paths, one introduces a summation of all forward going paths at a specific step of the
path. At a given step of the process, since the paths can just go forward there are (z — 1) choices for direction of the
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next step, with z the coordination number. The following equation for ¥4, will result in a self-consistent summation
over forward going paths with arbitrary lengths, something that is present as the future of every step (other than the
first) in a retraceable path:

(-8

M) = mrosa ey (B3)

1i\/1—4(z—1);—’2‘2 . (B4)

Where the hopping parameter in 7T}, is shown as t;. The self-energy can be written in terms of the sum of all the
forward going paths as:

which has the solution:

YAE) =

N =

B(E) = —34(B), (B5)

because at the first step of each path there are z choices of direction rather than z — 1 choices for the holon. This
finally results in the following form for the Green’s function:

2(z—1)

: B6
E [(z—z) +2y/T—4(z - 1)t,2L/E2} (20)

gm(E) =

The solution with a minus sign in equation (B4), is chosen so that the above Green’s function behaves as % as B — oo.

One can also consider the case of anisotropic hoppings which results in solving more self-consistent equations.
We will work with hopping parameters ¢, that are different for different directions. One can further introduce a
summation over all the forward going paths in different directions, denoted as Ef}(E). Which should satisfy the

following self-consistent equations:

t2/E?
A _ ©
¥, (E)

- A A )
1= (E) - ZM#M X (E)

p=1,...,d. (B7)

And the total self energy used for obtaining the Green’s function can be written in terms of the Ef as follows:
S(E) =2) Si(E). (B8)
n

A first approximation for finding the solution to the above self consistent equations (B7) would be to use the average
hopping > ulu for every t,; one can make this approximation better by iterating the solution obtained this way in

equations (BT).

Appendix C: The frequency integral of the DH Green’s function

In this appendix, we show how the convolution integral in equation (17) can be calculated in order the get the
functional form shown in figure 1.
The holon and doublon Green’s functions in the RP approximation can be written in the following form as well:

2(z—1)

E(z—2)+2y/E? —d(z— )&

with the definition of the square root function in the denominator, in the complex E plane, presented in Figure 4a.
It is easy to check that with this definition and the signs above, the two Green’s functions fall off like % for large F.

Note that we define the dimensionless frequencies as E = #

gn(E) = ga(E) = (C1)

In order to find gqn, one should do the frequency integral in equation (17), with the integrand having two branch
cuts as shown in Figure 4b. Using Cauchy’s theorem the contour (—oo, 00) can be deformed into a contour that turns
around the upper branch cut, and the integral can be done for this contour. In four different ranges for E the integral
over this contour is computed in the following:
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A
3
(E—a)(E~D) -1 1
= JryT; ei(01+02)/2 — _
E-1 E+1
(a) Definition of square root in the complex E plane. (b) The contour for computing g&l.
FIG. 4: Appendix C figures.
e Casei) FE>2
_ \1/2
(58 vZ=1) gan(B) = (- 1)* /1 dQ %) 1 (C2)
— Up Z — ddh = (Z — z =3 3 ~ N N N 1/2.
2 S EEEEDEE (B a2 42 (B2 1)
o Caseii) E < —2
_\1/2
R P (.0 1
—thVz—1 gdh(E):(z—l)z/ dQ = n (C3)
— ~ ~ ~ ~ /2
2 -1 (At )+ 22 (B =)z -2)— 2 ((-B+ @)~ 1
e Caseiii) 0<FE <2
_\1/2
(71' B \/—) ~ ) E-1 N (1—QQ> 1
—tpVz—1 gdh(E):(z—l)z/ Q= 5 il
_ . - 72
2 o PO Gy 94 (B Q2 1)
12 (C4)
T (1 — QQ) 1
—i—(z—l)zz/~ dQ & R — 7
Bl (2t +2% (B _g)—2) i (1-(-E+0p2)
e Caseiv) —2<E<0
~ N\ 1/
(Z 8 Va=T) ganlB) = (s - 17 / o %) !
5 th V2 — Jdh =& = . ~ ~ ~ - ~ 1/2
2 Br1 o P(—dz+4) 427 (B-0)(z~2) — 2 (- +0)2 1)
12 (Ch)
B+l (1 - (22) 1
(2 1)%/ e — —
-1 (—4z+4)+2 (B-0)(z—2)—iz (1- (-B+0)2)

gan only has nonzero imaginary part in the case 7 and 7. A plot of gqn, obtained above can be found in Figure
1. z = 6 is taken for this plot.
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Appendix D: Zero-frequency limit of DH pairs creation rate

In this appendix, we present a derivation of the zero-frequency limit of the DH pair creation rate, and derive the
result (24). We will take the frequency w to be very small. Our starting point is the sum:

oo U/w+2/w
S= Y JHO/w)Imgan(U —mw) = > JH®/w)Imgan(U — nw). (D1)
n=-—oo n~U/w—2/w

Since n is a very large number in all of the terms in the above sum, one is able to use the following high order Bessel
function asymptotic form [48, 49]:

z 1/4 i (23 ¢ (%
T <14_<((;§2> Ai( Vl/g(y)), (D2)

which holds for large and positive v and positive x, and Ai is the Airy function. The function {(z) is defined as:

¢ s (522) - vT==) " o<
-HVE T (YT s

((z) is positive if z < 1 and negative if z > 1. The function {(2) is depicted in figure 5a, but we will not need its exact
form finally. Plugging the asymptotic form back into equation (23) and converting the sum over n into an integral:

U/wt2/w @y \ Y2 a2 (280 (0
s- | dy<4<<;u>2> A (29¢ ()

U/w—2/w 1-— (—) v2/3

v (ac®) " NI YA o
:/U_2 dv <1_(2)2> 52/3 Imgan(U — v) [wl/?’ Ai? (Vz/?’w 2/3<<E)>}

v

((z) = (D3)

Imgan (U — vw)

(D4)

where the substitution 7 = wv is done in the second line. Only the expression in the [.] is w-dependent, and thus it
is the term that should be studied in the limit w — 0. The following asymptotic forms for the Airy function with a
large argument |z| > 1 will be used:

1 —1/4 ,—32%/2 x>0
Ai -~ 2/m ’ ’ D5
1(55) {ﬁ (—.I')_l/4 sin (%(_$)3/2 + %) , x<0. ( )

The expression containing w in equation (D4) can now be studied in the limit w — 0 with the above asymptotic
forms; for positive values of ((®/7) the Airy function decays exponentially in 1/w, and thus one should exclude the

10
0.8}
— 06
S
N~—
“~ 04}
02}
00} ) ) ) ) -
0.0 0.2 04 0.6 0.8 1.0
z T
(a) The function ¢(z) defined in (D3). It is positive (b) The function f(z) = V1 — a2 —x cos™(z) is a
when z < 1 and negative when z > 1 and vanishes at monotonic function for 0 < = < 1.

z=0.

FIG. 5: The two auxiliary functions used in this appendix.
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regions corresponding to ¢(®/7) > 0 in the integral (D4), while for negative values of ¢((®/7) one has:

LAiQ (DQ/3w2/3< <2>) 1 wl/3 1
wi/3 7 O3 | l/3 (—<(@/D))1/2 (06)

x sin’ {; (—52/3 w_2/3C(<I)/17))3/2 + g} .

The function ¢ is negative when its argument is larger than 1, which means ® > . Furthermore, the argument of
the sin? function in the above asymptotic form can be rewritten using the definition of ¢ as:

2(crwrc@m) = L2 e @gm)
"2 Qg (w1 () ijw (7)
H(EERGEG]
2

The function f is defined as f(z) = V1 — 22 — zcos™!(x). It is a monotonic function of its argument (figure 5b),
when 0 < x < 1, because df /dx = — cos™!(z). We will use this point in what follows. Plugging the asymptotic form
back into equation (D4), one has:

(

o (aa®m i !
N <1—(%)2> R [ww <—<<<1>/u>>”2]

Imgan (U — 7) sin® [% f (%) + %} .

| =

5 /(D ) ) 1/2
= — v | ——5—
Tlu-e \(3) -1

Since the function f does not have vanishing derivative in the domain of integration, and we are interested in the
w — 0 limit, one can argue that the function sin” oscillates very rapidly and thus can be substituted by its average
value % One finally can write S as:

L 1 Y _
S = —/ dv (i) > Imgan (U — ). (D9)



