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The entanglement spectrum (ES) provides a barometer of quantum entanglement and encodes
physical information beyond that contained in the entanglement entropy. In this paper, we explore
the ES of stabilizer codes, which furnish exactly solvable models for a plethora of gapped quantum
phases of matter. Studying the ES for stabilizer Hamiltonians in the presence of arbitrary weak local
perturbations thus allows us to develop a general framework within which the entanglement fea-
tures of gapped topological phases can be computed and contrasted. In particular, we study models
harboring fracton order, both type-I and type-II, and compare the resulting ES with that of both
conventional topological order and of (strong) subsystem symmetry protected topological (SSPT)
states. We find that non-local surface stabilizers (NLSS), a set of symmetries of the Hamiltonian
which form on the boundary of the entanglement cut, act as purveyors of universal non-local fea-
tures appearing in the entanglement spectrum. While in conventional topological orders and fracton
orders, the NLSS retain a form of topological invariance with respect to the entanglement cut, sub-
system symmetric systems—fracton and SSPT phases—additionally show a non-trivial geometric
dependence on the entanglement cut, corresponding to the subsystem symmetry. This sheds further
light on the interplay between geometric and topological effects in fracton phases of matter and
demonstrates that strong SSPT phases harbour a measure of quasi-local entanglement beyond that
encountered in conventional SPT phases. We further show that a version of the edge-entanglement
correspondence, established earlier for gapped two-dimensional topological phases, also holds for
gapped three-dimensional fracton models.

I. INTRODUCTION

The study of interacting many-body quantum phases
of matter has been greatly influenced and aided by de-
velopments in the field of quantum information; indeed,
it is now widely appreciated that quantum entanglement
plays a vital role in the characterisation of a wide variety
of zero temperature complex many-body systems. Entan-
glement has proven a particularly efficacious tool in the
study of gapped quantum phases, especially in lower spa-
tial dimensions (d < 3) where it has provided a classifica-
tion of gapped 1d phases [1, 2] and a powerful diagnostic
for topological order in d = 2 spatial dimensions [3, 4].
Gapped topologically ordered phases of matter are be-
lieved to be entirely characterised by the universal prop-
erties of their ground states, and a defining feature of
these phases, which evade description in terms of any lo-
cal order parameter, is the pattern of long range entangle-
ment (LRE) in their ground state(s) (see e.g. Ref. [5] for a
review). A potent and oft utilised probe for the presence
of LRE is the entanglement entropy—for topologically
ordered systems in two spatial dimensions, the entangle-
ment entropy contains a universal subleading ‘constant’
term, known as the “topological entanglement entropy
(TEE),” which partially characterises such phases and is
intimately linked to their topological quantum field the-
ory (TQFT) description.

The entanglement spectrum (ES), introduced by Li and
Haldane in the context of fractional quantum Hall flu-
ids [6], provides a more general probe of quantum entan-
glement and encodes physical information beyond that

contained in the entanglement entropy. For a given bi-
partition of a system into two regions A and B, the “en-
tanglement Hamiltonian” HA of its ground state |Ψ〉 is
defined through ρA ≡ e−HA/Z, where Z = Tr e−HA and
ρA = TrB |Ψ〉〈Ψ| is the reduced density matrix defined on
region A. Since the entanglement cut mimics a physical
boundary for the system, HA can be crudely understood
as the Hamiltonian for a physical edge of the system;
based on this observation, Li and Haldane conjectured
that the ES contains universal information about the low-
energy boundary excitations i.e., the ground state wave
function in the bulk encodes information about dynamics
at the edge.

Following the original proposal, the entanglement spec-
trum has been widely used to identify and distinguish
quantum phases of matter, and has been especially fruit-
ful in characterising gapped topological phases. While
much of the initial work focused on chiral topological
orders in 2d, including fractional quantum Hall fluids [7–
12], this was later extended to include symmetry pro-
tected topological (SPT) states [13–19] as well as topo-
logically ordered states with gapped boundaries [20–23].
In all cases, a key result is the existence of a correspon-
dence between the low-lying spectrum of the physical
edge states and the low-lying entanglement spectrum, of-
ten referred to as an edge-ES correspondence.

In three spatial dimensions, fracton order (see Ref. [24]
for a review) has emerged as a new platform for realising
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long-range entanglement in gapped quantum phases1, ex-
hibiting features both familiar and distinct from those en-
countered in conventional topological order. Familiar fea-
tures include the presence of long-range entanglement, lo-
cally indistinguishable ground states on non-trivial mani-
folds, and topologically charged excitations which cannot
be created locally. The crucial distinguishing feature of
these phases—discovered first in a series of exactly solv-
able models [31–35]—which has engendered much recent
activity [36–47], is that the mobility of certain excita-
tions (fractons) is strictly verboten, while that of other
excitations (sub-dimensional particles) is restricted along
sub-dimensional manifolds of the three dimensional lat-
tice. Unlike topologically ordered phases, whose ground
state degeneracy depends only on the topology of the
underlying manifold, for fracton phases the number of
ground states grows sub-extensively, revealing their sen-
sitivity to the underlying geometry. In this precise sense,
fracton phases differ from topologically ordered phases
in that they do not admit a low-energy description as a
TQFT; indeed, a series of recent works have emphasised
the geometric nature of fracton order [48–55].

Concurrently, the field of subsystem symmetry pro-
tected topological (SSPT) phases [56–61] has emerged as
a close relative of fracton order, with a large number of
fracton models obtained through gauging the subsystem
symmetry of various SSPT phases [35, 56, 62–64]. Subsys-
tem symmetries, alternatively referred to as “gauge-like”
symmetries [65], act on rigid subsystems which cannot
be deformed, such as rigid planes of the cubic lattice. Be-
sides their deep connection to fracton phases, it has also
been realised that d = 2 SSPT phases protected by rigid
line-like symmetries can act as a universal resource for
measurement-based quantum computation [60, 66, 67].

Given the theoretical discovery of these novel gapped
phases, it is natural to ask whether measures of entan-
glement, such as the entanglement entropy or entangle-
ment spectrum, exhibit features distinct from those seen
in SPT phases or those with topological order. Early work
in this direction has mostly focused on understanding the
EE of these phases, with their ES remaining largely un-
charted [53, 61, 68–72]. In this paper, we aim to fill this
lacuna by studying the entanglement spectra of stabi-
lizer codes, which encode a large class of gapped quan-
tum phases of matter. As such, stabilizer codes provide
a complementary language to that of TQFTs, furnish-
ing zero correlation length Hamiltonians which are sums
of commuting projectors and which describe an exactly
solvable point within some phase. Importantly, stabilizer
codes provide a universal language within which we can
compare and contrast the entanglement structure of frac-
ton and SSPT phases with that of topologically ordered

1Gapless fracton order remains an equally active area of re-
search, where symmetric tensor gauge theories have emerged as a
powerful formalism within which to encapsulate much of the frac-
ton phenomena [25–30]—we will not discuss these here.

states.
Specifically, in this paper, we develop a general proce-

dure for deriving the ES for the ground state of a stabi-
lizer code Hamiltonian in the presence of arbitrary weak,
local perturbations. Typically, when calculating the TEE
in the ground state of some stabilizer Hamiltonian, one
first derives the EE for the fixed point Hamiltonian and
then argues that any contributions to the TEE are invari-
ant under local perturbations. However, perturbations
play a crucial role in revealing the structure of the ES and
must be taken into account from the beginning. Indeed,
while the ES is flat for any unperturbed stabilizer code, it
presents universal features in the presence of weak, local
perturbations for all models considered here.
As examples of topological order, we consider the

d = 2, 3 toric code models and find that their entan-
glement Hamiltonians (EH) universally map onto Z2 in-
variant d = 1, 2 Ising models acting on effective spin-1/2
variables. As a consequence of this, we recover a ver-
sion of the edge-ES correspondence first established in
Ref. [20]. We then consider the X-cube model [35] and
Haah’s cubic code [32] as examples of type-I and type-II
fracton orders respectively and find that the geometric
nature of these phases is manifest in their ES as well.
That is, the EH for these models can be mapped onto an
effective subsystem symmetric Ising-like model only for
those entanglement cuts consistent with the planar (frac-
tal) subsystem symmetries of the X-cube (cubic code).
Thus, we show that the ES serves as a clear entangle-
ment measure distinguishing fracton order from topolog-
ical order, adding to the existing diagnostics for fracton
order [71, 73, 74]. We also provide strong evidence for a
correspondence between the low-lying ES and the low-
lying spectrum of physical edge states, extending the va-
lidity of the edge-ES correspondence to gapped fracton
phases. Finally, we consider the d = 2 cluster state as
our example of a strong SSPT phase and argue that the
so-called “spurious” contributions to the TEE, found in
Ref. [61], are in fact evidence of quasi-local entanglement
in such phases. In other words, we find that the entangle-
ment structure of this system harbours features redolent
of LRE systems which, despite not being topological in
nature, remain robust against all subsystem symmetric
perturbations. Thus, we establish SSPT phases as lying
between conventional SRE SPT phases and LRE topolog-
ical orders, thereby expanding the dictionary of possible
patterns of entanglement in gapped phases.
The balance of this paper is organised as follows: in

Section II we start by reviewing some basic notions of
the stabilizer formalism pertinent to this paper. In Sec-
tion II B, we derive the flat entanglement spectra of any
stabilizers’ eigenstate and discuss some consequences, in-
cluding a review of recoverable information and emergent
Gauss’ laws, as well as of the Schmidt decomposition for
the stabilizers’ eigenstates. This is followed by the per-
turbative analysis in Section IIC, where we arrive at the
central result of the paper: a general formula for the en-
tanglement Hamiltonian of a stabilizer ground state in



3

the presence of an arbitrary weak, local perturbation for
any bipartition of the qubits (A,B), with B = Ac. In
Section III, we apply our general formalism to gapped
LRE phases: the d = 2, 3 toric codes, the X-cube model,
and Haah’s cubic code, with the latter two being exam-
ples of type-I and type-II fracton models, respectively.
Section IV applies our general method to a strong-SSPT
model, namely the d = 2 cluster state, where we discuss
signatures of subsystem symmetries in the entanglement
and introduce the notion of quasi-local entanglement.
Section V summarises the relation between all models
considered herein and discusses a conjecture which ex-
tends our results to low-energy excited states. Lastly, we
make our final remarks in Section VI.

II. ENTANGLEMENT SPECTRA OF
STABILIZER CODE HAMILTONIANS

We begin this section by reviewing some basics regard-
ing the stabilizer formalism before deriving general re-
sults for the structure of quantum entanglement in these
systems. In certain cases, we rely upon results previously
established in Refs. [70, 71, 75], and provide details only
when required for the remainder. After reviewing the req-
uisite background, we present a general method for de-
riving the entanglement spectrum of the ground state of
a stabilizer Hamiltonian in the presence of arbitrary per-
turbations, allowing us to compare and contrast a myr-
iad of phases within the same framework. From the ES,
one can also extract the entanglement entropy and re-
coverable information [71]; however, as the EE has been
studied for both fracton order and SSPTs before, we only
comment on this briefly.

A. The Stabilizer Formalism

The stabilizer formalism provides a common language
within which a large class of quantum many-body sys-
tems and quantum error-correcting codes can be effi-
ciently described (see Ref. [76] for a review). It pro-
vides a unifying framework for studying several interact-
ing quantum many-body systems, as certain exactly solv-
able points within some gapped phase can be described
in terms of a Hamiltonian which is the sum of commuting
Pauli operators—stabilizers. Each of the models consid-
ered here will admit such a description.

The models under consideration here consist of a set
of N local qubits (spin-1/2 degrees of freedom) living on
the edges or vertices of a simple graph, with q qubits per
each edge or vertex, such that N = q|V |, where V is the
graph set. Here, | · · · | denotes the size of a finite set. The
Hilbert space of the system H ' C⊗N2 is given by the
product space of all qubits.

The Pauli group P acting on N qubits is defined as the
set of all Pauli operators—with individual qubit Pauli
operators denoted by {X,Y, Z}—acting on the qubits,

modulo any phase of ±1,±i. The stabilizer set S ⊂ P is
a subset of the Pauli group comprised of mutually com-
muting operators, which satisfies |S| ≥ N (there are at
least as many stabilizers as qubits), −IH 6∈ S (all of S
can have a positive eigenvalue), and Supp(S) = V (each
element of V is acted upon non-trivially by at least one
stabilizer in S). The set of states |ψ〉 which are stabilized
by S = {Os}:

Os |ψ〉 = |ψ〉 , (1)
for all Os ∈ S, form the ground state manifold for the
stabilizer code Hamiltonian

HS = −
∑
s

JsOs, (Js > 0) (2)

i.e., states invariant under the action of elements of S
span the ground state subspace of the Hamiltonian HS .

Since all members of S commute, stabilizers in S mul-
tiplicatively generate an Abelian group G = {

∏
s∈F Os :

F ∈ P[S]}, where the power set of S, denoted P[S], is
the set of all subsets of S. Not all stabilizers are inde-
pendent, so S may over-determine G. We refer to any
C ⊆ S such that

∏
s∈C Os = I as a constraint. Follow-

ing [70, 71, 75], let dG = log2 |G| and {Oi}i≤dG ⊆ S
be a complete, independent generating set for G. Ele-
ments g ∈ G can hence be labelled by a binary vector
n = (n1, n2, . . . , ndG) ∈ {0, 1}dG through

g(n) =
dG∏
i=1

Onii . (3)

With every vector k ∈ {0, 1}dG , we associate a projection
operator

Pk = 1
|G|

∑
g(n)∈G

(−1)k·ng(n), (4)

where k ·n is the binary dot product of k and n. It is easy
to check that

(
Pk)2 = Pk, all Pk mutually commute, and

that
g(n)Pk = (−1)k·nPk. (5)

This implies that {Pk} are the projection operators onto
the simultaneous eigenstates of all of G and, since HS is
a sum over a (over)complete generating set for G, onto
the energy eigenvalue subspaces as labelled by k. Clearly,
k are the quantum numbers labeling excitations, where
k = 0 labels the ground state manifold.
The projectors Pk are pure state projectors if and only

if dG = N . In most cases under consideration, dG < N
if the system is on a topologically non-trivial manifold,
reflecting that all k eigenstate manifolds—including the
ground state manifold—of the Hamiltonian (2) are de-
generate on that manifold2. To see this, one can take the

2This is a defining feature of systems with long-range entangle-
ment; for SPTs, on the other hand, there is a unique ground state
on arbitrary manifolds and, correspondingly, dG = N for those
systems.



4

trace of Pk and use the fact that tr(g(n)) = Nδn,0 to find
that the dimension of the k eigenvalue manifold is 2dl for
dl = N − dG. We refer to this type of degeneracy as a
topological degeneracy. To obtain pure state projectors,
we can complete G by adding dl Pauli operators to our
generating set, such that these operators are mutually
commuting and also commute with all elements g ∈ G.
These dl operators, which preserve the ground state man-
ifold (also referred to as the code-space in the context of
error correction) but act non-trivially on it, are referred
to as the logical operators of the stabilizer code, a reflec-
tion of the fact that a stabilizer code encodes dl logical
qubits in the ground space. Formally, the set of logical
operators of a code is specified by L := C(G)/G, where
C(G) is the centralizer of G.

In this paper, we study phases of matter captured by
stabilizer code Hamiltonians of the form

H = HS + λV, (6)

where HS is given by Eq. (2) with Js = 1 for all s and
where

V =
∑
q

3∑
i=1

ξiqX
i
q (7)

describes a perturbation to HS . Here, λ is a control pa-
rameter, ξiq ∈ [−1, 1] is an arbitrary real number, and
Xi
q is the ith single-qubit Pauli operator for the qubit

q (1 = X, 2 = Y , and 3 = Z). We assume all Xi
q

anti-commute with at least one member of S. We note
that one could replace Xi

q with any anti-commuting set
of Pauli operators with local support (we are implic-
itly defining local as any Pauli operator with support
less than that of any stabilizer). We pick all single-qubit
operators for simplicity, although our results generalise
straightforwardly. We also note that a large class of sta-
bilizer code Hamiltonians are CSS codes, for which the
Hamiltonian schematically takes the form

HCSS = −
∑

OXs −
∑

OZs , (8)

where OXs (OZs ) is a product of only X-type (Z-type)
Pauli operators. While all models considered in this paper
are CSS codes, our results do not rely on this assumption.
In what follows, we first show that in the absence of any
perturbations, the entanglement spectrum of a stabilizer
code Hamiltonian HS is flat, and then proceed to study
non-trivial universal features which appear in the ES by
considering V as a perturbation to HS .

B. Eigenstates and Entanglement Spectrum of
Unperturbed Stabilizer Codes

Let us first consider a stabilizer Hamiltonian in the ab-
sence of any perturbations. As mentioned in the previous

section, we can extend G → G̃ in Eq. (4), for G̃ gener-
ated by {Oi}i≤dG along with a mutually commuting set
of logical operators. Then, k ∈ {0, 1}N and

Pk = |k〉〈k| , (9)

i.e. Pk is the pure state density matrix. For the energy of
the state |k〉, when |S| 6= N , then the terms Oi from our
generating set for G in the Hamiltonian each contribute
−(−1)ki , leading to a total energy

Ek = 2‖k‖ − dG, (10)

where ‖‖ is the Hamming weight. The contributions from
the remaining terms (S − {Oi}i≤dG) depend on the spe-
cific generating set chosen but in general, these contribu-
tions will cancel in the energy denominators used in the
perturbative expansion (see Sec. II C).

We now calculate the entanglement spectrum of any
eigenstate of the stabilizer Hamiltonian for a bipartition
(A,B), where A is some subset of the qubits forming H
and B = Ac. Following [70, 71, 75], one can show that for
any (A,B) such that A is smaller than the code distance3,
the reduced density matrix for any state k is

ρA = TrB |k〉〈k| = 2−sAPkA
A , (11)

where sA = |A| − dGA and dGA is the dimension of the
subgroup GA ⊆ G which only has support in A. PkA

A is
the analogous projection operator to Eq. (4) for GA and
kA is the part of k which corresponds to GA.

We have thus shown that the reduced density matrix
is proportional to a projection operator, thereby proving
that the ES of any unperturbed stabilizer code is flat i.e.,
eigenvalues of the reduced density matrix are all equal;
in the process, we have also obtained the von Neumann
entropy for A:

sA = |A| − dGA . (12)

The same calculation can be carried out from the per-
spective of B and we would find a nearly identical form
of the reduced density matrix ρB for the analogous GB .
Correspondingly, one can show that the entanglement en-
tropy for B is

sB = |B| − dGB − dl = sA. (13)

These results also serve to highlight the relative simplic-
ity and power of the stabilizer formalism, as we have
made no assumptions besides a stabilizer description for
the system of interest in the derivation. In order to ex-
tract interesting physics, one needs to further examine
the behaviour of Eqs. (11) and (12) in the presence
of perturbations/deformations: for topologically ordered

3The code distance is the minimum size of the support over all
members of L.



5

states, one is typically interested in extracting the sub-
leading corrections to Eq. (12) which are invariant under
arbitrary deformations of the partition, while for SPT
states, one expects a non-trivial degeneracy in the ES
which is robust against arbitrary local perturbations re-
specting the symmetry protecting the bulk state. We rele-
gate the discussion of such non-trivial features to Secs. III
and IV, where we analyse the ES of various models in the
presence of perturbations.

A related concept to the entanglement entropy for sta-
bilizer codes is that of the recoverable information, de-
fined for any stabilizer code and bipartition (A,B) as

µ = min(d∂ − sA − sB), (14)

where d∂ is the number of members of {Oi}i≤dG which
are “cut,” i.e., have support in both A and B, and the
minimization is over all possible choices of a generating
set, assuming open boundary conditions. In Ref. [71], it
was shown that µ > 0 and, generally, that d∂−sA−sB is
equal to the dimension of the non-local surface stabilizer
(NLSS) group GNLSS defined as

GNLSS = G∂ ∩ (GA ⊕GB), (15)

where G∂ is the group generated by the cut members of
{Oi}i≤dG . Thus, the recoverable information is the mini-
mum dimension over all NLSS groups. Every member of
g∂ ∈ GNLSS, referred to as an NLSS, has the general form

g∂ = gAgB , (16)

where gA ∈ GA and gB ∈ GB . We can interpret each
of these as an emergent Gauss’ law constraint by noting
that if gA =

∏
i∈FA O

A
i , for stabilizers OAi ∈ GA and FA

a subset of stabilizer indices in A, then by restricting the
NLSS to its support in A (where we note (gB)A = IA)
we have ∏

i∈FA

OAi = (g∂)A. (17)

Thus, a measurement purely on the boundary is equal to
the number of “charges” in a subset of the bulk (mod 2).
In general, either gA or gB has the given form, but it may
happen that gA = IA and gB 6= IB , or vice versa, i.e.,

g∂ = gB , (18)

or some product of cut stabilizers is only supported in
B. We refer to such an NLSS as a superficial NLSS since
the corresponding Gauss’ law is only along the boundary.
Every constraint which contains a cut stabilizer always
implies an NLSS. However, not all NLSS are formed this
way. The minimization in the definition of recoverable
information removes all NLSS coming from trivial con-
straints with the aim of capturing only those arising from
topological constraints. We return to the importance of
NLSS and how they protect the emergent Gauss’ laws in
the ES in Sec. V.

Before proceeding to the analysis of the ES of stabilizer
codes in the presence of perturbations, we need to estab-
lish some further properties of the eigenstates |k〉, for
which we can infer a Schmidt decomposition for a given
cut (A,B) from Eq. (11). Any stabilizer in A, OAi ∈ GA,
maintains the same eigenstate with respect to the re-
duced density matrix ρA, thus allowing us to partially
index all Schmidt vectors by their eigenvalues for the
stabilizers in A. We then require a basis for the subspace
defined by the projectors PkA

A , and we use cut stabilizers
for this purpose. Likewise, we do the same for GB
Since all of GA is supported in A, the support of any

cut stabilizer in A necessarily commutes with all of GA.
Further, as the recoverable information is always pos-
itive, there exist more cut stabilizers than log2 of the
rank of PkA

A . Thus, it is always possible to choose a mu-
tually commuting set of cut stabilizers (with no unique
choice for this set) whose simultaneous eigenstates span
this space and (nearly) suffice to completely label the
Schmidt vectors. Let GR∂ ⊆ G∂ be the reduced boundary
group generated by the chosen basis for the cut stabi-
lizers. Members of GR∂ can be indexed by k∂ ∈ {0, 1}s,
where s = sA = sB is the entanglement entropy. Then
the Schmidt decomposition can be written as

|k〉 = 2− s2
∑
l∂

(−1)l∂Mk |kA, l∂〉A ⊗ |kB , l∂ ⊕ k∂〉B ,

(19)

with

(Oi)A |kA, l∂〉A = (−1)(l∂)i |kA, l∂〉A , (20)

where Oi is a generator of GR∂ , and likewise for B. Note
that the Schmidt decomposition Eq. (19) is not unique as
a result of the flat ES; the choice made here is informed
by the fact that |k〉 must have the same stabilizer eigen-
values in its Schmidt form. This is why the two boundary
indices in each term must have a binary sum of k∂ . Like-
wise, M is an s× dG binary matrix which maintains the
eigenvalues for the stabilizers in G∂−GR∂ . Such operators
must anti-commute with both pieces of some cut stabi-
lizers in G∂ (since it commutes with the complete stabi-
lizers). This flips the l∂ eigenstates by some pi ∈ {0, 1}s.
Upon relabelling the sum, we find that M must satisfy
piMk = ki.

C. Perturbed Density Matrix and Entanglement
Hamiltonian

Thus far, we have shown that, in the absence of any
perturbations, the reduced density matrix for a stabilizer
Hamiltonian (2) is proportional to a projection operator;
consequently, the unperturbed entanglement spectrum is
flat. We now consider the Hamiltonian (6), which in-
cludes perturbations of the form specified in Eq. (7), to
identify universal features of the ES which persist in the
presence of such perturbations. Before delving into the
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full derivation, we outline the general idea underlying
our method for finding an approximate density matrix
for the perturbed ground state i.e., the ground state of
Eq. (6). We make the following general assumptions:

• The perturbation is weak enough so as to not close
the energy gap i.e., we remain in the same phase
described by the exactly solvable stabilizer Hamil-
tonian.

• We work in the thermodynamic limit of the system.

• We require that the sub-region A, although much
smaller than the entirety of the system, is much
larger than the size of the stabilizers (region over
which a stabilizer has non-trivial support) i.e., the
linear size R of region A is assumed to obey ξ �
R � L, where ξ is the correlation length of the
perturbed Hamiltonian and L is the linear size of
the system.

We make use of unitary perturbation theory (see
Appendix A), which is a variation on the oft-utilised
Schrieffer-Wolff perturbation theory [77, 78]. The cen-
tral focus of unitary perturbation theory (UPT) is to ap-
proximate a unitary operator U which maps unperturbed
eigenvectors |n〉 to eigenvectors |n′〉 of the perturbed sys-
tem. As with any controlled perturbative scheme, this
can be done up to some fixed order in the perturbative
parameter λ. Where UPT differs from conventional per-
turbation theory is that while the latter truncates the
expansion of the system state |ψ〉 to a given order in λ,
the former instead truncates the expansion of the anti-
hermitian generator of the unitary U to that order in
λ. This ensures that the approximate transformation U
maintains unitarity at any finite order in its perturbative
expansion. To first order in the control parameter λ, the
unitary operator is given by U = exp(λL), with

L = −
∑
k,l

Vkl[Ek 6= El]
Ek − El + 0 |k〉〈l| , (21)

and where Vkl = 〈k|V |l〉 and [.] is the Iverson bracket
which equals 1 if the proposition inside is true and 0 oth-
erwise (see Appendix A). Making a further approxima-
tion valid in the large A limit, we consider the resulting
action of the unitary U on the Schmidt form Eq. (19),
allowing us to perform the partial trace required to form
the perturbed density matrix ρ̃A for the ground state of
the perturbed Hamiltonian. The perturbed entanglement
Hamiltonian (EH), to first order, is then defined as

Hent ' −
(
∂ρ̃A
∂λ

)
λ=0

, (22)

where ' implies unitary equivalence. Hence, λ may be
thought of as the inverse temperature for this state.

We now describe the derivation of Hent in detail, start-
ing with the matrix elements of the perturbation, Eq. (7).
Recall that Xi

q is the ith single-qubit Pauli operator for

qubit q, with 1 = X, 2 = Y, and 3 = Z. For every Xi
q, we

can assign a binary string piq ∈ {0, 1}N representing all
stabilizer basis elements which anti-commute with Xi

q.
Thus,

PkXi
q = Xi

qPk⊕piq , (23)

where ⊕ is the binary sum or bitwise-XOR of the two
strings. From this we get the modulus-square of each per-
turbation term

| 〈k|Xi
q|l〉 |2 = 〈k|Xi

qP
lXi

q|k〉 = δk⊕l,piq . (24)

However, this does not resolve the phase of the matrix ele-
ment:Xi

q |k〉 ∝ |k⊕ piq〉, up to an overall phase. Nonethe-
less, one can complete a canonical basis for all Pauli op-
erators as described in Appendix B using the stabilizer
(and logical) basis operators and some canonical duals.
This allows us to write all Xi

q in terms of this basis, which
implies the existence of a p̃iq ∈ {0, 1}N such that

〈k|Xi
q|l〉 = (−1)k⊕p̃iq δk⊕l,piq . (25)

Thus, the matrix element Vkl is given by

Vkl = 〈k|V |l〉 =
∑
q

3∑
i=1

(−1)k⊕p̃iq ξiq δk⊕l,piq . (26)

We can also rewrite the energy denominator as

Ek − Ek⊕piq = 2(‖k⊕ piq‖ − ‖k‖) = 2(k · piq − k · piq),
(27)

where the overbar denotes the complement, or negation,
of the string.
Putting the terms together, we see that the generator

of the perturbation unitary is

L =
∑

k

∑
q

3∑
i=1

Cqik |k〉〈k⊕ piq| , (28)

where we have defined the C-coefficient

Cqik = 1
2

(−1)k·p̃iq ξiq [k · piq 6= k̄ · piq]
k · piq − k · piq + 0

. (29)

Despite the apparent complexity of the C-coefficients, a
crucial property which can be easily established is that
for qubits q, r which are not both contained within the
support of some stabilizer,

Cqi
k⊕pjr

= Cqik , (30)

which reflects the fact that if two qubits are far enough
separated, they do not interact. This becomes clear upon
examination of the energy denominator, which is sensi-
tive only to the string in the vicinity of q. In other words,
the binary dot product projects k and k ⊕ pjr onto piq
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and, if the two qubits q, r are not both contained within
the support of some stabilizer (are far enough away), the
projection is not affected by the change k → k ⊕ pjr. As
for the overall phase, the invariance of the C-coefficients
under this change can be seen from

(−1)(k⊕pjr)·p̃iq = (−1)k·p̃iq (−1)pjr·p̃
i
q = (−1)k·p̃iq , (31)

where we have used the (anti) commutation relations for
the strings under the assumption q 6= r. Another im-
portant property of the C-coefficients can be established
from the requirement that L is skew-Hermitian:

Cqik⊕piq
= −Cqik . (32)

Expressing the skew-Hermitian generator of the per-
turbation unitary in terms of the C-coefficients and using
their aforementioned properties allows us to expand the
perturbation unitary U as

U = exp(λL) =
∑
α

λα

α!
∑

k

∑
~q∈Q⊗α

C~qk⊕p~q |k〉〈k⊕ p~q| ,

(33)

where, for ease of notation, we have suppressed the Pauli-
type index, and defined p~q ≡ ⊕ipqi and

C~qk⊕p~q = Cq1
k Cq2

k⊕pq1
Cq3

k⊕pq1⊕pq2
. . . Cqα

k
⊕α−1

i
pqi
. (34)

Eq. (33) can be verified through induction.
In order to perform the partial trace, we make a further

approximation that for any string ~q, we can reasonably
make the substitution,

C~qk⊕p~q → C~qAk⊕p~qA
C~qBk⊕p~qB

, (35)

where ~qA(B) is the part of the string ~q contained in re-
gion A(B) while maintaining their relative order. While
the binary sum in the bra, p~q = ⊕ipqi = p~qA⊕p~qB is ex-
act, the corresponding coefficient in the expansion of the

perturbation unitary U is not, making this a non-trivial
approximation whose effect must be closely evaluated.
From the definition of the C-coefficients Eq. (29), the
fact that ξq ∈ [−1, 1], and that the energy gap is always
bounded by 1, it is straightforward to see that∣∣∣C~qk⊕p~q − C

~qA
k⊕p~qA

C~qBk⊕p~qB

∣∣∣ ≤ 1. (36)

Hence, to evaluate the effect of the approximation
Eq. (35), we must consider how many terms in the sum
are in error. It should be clear from the definition of the
C-coefficients that only the energy denominators need to
be considered; since the energy denominators “project”
on the k string in the vicinity of q, if q1 and q2 are not
shared within the support of any stabilizer, Eq. (30) im-
plies that Cq2

k⊕pq1
= Cq2

k . At first order, our approxima-
tion is clearly exact. At second order, suppose that we are
considering a d-dimensional system such that the size of
the system ∼ Ld for L large and that the size of region
A ∼ Rd with R < L. Of the ∼ L2d total terms, only
∼ Rd−1 are in error as only this number of terms have
both qubits in the boundary and in the same cut stabi-
lizer. The number of terms in error thus comprise a van-
ishing, negligible fraction in the thermodynamic limit. On
the other hand, one might worry that only terms which
involve the boundary will matter. However, even consid-
ering only those terms for which both qubits are in the
boundary, the ratio of error terms to non-error terms goes
as R−(d−1), and so the error is suppressed as R becomes
large (assuming d ≥ 2). The suppression of higher-order
errors follows by a similar logic.

Effectively, the replacement (35) amounts to the as-
sumption that all terms for which ~q is composed of ~qA
and ~qB are equal. We must thus account for the multi-
plicity of these terms. For ~qA of length β and ~qB of length
α− β, the multiplicity is

(
α
β

)
.

We now apply the perturbation unitary U to a ground
state |0〉 of the unperturbed Hamiltonian in order to find
the approximate ground state for the perturbed Hamil-
tonian (6). Using the Schmidt form of the unperturbed
eigenvectors Eq. (19), and within the approximation (35),
we find that



8

U |0〉 =
∑
α

(−λ)α
α!

∑
~q∈Q⊗α

C~qp~q |p~q〉

≈
∑
α

(−λ)α
α!

∑
~qA∈A⊗α

C~qAp~qA

∑
β

(−λ)β
β!

∑
~qB∈B⊗β

C~qBp~qB
|p~qA ⊕ p ~qB 〉

= 2− s2
∑
k∂

∑
α

(−λ)α
α!

∑
~qA∈A⊗α

(−1)k∂Mp~qAC~qAp~qA
|(p~qA)A∪∂ ⊕ k∂〉A


⊗

∑
β

(−λ)β
β!

∑
~qB∈A⊗β

(−1)k∂Mp~qBC~qBp~qB
|(p~qB )B∪∂ ⊕ k∂〉B


:= 2− s2

∑
k∂

|ψk∂ 〉A ⊗ |φk∂ 〉B , (37)

where by (p~qA)A∪∂ we mean the the part of the vector
p~qA corresponding to GA ⊕ GR∂ , and likewise for B. k∂
is short for (0A,k∂), which likewise labels members of
GA ⊕ GR∂ . Note in particular that we have split-up the
binary values of p~qA⊕p ~qB such that if q ∈ A, then it only
contributes to GA⊕GR∂ in the Hilbert space of A. This is
always possible since an edge in A can only anti-commute

with members of GA ⊕GR∂ . Likewise is true for B. This
splitting ensures that the binary sum of the values in the
A and B kets equals the value in the original ket, as per
our discussion in Section II B.
While the final expression obtained in Eq. (37) is os-

tensibly another Schmidt form for the approximate per-
turbed ground state, this assumes that {|ψk∂ 〉A} and
{|φk∂ 〉B} are orthonormal. Focusing on A, we consider
the overlap of any two of these states,

〈ψk∂ |ψl∂ 〉 =
∑
α,β

(−λ)α+β

α!β!
∑

~q1∈A⊗α

∑
~q2∈A⊗β

(−1)k∂Mp~q1 (−1)l∂Mp~q2C~q1
p~q1

C~q2
p~q2
〈(p~q1)A∪∂ ⊕ k∂ | (p~q2)A∪∂ ⊕ l∂〉 . (38)

If k∂ = l∂ , then (p~q1)A∪∂A = (p~q2)A∪∂A within the sum,
causing the phase factors to cancel and all dependence
on k∂ drops out. This implies that 〈ψk∂ |ψk∂ 〉 is a con-
stant which, without loss of generality, we take to be 1.
However, when k∂ 6= l∂ , the fact that the C-coefficients
are insensitive to k∂ , l∂ implies that the inner product
does not sum to zero. Nonetheless, we can still make use
of this form to perform the partial trace, which is given
by

ρ̃A ≈
1
Z
∑

k∂ ,l∂

〈φl∂ |φk∂ 〉 |ψk∂ 〉〈ψl∂ |

= 1
Z
∑
k∂

|ψk∂ 〉〈ψk∂ |+
1
Z
∑

k∂ 6=l∂

〈φl∂ |φk∂ 〉 |ψk∂ 〉〈ψl∂ | ,

(39)

where Z is the normalisation factor which makes ρ̃A have
unital trace after the approximation is made. To further

simplify the expression, we define

ŨA =
∑
α

(−λ)α
α!

∑
kA,k∂

∑
~q∈A⊗α

(
(−1)k∂Mp~q C~q(kA,0)⊕p~q

× |(kA,k∂)⊕ p~q〉〈(kA,k∂)|
)

(40)

and analogously for ŨB . Using these definitions, we can
write

|ψk∂ 〉 = ŨA |k∂〉 , (41)

and

Z ρ̃A ≈ ŨA
(
P0
A + σB

)
Ũ†A

'
√
P0
A + σB

(
Ũ†AŨA

)√
P0
A + σB , (42)



9

where

σB =
∑

k∂ 6=l∂

〈φl∂ |φk∂ 〉 |k∂〉〈l∂ |

=
∑

k∂ 6=l∂

(
P0
BŨ
†
BŨBP

0
B

)
l∂k∂
|k∂〉〈l∂ | ∈ O(λ), (43)

with P0
A (P0

B) a projector for GA(GB) (see Sec. II B).
Note that unitary equivalence in Eq. (42) is a result

of the fact that, for two operators O1 and O2, O1O2 has
the same non-zero eigenvalues as O2O1. Since we are only
interested in the density matrix up to first order in the
control parameter λ and since σB ∈ O(λ), we can expand
the square root as

√
P0
A + σB = P0

A + 1
2σB + O(λ2).

Again, to lowest order we find that

Z ρ̃A ≈ P0
AŨ
†
AŨAP

0
A + σB , (44)

where we have made use of the fact that ŨA is the identity
at lowest order and that P0

AσB = σBP0
A = σB .

We are now well positioned to define the two parts of
the EH:

HA
ent =−

(
∂P0

AŨ
†
AŨAP0

A

∂λ

)
λ=0

, (45a)

HB
ent =−

(
∂σB
∂λ

)
λ=0

=
∑

k∂ 6=l∂

∂
(
P0
BŨ
†
BŨBP0

B

)
l∂k∂

∂λ


λ=0

|k∂〉〈l∂ | .

(45b)

The A,B symmetry manifest in these two terms should
be unsurprising given that the entanglement spectrum is
the same for both A and B, with contributions naturally
arising from both sides of the boundary. This also sug-
gests that the non-triviality of the EH is a consequence
of the non-unitarity of the operators ŨA and ŨB . Evalu-
ating the expression (45a), we find in general that

HA
ent = 2

∑
k∂

∑
q∈A

(−1)k∂MpqCqpqP
0
A |k∂ ⊕ pq〉〈k∂ | P0

A

=
∑
q∈∂A

ξq
‖pq‖

X̃q, (46)

from which we immediately find that

HB
ent =

∑
q∈∂B

ξq
‖pq‖

∑
k∂ 6=l∂

(−1)k∂Mpq
(
X̃q

)
l∂k∂
|k∂〉〈l∂ |

=
∑
q∈∂B

ξq
‖pq‖

Z̃q. (47)

Equations (46) and (47) constitute the central results of
this paper, upon which we will now elaborate.

Let us consider HA
ent (46), where for q ∈ A X̃q =

P0
AXqP0

A, such that the only perturbations which sur-
vive are those which commute with all of GA—hence,
only members of ∂A need be considered. Crucially, we
note that there often exist constraints on the terms of
the (perturbative) EH: if any product of terms forms a
member of GA, i.e., there exists a subset F∂ ⊆ ∂A such
that

∏
q∈F∂ Xq ∈ GA, the projection must satisfy∏

q∈F∂

X̃q = P0
A. (48)

This constraint is a consequence of the NLSS, as dis-
cussed in Sec. II B where

∏
q∈F∂ X̃q = (g∂)A =

∏
i∈FA Oi

for some set of indices FA, as described in Eq. 17. Such a
constraint indicates the presence of non-trivial entangle-
ment features in the model under consideration. Equiva-
lently, the constraint (48) may be thought of as defining
a Z2 topological surface charge, with the entanglement
Hamiltonian confined to the zero charge sector; we re-
turn to a closer examination of these features in Sec. V.
Let us now turn to HB

ent (47), for which we must con-
sider the form of the operators Z̃q for q ∈ B. If Xq com-
mutes with all of GB , then its action must flip only cut
stabilizers, implying that Z̃q is an operator which flips the
same cut stabilizers, but with respect to their support in
A. Such an operator can always be found by considering
a canonical basis for Pauli operators in A by using a set
of |A| complete and cut stabilizers in A, and then finding
their canonical duals. Thus, Z̃q is necessarily the Pauli
operator formed as the product of all operators dual to
the cut stabilizers with which Z̃q anti-commutes. As con-
structing Z̃q in this manner tends to be a fairly tedious
procedure in practice, we now discuss a simpler, more
efficient method.

Since Z̃q is a Pauli operator, let us consider ZqXq

(where the lack of a tilde signifies that we are consid-
ering the corresponding Pauli operator in the full space
and without the projection). As Zq and Xq anti-commute
with the same members of S, their product necessarily
commutes with all of G. This implies ZqXq ∈ G̃, i.e., it
is either a product of stabilizers or a logical operator. If
A is significantly smaller than the code distance and Xq

is local, we can generally conclude that ZqXq can not be
a logical operator. Thus ZqXq must be a member of G∂
such that its only support in B is Xq and only support in
A is Zq i.e. it represents a cut stabilizer group element.
Further, just as was the case with X̃q, all Z̃q are subject
to the same constraint that some product of these opera-
tors must act as P0

A if they form an NLSS. By definition,
if there exists a set F∂ ⊆ ∂B such that

∏
q∈F∂ Xq forms

an NLSS in GB ,
∏
q∈F∂ Zq forms the corresponding NLSS

in GA as every NLSS has the form g∂ = gAgB and gA is
unique to gB (see Ref. [71]). Note that the only guarantee
that Zq is local is if XqZq ∈ S, i.e., the product forms a
single stabilizer.

We note that even though we included only single-
qubit Pauli operators in the perturbation V to the stabi-
lizer Hamiltonian, if all such terms of a given Pauli type



10

do not survive the projection, we are then forced to con-
sider higher order perturbations. Rather than comput-
ing second-order corrections coming from UPT, we can
instead add local perturbations consisting of two-qubit
Pauli operators. All of the results from above follow in a
similar fashion, with the caveat that we now have to care-
fully consider those perturbation terms which are them-
selves cut. However, since every single-qubit Pauli does
not survive, such cut perturbation terms will also not sur-
vive and can hence be safely ignored. We refer to such a
process as second-order even though it technically arises
at first-order in UPT, albeit from two-qubit perturba-
tions4. Analogously, if all second-order contributions fail
to survive, we continue to third-order contributions and
so forth, until all lowest order contributions are identified.

D. Entanglement Hamiltonian for different
topological sectors

Until this point, we have effectively assumed the
ground state under consideration is the +1 eigenstate
under all logical operators. For A smaller than the code
distance, the cleaning lemma [79, 80] ensures that no log-
ical operator is cut and thus its eigenstate does not af-
fect the resulting entanglement Hamiltonian. However,
if A is a non-cleanable subset of the qubits, then some
logical operators are necessarily cut. What this means
is simply that some subset of the terms may not form
NLSS’s but rather form logical operators. If the origi-
nal ground state is in the −1 eigenstate of some logical
operator, then this has the effect of projecting the en-
tanglement Hamiltonian onto the one-charge sector for
the topological surface charge defined by that logical op-
erator. Since both NLSS’s and logical operators can be
connected to topological constraints amongst the stabi-
lizers (see Refs. [71, 81]), we can define these topological
surface charges in a bipartition-independent way (i.e., a
topological surface charge is defined by its relation to a
topological constraint). This also has the rather inter-
esting implication that a topological surface charge can
always measure a topological charge in the bulk, which
constitutes a bulk-boundary correspondence for topolog-
ically ordered phases. We return to a discussion of topo-
logical surface charges and their relation to topological
constraints in Sec. V.

4The use of this term is justified as, even for single-qubit Pauli
operator perturbations, we expect that the EH contains higher-
order terms of the same form but with different coefficients. In other
words, second order UPT with single qubit Pauli operator pertur-
bations yields the same results, up to unimportant coefficients, as
first order UPT with two qubit Pauli operator perturbations. Our
choice to proceed with the latter is made simply to avoid a lengthy
digression into the derivation of second order UPT coefficients.

III. ENTANGLEMENT SPECTRA FOR
LONG-RANGE ENTANGLED STATES

Having established the general formalism for deriving
the entanglement spectra for stabilizer codes in the pres-
ence of generic perturbations, we now analyse the re-
sultant entanglement Hamiltonians given by Eqs. (46)
and (47) for specific models. In this section, we discuss
stabilizer codes describing LRE quantum phases of mat-
ter, which include the d = 2 toric code/Wen-plaquette
model and d ≥ 3 toric code as examples of conven-
tional topological order. We then consider the X-cube
model [35] and Haah’s cubic code [32] as examples of
type-I and type-II fracton orders respectively5. We dis-
cuss the existence of an edge-ES correspondence for these
systems towards the end of this section.
Although our general derivation of the EH in the pre-

vious section did not rely upon the simplifying assump-
tion of considering only CSS codes, all models studied in
this section are CSS stabilizer Hamiltonians of the form
Eq. (8). We also note that while we describe the NLSS
below, a more thorough discussion for most cases con-
sidered here can be found in Ref. [71]. As a matter of
notation, if a stabilizer is cut, we refer to it as an (a, b)
cut stabilizer, where a(b) is the size of its support in
A(B) for a bipartition (A,B) of the qubits forming H,
the Hilbert space of the system in question. Throughout
this paper, we will only consider bipartitions associated
with the degrees of freedom living in spatially distinct
regions (A,B) (with B = Ac), such that the boundary
between regions A and B defines the entanglement cut.

A. Z2 Topological Order

1. d = 2 Toric Code/Wen-plaquette Model

We start with the d = 2 toric code [82] and the Wen-
plaquette model [83], examples of phases hosting Z2 topo-
logical order which are well-known to be unitarily equiv-
alent in the bulk via a local unitary transformation and
a π/4 rotation of the lattice (see e.g. the discussion in
Ref. [84]). Hence, we only discuss the toric code explicitly
here, with results for the Wen-plaquette model following
immediately. The toric code in d = 2 spatial dimensions
is defined on the square lattice with one qubit associated
with each edge and is described by the Hamiltonian

HTCd=2 = −
∑
v

Av −
∑
p

Bp. (49)

5In type-I models, fractons are created at the corners of
membrane-like operators, while they are created at the corners of
fractal-like operators in type-II models. Type-II phases are also dis-
tinct from their type-I counterparts by the absence of any topolog-
ically non-trivial mobile quasi-particles, while type-I models gener-
ally host sub-dimensional particles in addition to fractons.
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Figure 1. Depiction of the cut surface stabilizers which form
the entanglement Hamiltonian for an arbitrary cut of the
d = 2 toric code as well as the NLSS they form. Solid lines
represent terms in the EH, while dotted lines represent the
completion in B of the cut stabilizers. Red lines represent X-
type operator, blue lines represent Z-type operators, and the
grey lines emphasise the loop operators which form NLSS as
represented in B.

The first term in the Hamiltonian is associated to every
vertex v of the lattice such that Av =

∏
e@vXe, i.e., the

X-type Pauli for each edge attached to v. The second
term is associated with every plaquette p such that Bp =∏
e∈p Ze, i.e., every Z-type Pauli forming p.
For generic entanglement cuts, any boundary6 paral-

lel with the coordinate directions contributes to the EH
at first order, since both vertex and plaquette stabilizers
are either (3, 1) or (1, 3) cut stabilizers. Analogously, any
corners of the entanglement cut contribute at second or-
der as both stabilizer types are (2, 2) cut stabilizers; this
is also the case for straight boundaries which cut diago-
nally with respect to the coordinate directions (which is
the natural cut for the Wen-plaquette model).

We now consider these two types of local boundaries
in detail, both of which are depicted in Fig. 1. The first
is the case of a locally flat edge which contributes terms
to the EH of the form,

1
2
∑
eA‖∂

ξZeAZ̃eA + 1
2
∑
eB⊥∂

ξXeB T̃v(eB) ∈ HTC2
ent , (50)

where eA ∈ A ranges over all edges parallel to the bound-
ary ∂ of the entanglement cut and eB ∈ B ranges over

6To avoid verbosity, and since it should be clear from context,
we will refer to a “boundary defined by the entanglement cut” as
simply a “boundary,” except when contrasting it with a physical
boundary of the system.

all perpendicular edges. v(eB) corresponds to the vertex
in A which is attached to the edge eB and T̃v = (Av)A is
the T-shaped cut vertex stabilizer at v ∈ ∂ (see Fig. 1).
The second case is along a “stair-stepping” edge; since
there are no contributions at first order, to second order
we find that the EH contains terms of the form

1
2

∑
concave v∈∂

ξXv Ẽ
X
v + 1

2
∑

convex v∈∂
ξZv Ẽ

Z
p(v) ∈ H

TC2
ent , (51)

where v ranges over all vertices on the boundary, and p(v)
is the plaquette such its intersection with the boundary is
v. Here, ẼXv = (Av)A and ẼZp = (Bp)A are the “elbow”–
shaped operators formed by both the vertex and plaque-
tte operators (see Fig. 1). Considering these two possi-
bilities is sufficient to obtain all contributions to the EH
coming from any bounded entanglement cut.
Considering the commutation relation between the var-

ious terms, we see there exists a mapping from the re-
sulting EH to the d = 1 transverse-field Ising model
(TFIM). In particular, any X-type operator (be that an
edge or a concave elbow operator) anti-commutes with
the two neighboring Z-type operators (be they T-shaped
or convex elbow operators) and vice versa. These are pre-
cisely the commutation relations between the terms of
the TFIM. This implies that we can map the spin-1/2
degrees of freedom along the boundary of any region A
to effective spin-1/2 degrees of freedom along a d = 1
cycle of the same size as the boundary, whereby the EH
is mapped onto a TFIM:

HTC2
ent '

1
2
∑
〈ij〉

ξijZ̃iZj + 1
2
∑
i

ξiX̃i, (52)

where Z̃i, X̃i are the Pauli operators acting on the ef-
fective spin degrees of freedom, ξi, ξij are determined by
the exact form of the mapping, and the tilde represents
that we still have to consider the projection due to the
presence of NLSS.
For each stabilizer type, there is an NLSS guaranteed

by a topological constraint, i.e. the product of all stabi-
lizers of that type is the identity. Each NLSS takes the
appearance of a closed string wrapping the boundary and
is given by the product of all stabilizers of that type in-
side of A. These NLSS constrain the terms of the EH
such that ∏

eB⊥∂

T̃v(eB)
∏

concave v
ẼXv = P0

A, (53a)

∏
eA‖∂

Z̃eA
∏

convex v
ẼZp(v) = P0

A, (53b)

with the projectors P0
A defined in Sec. II C. This implies

that after the mapping onto the TFIM, the effective spins
are constrained by ∏

〈ij〉

Z̃iZj = I, (54a)

∏
i

X̃i = I. (54b)
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The above constraints imply that the NLSS “enforce” a
Z2 invariance, or charge conservation, on the EH. Note
that the well-known Kramers-Wannier, or self duality of
the d = 1 TFIM, which maps the transverse field terms
X onto the Ising terms ZZ, is exact only up to the
global constraint, i.e. Eq. (54a) is automatically enforced
whereas Eq. (54b) is not. However for the EH (52), the
duality is exact since both terms of the EH satisfy the
constraints as enforced by the NLSS. There is thus an
ambiguity in the mapping of the terms which can be un-
derstood as a consequence of the e − m duality in the
bulk.

From the preceding discussion, we see that the EH for
the d = 2 toric code shows universal behaviour, since,
for generic cuts and for arbitrary weak local perturba-
tions, it can be mapped onto a Z2 invariant TFIM of the
form Eq. (52), which acts on a chain of effective spin-1/2
degrees of freedom. Importantly, it is the NLSS which en-
force the global Z2 invariance of the EH, which can thus
be understood as a consequence of the bulk Z2 topo-
logical order. Similarly, we see from the NLSS that the
electromagnetic duality of the bulk state manifests itself
as Kramers-Wannier duality in the EH, which suggests
that there exists a finite region in parameter space for
which the EH can be mapped onto the critical Ising CFT.
In particular, for entanglement cuts corresponding to a
flat boundary, imposing translation symmetry along the
boundary forces all ξ coefficients in the perturbation V to
be equal, which maps the EH onto the critical 1d Ising
CFT. The condition that all ξ coefficients be equal for
the stair-stepping edge can be understood as being en-
forced by translation symmetry along a flat entanglement
boundary of the Wen-plaquette model, in which case the
EH again maps onto the 1d Ising model at its critical
point. Since this is not expected to hold for generic per-
turbations, we emphasise that the key universal property
of the EH is its mapping onto a Z2 invariant Hamilto-
nian acting on effective spin-1/2 degrees of freedom, with
the Z2 invariance enfored by the bulk topological order
through the NLSS. We note that our results for the EH
of the toric code/Wen-plaquette model are in agreement
with those found in Ref. [20].

Finally, for the case where A is not bounded, but rather
spans one direction of the torus, all results remain the
same except for the fact that the NLSS get promoted to
logical operators. As a consequence, the right-hand sides
of Eqs. (53) are replaced by (−1)`1(−1)`2P(`1,`2)

A , where
`1, `2 are the indices for the logical operators. When A
was bounded, the projection was necessarily onto the
“zero charge” sector of the TFIM, but due to the pos-
sible negative sign, the projection is now onto the charge
sector which corresponds to the topological sector in the
bulk. As a consequence, if we are in the 1-charge sector
for both topological indices, the ZZ terms must multiply
to −1, something which is otherwise impossible in the 1d
TFIM. To understand this better, consider a flat cut ex-
tending along one direction. Even though the product of
all T operators has no support on the qubits along the

boundary (the hypothetical TFIM degrees of freedom),
this operator extends into the bulk and can hence have
an eigenstate which differs from one.

2. d ≥ 3 Toric Code

The most natural, albeit by no means the only, gen-
eralisation of the toric code for d ≥ 3 is defined on the
d-dimensional Euclidean lattice, with one qubit per edge.
The Hamiltonian HTCd is identical to that of the d = 2
toric code (49), with the stabilizers of the exact same
form, where the vertex stabilizer Av is formed by the 2d
X-type Pauli operators attached to a vertex and the pla-
quette stabilizer Bp is still the product of the four Z-type
operators forming a plaquette.
We focus here on the d = 3 toric code and begin by

looking at contributions to the EH stemming from the
vicinity of a flat boundary with respect to the coordi-
nate directions. These parts of the boundary have con-
tributions coming from the (1, 3) cut plaquettes which
intersect the boundary along an edge as well as from the
(5, 1) cut vertex stabilizers, as depicted in Fig. 2. These
contributions take the form

1
2
∑
eA‖∂

ξXe Z̃e + 1
4
∑
eB⊥∂

ξZeB T̃v(eB) ∈ HTC3
ent . (55)

Along any “hinges” of the entanglement cut, we have ad-
ditional (2, 2) cut plaquettes for concave hinges and (4, 2)
cut vertex contributions at convex hinges, as shown in
Fig. 2. Likewise, any convex corner contributes one (3, 3)
cut vertex stabilizer whereas concave corners contribute
no additional terms. The presence of such hinges and cor-
ners in the entanglement cut add terms to the EH of the
form:

1
6

∑
convex v∈∂

ξXv T̃v + 1
2

∑
convex v∈∂

ξZv Ẽ
Z
p(v) ∈ H

TC3
ent . (56)

The terms considered above are sufficient for generating
all contributions to the d = 3 toric code EH coming from
any bounded entanglement cut. An example of such con-
tributions are shown in Fig. 2 for a cubic entanglement
cut.
To understand the universal features of the EH of the

d = 3 toric code, we now consider the NLSS. In gen-
eral, there exist an extensive number of NLSS since the
local cube constraints (

∏
p∈cube Bp = I) imply that ev-

ery product of Z̃e and ẼZp(v) which forms a closed loop
along the boundary of the cut must equal the identity
(see Fig. 2). Note that this includes closed loops which
are deformed around hinges and corners. The same con-
straint is present among the the ZZ terms of a d = 2
TFIM. Similarly to the d = 2 toric code, this suggests
a mapping from the original qubits along the boundary
onto effective spin-1/2 degrees of freedom on the con-
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Figure 2. Depiction of the cut surface stabilizers which form
the entanglement Hamiltonian for a 4 × 4 × 4 cubic cut of
the d = 3 toric code as well as the NLSS they form. Solid
lines represent terms in the EH, while dotted lines represent
the completion in B of the cut stabilizers. Red lines represent
X-type operator, blue lines represent Z-type operators, and
the grey lines emphasise the loop operators which form Z-
type NLSS as represented in B. Note the presence of this
NLSS is insensitive to the geometry of the hinge. The shaded
area emphasises a portion of the wrapping membrane operator
which forms the X-type NLSS as represented in B. Again,
the presence of this NLSS is insensitive to the geometry of
the hinge.

vex vertices of the boundary 7. Correspondingly, at the
operator level the mapping is implemented through

Z̃e, Ẽ
Z
p →Z̃iZj , (57a)
T̃v →X̃i, (57b)

where e = (i, j) for Ze terms or i and j corresponds to
the two adjacent corners of p for EZp terms, and v = i.
As before, Z̃i, X̃i are the Pauli operators acting on the
effective spin degrees of freedom and the tilde represents
projection due to the presence of NLSS.

The above mapping preserves all the commutation re-
lations between the different terms of the EH and thus,
we find that the EH for the d = 3 toric code is unitarily
equivalent to the d = 2 TFIM:

HTC3
ent '

1
2
∑
〈ij〉

ξijZ̃iZj + 1
4
∑
i

ξiX̃i, (58)

where 〈i, j〉 now refers to nearest neighbors on the square
lattice and ξi, ξij are determined by the precise form of

7As a consequence of fixing some degrees of freedom along the
boundary—specifically, those associated with the complete plaque-
tte stabilizers—the total Hilbert space dimension of the effective
degrees of freedom on the boundary is reduced. This same dimen-
sional reduction is also present in the X-cube model, which we
discuss below.

the mapping. Note that unlike the d = 2 toric code,
we were able to make the mapping explicit in this case
as there is no ambiguity in how the different terms get
mapped. This is due to the lack of an exact e−m duality
in the d = 3 toric code, which translates into the absence
of an exact self-duality in the EH, as evinced also from
its equivalence to the d = 2 TFIM. While the d = 2
TFIM does not harbour a Kramers-Wannier duality, it is
dual to the d = 2 Ising gauge theory via the celebrated
Wegner duality [85], indicating that the EH for the d = 3
toric code is dual to a theory with a local Z2 symmetry.
Further, although the existence of a phase transition in
the d = 2 TFIM shows that there exists a region in pa-
rameter space for which the EH is at the critical point,
generically we do not expect the EH to be near criticality.
Aside from the “trivial” NLSS, there are also those

connected to the topological constraints in the bulk. For
topologically trivial entanglement cuts there is only one
such constraint, and thus only one NLSS constraint(∏
v Av = I) not already captured by the trivial NLSS,

namely: ∏
eB⊥∂

T̃v(eB)
∏

concave v
T̃v = P0

A, (59)

which for the effective TFIM implies∏
i

X̃i = I. (60)

This constraint enforces global Z2 invariance on the EH
and can be understood as a consequence of charge con-
servation for the electric sector in the bulk. Much like
the EH for the d = 2 toric code, we hence find that the
universal features of the EH for the d = 3 toric code are
its mapping onto a globally Z2 symmetric Hamiltonian
acting on effective spin-1/2 degrees of freedom, with the
symmetry enforced by the bulk topological order through
the topologically non-trivial NLSS. Where the EH for
the d = 2 toric code harbours a self-duality, for the d = 3
toric code the EH is dual to the d = 2 Ising gauge theory.
So far, it is not clear whether the EH can additionally

encode the flux conservation condition in the bulk. In
the absence of perturbations, there exist contributions to
the entanglement, which appear in the recoverable infor-
mation, originating from the flux conservation condition.
However, this only occurs for topologically non-trivial
cuts such that the bulk can enclose or encircle closed flux
lines. Since the recoverable information counts non-trivial
NLSS, we expect the EH to encode this information as
well for topologically non-trivial cuts. We return to this
point in Sec. V.
We now consider the case when A is not bounded, i.e.,

when the boundary wraps around the system. For con-
creteness, we assume the boundary is a flat surface which
is everywhere perpendicular to the z-direction. Other
possibilities can be analogously understood. All of our
discussion for bounded cuts carries over with the key dif-
ference being the promotion of non-trivial NLSS to log-
ical operators. The electric charge sector gets projected
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onto the topological sector given by the quantum number
of the membrane logical operator perpendicular to the z
direction. Likewise, we also find two flux sectors defined
by ∏

e∈pathx

Z̃e = (−1)fxP(fx,fy)
A (61a)

∏
e∈pathy

Z̃e = (−1)fyP(fx,fy)
A , (61b)

where pathx(y) is any path which wraps around the x(y)
direction, and fx(y) is the quantum number for the logical
string operator wrapping around the x(y) direction. Sim-
ilarly to our discussion of the d = 2 toric code, we find
that these conditions are only possible since the mapping
of the EH onto the d = 2 TFIM is exact only up to global
constraints.

B. Type-I Fracton Order: X-cube model

As the archetypal model displaying type-I fracton or-
der, we now study the X-cube model introduced in
Ref. [35]. The model is defined on a cubic lattice, with
qubits living on each edge of the lattice. It is a CSS
Hamiltonian formed by two different stabilizer types,

HXC = −
∑
c

Bc −
∑
v,i

Aiv, (62)

where i = x, y, z. The first stabilizer type Bc is associated
with each cube c such that Bc =

∏
e∈c Ze i.e., every Z-

type Pauli forming the cube. The second stabilizer type
has three stabilizers associated to each vertex, one for
each direction, such that Aiv =

∏
e@v,⊥iXe i.e., every

X-type Pauli attached to v and in the plane perpendic-
ular to the direction i, as depicted in Fig. 3. Given the
extensive literature on fracton order, we do not discuss
the properties of this model in detail here but refer the
reader to Ref. [24] for a review.

Unlike topologically ordered systems, those with frac-
ton order have a non-trivial geometric dependence [49–
52, 55]; for the X-cube model, this is evidenced clearly
from its sub-extensive ground state degeneracy on the
3-torus [35]. Due to the geometric sensitivity, tabulat-
ing all possible contributions to the EH from the set of
all bounded cuts is much more challenging than for the
d = 2, 3 toric codes discussed in the previous section.
However, such a tabulation is unnecessary since the rel-
evant features distinguishing the entanglement structure
of fracton order from that of topological order can be un-
derstood by studying an R × R × R cubic cut along the
coordinate directions, which we now consider.

Within the interior of each plane of this cut, but away
from its boundaries (hinges and corners), only those (3, 1)
vertex stabilizers whose directional index is along that
plane survive at first order i.e., only the Aiv and Ajv (3, 1)
stabilizers survive on the two ij planes of the cut. We

Figure 3. The X-cube Hamiltonian is defined on the cubic
lattice with qubits (red dots) placed on each edge and is given
by the sum of two stabilizer terms—the first Bc, is the product
of twelve Z-operators at each cube c, while the second Ai

v is
the product of four X-operators attached to each vertex v in
the plane perpendicular to the coordinate direction i.

must go to fourth-order before we find a (4, 8) cut cube
stabilizer inside each plane. Both are demonstrated in
Fig. 4. Thus the surface of the cut, away from the hinges,
contributes

1
4
∑
eB∈∂

ξXeB T̃v(eB) + ε

8
∑
p∈∂

ξZp B̃p ∈ HXC
ent , (63)

where B̃p is the same plaquette operator as in the toric
code and ε = λ3, since the second term appears at fourth
order in perturbation theory. Note that we only include
one T̃v for each vertex along the boundary as the product
of the three vertex terms Aiv at any given vertex is a
constraint. This implies the presence of a trivial NLSS
requiring the equivalence of the two cut stabilizers at v.
Next, along the hinges of the cut but away from its cor-

ners, we find (1, 11) cut cube stabilizers which intersect
the hinges. Since the cut vertex stabilizers which con-
tribute are the same as those coming from the surface,
these have already been accounted for in Eq. (63). In ad-
dition, there are also contributions from (2, 2) cut vertex
(elbow) operators. However, this is a second-order contri-
bution which, due to the superficial NLSS, is the product
of two first-order contributions, and is thus excluded. Fi-
nally, there are no cube contributions coming from the
corners of the cut but there do exist three (2, 2) cut ver-
tex stabilizers whose product is the identity. As all three
of these appear at the same (second) order, we include
all of them. Therefore, we find additional contributions
to the EH coming from the hings and the corners, which
take the form:

1
4

∑
eA∈hinge

ξZeAZ̃e + 1
2

∑
corner v,i

ξivẼ
i
v ∈ HXC

ent , (64)

Eqs. (63) and (64) include all possible contributions to
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Figure 4. Depiction of the cut surface stabilizers which form
the entanglement Hamiltonian for a 4 × 4 × 4 cubic cut of the
X-cube model as well as the NLSS they form. Solid lines repre-
sent terms in the EH, while dotted lines represent the comple-
tion in B of the cut stabilizers. Red lines represent X-type op-
erator, blue lines represent Z-type operators, and the shaded
areas emphasise the ribbon operators which form NLSS as
represented in B. Hinge contributions have been highlighted.

the EH, where the hinge contributions are highlighted in
Fig. 4.

Along the surface of the cut but away from hinges and
corners, the surface EH, which is formed solely by the
terms in Eq. (63), can be better understood by consider-
ing the commutation relations between these terms. Ev-
ery vertex term T̃v anti-commutes with each of the four
plaquette terms B̃p sharing the vertex v; likewise, ev-
ery B̃p term anti-commutes with each of the four vertex
terms lying on the corners of p. We can then define a
mapping which takes the original qubits living on edges
of the square lattice on the surface onto effective spin-1/2
degrees of freedom living on plaquettes of the original lat-
tice, or equivalently, on vertices of the dual square lattice
(see Fig. 5). Under this mapping, the T̃v and B̃p terms
of the surface EH (63) are mapped as follows:

T̃v → B̃q, (65a)
B̃p → X̃i, (65b)

where i is the plaquette degree of freedom associated with
the p, and where

B̃q = ˜Zq1Zq2Zq3Zq4 , (66)

is the product of four (effective) Pauli-Z operators act-
ing on the vertices qi forming the dual plaquette q (see
Fig. 5). As before, the tilde here signify that we must also
account for the constraints imposed by the NLSS.

The surface EH, which on the original square lattice
along the surface is given by Eq. (63), can hence be
mapped onto the subsystem symmetric transverse field

Figure 5. Visual representation of the mapping between the
terms of the EH and the effective dual lattice and link degrees
of freedom. Red lines represent X-type operator and blue lines
represent Z-type operators on the real degrees of freedom. See
text for the definition of operators on the effective degrees of
freedom.

Ising-plaquette (TFIP) model

HXC
surface ent '

1
4
∑
q

ξqB̃q + ε

8
∑
i

ξiX̃i, (67)

acting on effective spin-1/2 degrees of freedom associated
with the dual square lattice on the surface of the cut. On
the dual lattice, the B̃q term is given by the product of
four Pauli-Z acting on the four vertices forming the pla-
quette q. Unlike the d = 2 TFIM which has a global Z2
symmetry, the TFIP model instead has a sub-extensive
number of d = 1 subsystem symmetries since it is invari-
ant under flipping all spins along any row or column of
the lattice. Thus, the EH for the X-cube model is clearly
distinct from that of the d = 3 toric code.
So far, we have only considered surface contributions

to the X-cube EH, but we must also account for the addi-
tional hinge and corner contributions given by Eq. (64).
While the EH can be mapped onto TFIP models along
the six faces of the cut, these models are coupled through
additional effective link degrees of freedom living on the
“wire-frame” defined by the twelve hinges of the cut.
These effective spin-1/2 degrees of freedom are then cou-
pled by all terms in Eq. (64) and also by the boundary
terms from Eq. (63). Specifically, at the intersection of
any two surfaces s and s′ of the entanglement cut, we
defined a mapping such that:

(T̃v)s →
(
B̃(q,l)

)
s

=
(
Z̃q1Zq2

)
s
⊗
(
Z̃l1Zl2

)
link
⊗ Is′ , (68a)

(T̃v)s′ →
(
B̃(q,l)

)
s′

= Is ⊗
(
Z̃l1Zl2

)
link
⊗
(
Z̃q1Zq2

)
s′

(68b)

Z̃e →Is ⊗
(
X̃l
)

link ⊗ Is′ , (68c)
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where B̃q was defined in Eq. (66). Finally, for corners
of the entanglement cut (where three surfaces intersect),
the mapping is specified by

Ẽiv →
(
Z̃ljZlk

)
link

, (69)

where i 6= j 6= k. The above mappings are depicted
schematically in Fig. 5.

It is straightforward to show that these mappings pre-
serve all of the commutation relations between the terms
in the EH defined by Eqs. (63) and (64). Considering only
their support on the effective link variables, the hinge
terms can be mapped onto the TFIM, with the exception
that there are two (three on the corners) distinct ZZ-
like Ising nearest-neighbour terms and, crucially, that the
model is defined on the “cage” (wire-frame) topology in-
stead of on a cycle. The link variables along the cage are
coupled to the surface degrees of freedom by the fact that
the ZZ-like terms along the cage anti-commute with the
Xi surface terms. Recall, however, that the Xi terms in
the surface TFIP model Eq. (67) occur at higher order in
perturbation theory than the B terms, as indicated by the
coeffecient ε of the transverse field term. Thus, to lowest
order, we find that the hinge and corner contributions to
the EH are mapped onto the TFIM acting on effective
spin-1/2 degrees of freedom living on the edges of the
cubic cut. In addition to distinguishing it from the d = 3
toric code, the EH also clearly distinguishes the fracton
phase from stacks of weakly coupled d = 2 toric codes,
for which the EH would consist of independent TFIMs
along each row and column of the square lattice on ev-
ery surface of the cubic cut. The distinction between the
fracton phase and d = 3 or decoupled stacks of d = 2
topological orders is also evident in the “cage-like” na-
ture of the EH. In the future, it would be interesting to
study the evolution of the entanglement spectrum under
the flux-string condensation discussed in Refs. [86, 87],
whereby stacks of d = 2 toric codes are strongly coupled
to arrive at the X-cube.

Following this analysis, we can generalise to any en-
tanglement cut given by a rectangular prism. The X-
cube EH can be mapped onto the TFIP model along
the surface of the cut, with the hinge and corner contri-
butions mapping onto the TFIM along the cage formed
by the edges of cut. Recall that for topologically ordered
phases, we found that the EH is universally given by a Z2
invariant Hamiltonian acting on effective spin-1/2 vari-
ables for generic entanglement cuts. Given the geometric
nature of fracton order, it should be no surprise that the
EH is correspondingly sensitive to the geometry of the
entanglement cut. To wit, the EH of the X-cube model
can be mapped onto a TFIP model along the surface of
the cut and to the TFIM along the hinges of the cut
only for cuts which respect the d = 2 planar subsystem
symmetry of the X-cube. For instance, for a cut along
the [111]-direction the EH will not take this simple form,
and so generically, the EH will not fall into the class of
subsystem symmetric invariant Hamiltonians acting on

effective qubits—it is only for cuts respecting the d = 2
planar subsystem symmetry that the EH will be invariant
under d = 1 subsystem symmetries.
Returning to a cubic entanglement cut, there is an am-

biguity in the mapping of terms in the EH due to the self
(or Kramers-Wannier) duality of the TFIP model, sim-
ilar to what we observed for the d = 2 toric code. This
duality is related to our choice to place effective degrees
of freedom on the dual lattice on the surface whereas
we could equally have placed them on the vertices of the
original lattice 8. As with the d = 2 toric code, the duality
for the X-cube EH becomes exact once we consider the
NLSS constraints, whereas for a two-dimensional TFIP
model the duality is only exact up to the subsystem NLSS
constraints along any rigid line. For the effective TFIP
model onto which the EH maps, these constraints are pri-
marily responsible for the fractonic behavior among the
Bp terms in the EH (67). As discussed in Ref. [71], all
6R + 1 independent topological NLSS for the cubic cut
are guaranteed by the existence of a sub-extensive num-
ber of topological constraints. The constraints amongst
the cubic stabilizers are generated by the product of all
cubes which contain vertices in any given plane perpen-
dicular to a coordinate direction. Similarly, the topologi-
cal constraints among the vertex stabilizers is generated
by the product of all vertex stabilizers which are entirely
supported in any coordinate plane. Thus the product of
all stabilizers in A for any one of these planes forms a
ribbon NLSS as depicted in Fig. 4. Note that the cube
ribbon parallel to the surface is supported on the edge
where the ribbon bends. We can characterise the result-
ing NLSS constraints as ∏

v∈ribbon⊥

T̃v =P0
A, (70a)

∏
p∈ribbon‖

B̃p
∏

e∈hinge∩ ribbon‖

Z̃e =P0
A, (70b)

where ribbon⊥ is any rigid string of vertices wrapping
around the entanglement cut along coordinate directions
(thus corresponding to a ribbon perpendicular to the sur-
face) and ribbon‖ is a rigid ribbon of plaquettes and edges
wrapping around the cut along coordinate directions. Af-
ter the mapping onto an effective TFIP model, the con-
straints among the terms of the EH are given by∏

q∈ribbon⊥

B̃q
∏

(q,l)∈hinge∩ ribbon⊥

B̃(q,l) =I, (71a)

∏
i∈ribbon‖

X̃i
∏

l∈hinge∩ ribbon‖

X̃l =I. (71b)

The first (plaquette) constraint is naturally enforced
whereas the transverse field constraint is not and must be

8We choose to use the dual lattice description here since this
makes the hinge and corner mappings appear more natural.
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Figure 6. Definition of the stabilizers in Haah’s cubic code.
The remaining stabilizers are related to these by translations.

enforced by hand; since this term occurs at higher order
in perturbation theory, however, we need only focus on
the first constraint. This constraint is responsible for a Z2
subsystem charge conservation which is a key signature
of fractonic behaviour [43, 56, 81], i.e., for the X-cube
model, charge is conserved globally but also along each
plane. For the TFIM along the hinges of the cut, notice
that the product of all parallel ribbon NLSS along any
one direction forms a cage. It is this NLSS that constrains
the hinge TFIM such that∏

e∈hinge
Z̃e = P0

A, (72)

so that after the mapping we have∏
l

X̃l = I. (73)

The Z2 charge conservation is thus enforced for the entire
cage formed by the hinges of the cut and not just for the
boundary of a single surface. Finally, we note that any
parallel ribbon NLSS which straddles the outer edge of a
surface satisfies the definition of a superficial NLSS as all
the cut cube stabilizers in this product are along the sur-
face. This lends credence to our assertion that superficial
NLSS signal the presence of subsystem symmetries where
the superficial NLSS is formed. However, the existence of
superficial NLSS is more pertinent to the discussion of
Haah’s cubic code and SSPT models, so we postpone a
detailed discussion of superficial NLSS until Section III C
and IV.

C. Type-II Fracton Order: Haah’s Cubic Code

We now study the entanglement spectrum of a type-II
fracton model, exemplified by Haah’s cubic code [32]. The
model is defined on a cubic lattice with two qubits living
on each vertex of the lattice. The model is described by
the Hamiltonian

HHaah = −
∑
c

GXc −
∑
c

GZc , (74)

Figure 7. Terms of the entanglement Hamiltonian for the cu-
bic cut for Haah’s cubic code. (a): Terms along surfaces of
the entanglement cut, away from hinges and corners. (b) and
(c): Terms along the hinges of the cut. Each model is defined
along six of the twelve edges.

which consists of two stabilizer types, both of which are
associated with every elementary cube of the lattice. The
first type is composed of X-type Pauli operators, GXc , and
the other is composed of Z-type Pauli operators GZc , with
their precise form shown in Fig. 6. The curious properties
of this model are reviewed in Ref. [24].
We start by considering an R×R×R cubic entangle-

ment cut along the coordinate directions of the lattice, so
as to contrast type-II fracton order with type-I. Given the
form of the stabilizers as shown in Fig. 6, we require at
least third-order perturbations before any contributions
arise in the EH along the surface of the cut. These con-
tributions result from the (3, 5) or (5, 3) cut stabilizers,
coming either from GXc or GZc depending on which sur-
face we are considering. Regardless of which surface we
consider, away from the hinges of the entanglement cut
there are two types of terms in the EH for each plaquette
of the square lattice on the surface. One such example is
depicted in Fig, 7(a), with all others unitarily equivalent.
Contributions to the EH from the surface of the cut s are
hence give by

1
6
∑
s

∑
p∈s

(
ξXp B̃

X
p + ξZp B̃

Z
p

)
∈ Hcube Haah

ent , (75)

where B̃Xp = (Gxc )A or (Gxc )B depending on the particular
surface under consideration, and likewise for BZp .
Along the hinges of the entanglement cut, we find con-

tributions at first, second, and third order coming from
the (1, 7), (2, 6) and (3, 5) cut stabilizers which intersect
along the hinge (see Fig. 7). The hinges contribute terms
of the form:

1
6
∑

e∈hinge

(
ξXe B̃

X
e + ξZe B̃

Z
e

)
∈ Hcube Haah

ent , (76)

where B̃X(Z)
e are defined the same way as the surface

terms. The precise form of the cut stabilizer depends on
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whether the XX, ZZ, or II corner of the GXc , GZc sta-
bilizers are included in the cut edge. For a given edge, if
an II corner is included along the edge of one stabilizer
type, the XX or ZZ corner is included along the edge of
the other stabilizer type, as can be easily checked.

Unlike all cases considered heretofore, there does not
appear to be a familiar Ising-like model onto which the
surface EH maps. In fact, we could have anticipated that
would be the case given the discussion regarding the role
of subsystem symmetries in the our analysis of the X-
cube model, where the surface EH maps onto the TFIP
model only for entanglement cuts along the planar sub-
system symmetries. Similarly, we expect that the EH for
cuts respecting the fractal subsystem symmetry of Haah’s
code will be mapped onto a subsystem symmetric Ising-
like model—this is indeed the case for a [111] cut, as we
discuss later in this section.

Along the hinges of a cubic entanglement cut how-
ever, we do find mappings of the EH onto familiar models
as long as we ignore any commutation with the surface
terms. By considering the mutual commutation relations
between the hinge terms specified in Fig. 7(b), we find
that these contributions to the EH can be mapped onto
the d = 1 TFIM. This is the case for the six hinges which
contribute (1, 7) and (3, 5) cut stabilizer terms. In con-
trast, contributions from the remaining six hinges coming
from (2, 6) cut stabilizers can be mapped onto a CSS ver-
sion of the d = 1 cluster model i.e., onto the terms given
in Fig. 7(c) 9. Finally for the cubic cut, we note in passing
that along both the surface and the hinges, there exists a
self-duality whereby all X-type terms can be exchanged
with the Z-type terms, leaving the EH invariant.
Although all NLSS are not well-understood for Haah’s

code, for the cubic cut there exist 12R − 2 independent
NLSS [71]. Fourteen of these can be generated using the
topological constraints found in Ref. [81] 10 For example,
two are implied by the topological constraints given by
the product over all stabilizers of a single type, which
enforces ∏

p

B̃Xp
∏

e∈hinge
B̃Xe = P0

A, (77a)

∏
p

B̃Zp
∏

e∈hinge
B̃Ze = P0

A. (77b)

Besides the remaining independent NLSS implied by the
other twelve known constraints, one can also show that

9To see this, coarse-grain the d = 1 chain such that there are
two qubits per unit cell. After this coarse-graining, there remain
only two stabilizers types which are no longer equivalent, up to
translates. These can then be mapped via a local Clifford circuit
consisting of an operator for each unit cell, such that the resulting
stabilizer code corresponds to Fig. 7.

10The “star” pattern in Fig 5a of Ref. [81] has two independent
versions given by exchanging the configurations in the three [111]
layers of the triangular lattice over which the pattern is periodic;
see the reference for more details.
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Figure 8. Depiction of the 4×4×4, 45°, 45°, 60° parallelepiped
cut as with example cut stabilizers along the [111] surface.
Solid lines represent terms in the EH, while dotted lines rep-
resent the completion in B of the cut stabilizers. Red semi-
circles represent X-type operator and blue semi-circles repre-
sent Z-type operators, where each circle represents the local
2 qubit Hilbert space at a vertex.

there are no superficial NLSS along any single surface of
the cubic cut.
As anticipated, the cubic entanglement cut does not

reveal much about the entanglement structure of Haah’s
code since it does not respect the (fractal) subsystem
symmetries, which played a significant role in our anal-
ysis of the X-cube model. Indeed, there exist more illu-
minating cuts for which we find contributions to the EH
at first and second order along the surfaces of the cut. In
particular, this is the case for flat entanglement surfaces
perpendicular to the [±1,±1,±1] directions, as these cut
along the corners of the cubic stabilizers. As a conse-
quence of the three-fold rotational symmetry about the
[111] direction and previous results discussed in Ref. [81],
the most interesting case is that of the surface perpendic-
ular to the [111] direction. Specifically, let us consider an
R × R × R, 45°, 45°, 60° parallelepiped, where the plane
of the 60° angle is perpendicular to [111] and half of the
parallelepiped unit cell forms a corner of a unit cube, as
depicted in Fig. 8. As four of the surfaces for this cut
correspond to faces of a cubic cut, the contribution to
the EH from those faces is the same as that in Eq. (75).
However, each of the [111] surfaces form a triangular lat-
tice and have contributions distinct from those discussed
prior. We look at the surface farthest from the orgin, with
results for the closer face obtained by swapping stabilizer
types. This surface contains (2, 6) Z-type and (6, 2) X-
type cut stabilizers, such that its contributions to the EH
are given by:

1
6
∑

v∈∂[111]

ξzv
˜(Z1
vZ

2
v ) + 1

6
∑

4∈∂[111]

ξx4T̃ T4 ∈ H
[111] Haah
ent ,

(78)
where T̃ T4 = (GXv )A is formed by two stacked triangle
operators as shown in Fig. 8 and where 4 corresponds
to the vertex v just above the triangluar plaquette in the
[111] direction. Here, the sum is restricted to only one
set of triangles, i.e., it only goes over upward-pointing
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triangles.
Within the boundary layer of A, the TT4 operator

forms a single triangle operator, strongly reminiscent of
the Newman-Moore model [88]. This model is defined on
a d = 2 triangular lattice, with the Hamiltonian given by

HNM =
∑

i , j ,k∈4

ZiZjZk, (79)

where the sum runs over all sets of nearest-neighbour
spins i, j, k living on the three vertices of one of the
upward-pointing triangles. To make the connection of the
[111] surface EH to the Newman-moore model precise, we
introduce one effective spin-1/2 degree of freedom for ev-
ery two-qubit unit cell along the entanglement surface
and map the terms as follows:

T̃ T4 → T̃4, (80a)
˜(Z1
vZ

2
v )→ X̃i, (80b)

where T̃4 = ˜Z41Z42Z43 such that 4i is one of the
effective spin-1/2 variables forming 4 and where v = i.
The [111] surface Hamiltonian is then mapped onto

H
[111] Haah
ent ' 1

6
∑
4

ξ4T̃4 + 1
6
∑
i

ξiX̃i, (81)

which we recognise as the Newman-Moore model Eq. (79)
in the presence of a transverse field. Hence, in contrast
with the cubic entanglement cut, for the cut depicted in
Fig. 8 we find a natural mapping of the EH for Haah’s
code onto a transverse field Newman-Moore model, act-
ing on effective spin-1/2 degrees of freedom. Taken along-
side our results for the X-cube model, this clearly illus-
trates the non-trivial geometric dependence of fracton
phases, whose EH is not universally equivalent to some
effective spin model, which is the case for topologically or-
dered phases. Instead, for both type-I and type-II fracton
phases, it is only for specific entanglement cuts i.e., those
compatible with the subsystem symmetries of the phase,
that the EH maps onto a subsystem symmetric model.
For Haah’s code, the mapping of the [111] surface EH
is onto the Newman-Moore model Eq. (81), which is in-
variant under fractal subsystem symmetries [33, 36, 57].
Our results hence illuminate the crucial role played by
subsystem symmetries in the entanglement structure of
fracton phases.

As before, we still need to consider the effect of the
projection due to the NLSS. In Appendix C, we find that
the number of independent NLSS for the cut considered
in Fig. 8 are 12R−2. Fourteen of these are related to the
same topological constraints as discussed for the cubic
cut and can be explicitly derived from them [81]. Unlike
a cubic entanglement cut however, for which there are
no superficial NLSS along the surfaces, in this case there
do exist superficial NLSS along the [111] surface. Con-
sider the (3, 5) cut Z-type stabilizer such that its support
forms a triangle in the boundary layer of A. As with the

Figure 9. Visual representation of the fractal superfical NLSS
for Haah’s code along the [111] surface. Solid lines represent
the support of the operator in A, while dotted lines represent
the completion of the operator in B. All such operators lie
in the [111] layers above the one depicted. Blue semi-circles
represent Z-type operators, where each circle represents the
local 2 qubit Hilbert space at a vertex. The blue shaded tri-
angles represent the stabilizers which form the NLSS. Note if
the lattice shown is in A then this is not a full NLSS as there
is support in A. However, the NLSS is formed by including
the three cut stabilizers at the corners of the fractal. These
are not included to aid in visualisation.

Newman-Moore model, the product of triangle stabiliz-
ers forming a Sierpinski fractal only has support on the
triangles forming the corners of the fractal. For a fractal
of size of the [111] surface, all support is removed from A,
leaving such a stabilizer group member in GB , as shown
Fig. 9. This does not affect the terms in Eq. (78) since
such terms contribute at third-order in perturbation the-
ory and so can be safely ignored. Nonetheless, this does
prevent any local first order contributions to the EH of
the form X1

vI
2
v for a vertex v in the triangular boundary

layer of B. While such terms commute with all complete
stabilizers in B, they do not commute with the superficial
NLSS, which is a consequence of the fractal subsystem
symmetries present in Haah’s code. As we discuss in de-
tail in Sec. IV, although such local terms are disallowed
due to the superficial NLSS, there exist quasi-local com-
binations of such operators which may yet survive, with
consequences for the entanglement structure of the phase.
We return to this point in Sections. IV and V.

As an aside, we note that forthcoming work by one of
us [89] has found a coupled layer construction of Haah’s
code, similar in spirit to the coupled layer construction
of the X-cube model put forth in Refs. [86, 87]. Much
like the EH for the X-cube, which clearly distinguishes
the fracton phase from decoupled stacks of d = 2 topo-
logical orders, we expect that the EH for Haah’s code
should likewise be distinct from decoupled stacks of the
underlying d = 2 SSPT layers. We leave an analysis of
the effect of the coupling procedure on the entanglement
structure to future work.
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D. Edge-ES Correspondence

Following the original proposal by Li and Haldane [6],
in which the low-energy entanglement spectrum was con-
jectured to match the low-energy spectrum of physical
boundary modes, the edge-ES correspondence and vari-
ations thereof were found to hold in many gapped topo-
logical phases. For chiral topological orders in d = 2,
whose edge excitations are well known to be described
by a 1+1D conformal field theory (CFT), it was shown
that the reduced density matrix of a bipartition in the
bulk is equivalent to the thermal density matrix of the
CFT describing the low-energy boundary dynamics [12];
the edge-ES correspondence was similarly established for
a series of fractional quantum Hall states in Refs. [7–
11]. A geometric proof later extended the applicability of
the edge-ES correspondence to physical systems with an
approximate Lorentz invariance at low energies [13], in-
cluding topological insulators, which belong to the class
of symmetry protected topological (SPT) phases. In SPT
states, which are short-range entangled states with non-
trivial protected boundary modes, the ES harbours a cor-
responding symmetry protected degeneracy [15–19].

While both chiral topological orders and SPT states
in d = 2 host non-trivial gapless edge excitations, with
corresponding signatures of these states appearing in the
bulk ES, the boundaries of non-chiral topologically or-
dered states, examples of which include the d = 2, 3
toric code, are generically gapped. Nonetheless, it was
shown in Refs. [20–23] that a version of the edge-ES cor-
respondence holds for such phases as well. Specifically,
Ref. [20] studied the Wen-plaquette model, which is uni-
tarly equivalent to the d = 2 toric code, in the pres-
ence of arbitrary local perturbations. While they did not
find an exact matching between the low-lying spectrum
of the physical edge Hamiltonian and the low-lying ES
for generic perturbations, as is true for chiral topologi-
cal states, a “weak” edge-ES correspondence was found
to hold. The weaker form of the edge-ES correspondence
is encapsulated by the fact that both the EH and the
edge Hamiltonian universally belong to the class of Z2
invariant d = 1 Hamiltonians acting on effective spin-
1/2 degrees of freedom. We now provide evidence that a
similar edge-ES correspondence generically holds for the
gapped fracton phases considered in this paper as well.

We first note that for a perturbed stabilizer Hamil-
tonian (6), the derivation of the edge Hamiltonian (the
Hamiltonian describing a physical boundary of the sys-
tem), proceeds analogously to that of the entanglement
Hamiltonian i.e., through UPT. That is, once a specific
physical boundary is specified, we can repeat the per-
turbative analysis developed in Sec. II C (or equivalently,
in Ref. [20]) in order to find Hedge to any given order
in perturbation theory. For all models considered in this
section, we find that to lowest order,

Hedge ' Hent, (82)

up to shifting and rescaling. Here, ' implies that both

models belong to the same class of Hamiltonians.
In agreement with the results of Ref. [20], we find

that both Hedge and Hent for the d = 2 toric code
can be universally mapped onto a Z2 invariant, self-
dual TFIM acting on effective spin-1/2 variables along
the one-dimensional entanglement cut. Similarly, for the
d = 3 toric code, both the EH and the edge Hamilto-
nian can be generically mapped onto an effective d = 2
TFIM which is invariant under a global Z2 symmetry. In
fact, it known on general grounds that the boundary the-
ory for a Z2 topologically ordered phase in D-dimensions
is unitarily equivalent to a Z2 invariant Ising theory in
D−1 dimensions [90], where the Z2 symmetry is enforced
by the bulk topological order. Along with our results in
Sec. III A, this clearly establishes the edge-ES correspon-
dence for the toric code. Ref. [90] additionally shows that
a topologically ordered phase with electromagnetic dual-
ity in the bulk hosts a boundary theory which is Kramers-
Wannier dual, which we demonstrated was also the case
for the EH of the d = 2 toric code.
For both type-I and type-II fracton orders, typified by

the X-cube and the cubic code models respectively, we
found that the EH cannot be universally mapped onto
some Ising-like model. Instead, it is only for entangle-
ment cuts along the subsystem symmetries (planar for
the X-cube, fractal for Haah’s code) that the EH can be
mapped onto an Ising-like model invariant under a sub-
extensive set of Z2 subsystem symmetries. The geometric
sensitivity of the entanglement Hamiltonian hence serves
to clearly distinguish fracton order from topological or-
der, a feature which carries over to the boundary Hamil-
tonian of fracton phases as well. Curiously, much as the
bulk Z2 topological order enforces global Z2 invariance
in the edge and entanglement Hamiltonians for the toric
code, the bulk Z2 fracton order enforces a subsystem Z2
invariance on the edge and entanglement Hamiltonians
for both the X-cube and the cubic code. For the EH,
this invariance is enforced through the NLSS, while for
the edge Hamiltonian we expect that it is a consequence
of the Wilson/’t Hooft operators in the bulk. Based on
our results, it seems reasonable that results established in
Ref. [90] for topological order can be extended to gapped
phases with fracton order as well. In other words, we ex-
pect that the boundary Hamiltonian (equivalently, EH)
for a system with fracton order can be mapped onto a
subsystem symmetric Ising model, as long as the phys-
ical boundary (entanglement cut) lies along the planar
(for type-I) or fractal (for type-II) subsystem symmetries
present in the bulk. While boundary theories of fracton
phases have yet to receive much attention, we note that
they have been studied in some detail for the X-cube
model in Ref. [91], whose results match ours where there
is overlap.

Finally, we note that Ref. [92] demonstrated that, in
two spatial dimensions, the EH for a gapped system har-
bouring a zero TEE is short-ranged, while it is a non-
local Hamiltonian if the ground state has a non-vanishing
TEE. Our results are in agreement with this general cor-
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Figure 10. Definition of the local stabilizers for the CSS vari-
ant of the cluster model.

respondence: for ground states with a non-zero TEE, the
corresponding NLSS enforces a non-local constraint on
the EH, while such constraints are absent for states with
a vanishing TEE.

IV. QUASI-LOCAL ENTANGLEMENT IN SSPT
PHASES

In this section, we look at the entanglement Hamilto-
nian of stabilizer codes describing subsystem symmetry
protected topological phases [56–58, 62]. In particular, we
consider the d = 2 cluster model, using a CSS variant of
the coarse-grained version introduced in Ref. [61]11. This
model is defined on the square lattice with two qubits
assigned to each vertex and the Hamiltonian

Hcl = −
∑
p

(
CXp + CZp

)
, (83)

where CXp , CZp are given by translates of the terms de-
fined in Fig. 10.

In Ref. [61] it was shown that this model, which is
an example of a strong SSPT phase (a notion defined in
Ref. [58]), harbours contributions to the topological en-
tanglement entropy for square entanglement cuts along
the coordinate directions. Ref. [61] dubbed such contri-
butions “spurious” since they survive the usual subtrac-
tion scheme defining the TEE [3, 4], which is expected to
vanish identically in gapped phases without long-range
entanglement i.e., without topological order. Unlike con-
tributions to the TEE for LRE states, such as the toric
code, which are independent of the entanglement cut, the
spurious contributions for the cluster state instead only
arise for square cuts. This suggests that these spurious
contributions arise as a consequence of superficial NLSS
associated with the subsystem symmetry protecting the
state. These subsystem symmetries are given by the prod-
uct of all stabilizers of a single type along any rigid line in

11Our version differs from that discussed in Ref. [61] by a local
unitary which applies the Hadamard gate on the second qubit for
every vertex.

either coordinate direction. The corresponding operators
are

gX1y =
∏
x

(XI)(x,y)

gX2x =
∏
y

(XI)(x,y)

gZ1y =
∏
x

(IZ)(x,y)

gZ2x =
∏
y

(IZ)(x,y), (84)

where (x, y) ∈ Z2
L indexes a vertex of the graph. We now

focus on the EH for square cuts to understand the sig-
nificance of the subsystem symmetries, which we argue
endow the strong-SSPT phase with “quasi-local" entan-
glement.
Due to the lack of any rotational symmetry in this

model, each straight edge of the square entanglement cut
has slightly varying contributions to the EH. For the top
and left boundary, we find (3, 2) cut X stabilizers and
(2, 3) cut Z stabilizers, whereas for the bottom and right
boundary we find (3, 2) cut Z stabilizers and (2, 3) cut
X stabilizers. At the corners of the cut, there is one X
and one Z cut stabilizer, which are either (2, 3) or (1, 4)
depending on the corner. For each edge along the cut, we
find that the EH maps onto the d = 1 TFIM, which is also
what we would find for a square entanglement cut for the
d = 2 toric code (see Sec. III A). However, the transverse
field terms of the effective TFIM do not get projected
onto a single charge sector, unlike the analogous terms
for the toric code EH.
Crucially though, the nearest-neighbour Ising terms of

the effective EH satisfy a “zero-charge” condition. This is
attributed to the superficial NLSS given by the product
of cut stabilizers in the set defining one of the subsystem
symmetries along that boundary. As a consequence of the
subsystem symmetry, such NLSS are concomitant with
any rigid entanglement boundary, with the subsystem in-
variance hence fundamentally responsible for the survival
of spurious contributions to the TEE. Surprisingly, it ap-
pears that the subsystem symmetries are behaving much
as topological constraints do, resulting in contributions
to the entanglement entropy which are typically associ-
ated with LRE systems. This is in consonance with re-
cent work suggesting that, as a consequence of subsystem
symmetries being intermediary between global and local
(gauge) symmetries, strong SSPT phases may have a ro-
bust ground state degeneracy on topologically non-trivial
manifolds [93]. Hence, strong SSPT phases are distinct
from their SRE SPT counterparts and also from LRE
topologically ordered phases, instead harbouring a pat-
tern of “quasi-local” entanglement (QLE) in their ground
states.

More precisely, we can view the subsystem symmetries
as enforcing a psuedo-constraint in the following way:
suppose we impose a restriction on the kinds of Pauli op-
erators which are allowed to act on our system. Viewed
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as a limitation on the types of perturbations which are
allowed, these must form a subspace of the Pauli space
such that products of any of the restricted operators also
belong to the set of restricted operators. In this case, let
us now consider all operators which commute with the
subsystem symmetries of the d = 2 cluster states (mod-
ulo any of the stabilizers). Such a subspace R ⊆ P is
generated by the set {XI, IZ} for every vertex of the
square lattice. Due to the restriction, not all parts of
the stabilizers matter, i.e., we can project out the parts
of the operators which commute with everything in R,
which happens to be R itself. As a result, the stabilizer
set becomes two commuting copies of the Ising plaque-
tte model and, significantly, the subsystem symmetries
are projected onto the identity after the restriction. This
implies that each subsystem symmetry imposes a psuedo-
Z2 conservation law once the restriction is enforced. This
restriction is also reflected in the EH.

Nïavely, one might think we have left out first-order
contributions to the EH coming from IX and ZI per-
turbations. But while these terms locally commute with
all complete stabilizers, they do not commute with the
subsystem symmetry and thus do not commute with the
superficial NLSS. However, such terms can contribute if,
upon inclusion of their coefficients, they collectively com-
mute with the superficial NLSS i.e., act quasi-locally. In
other words, we can construct an operator O =

∑
i χiOi

which commutes with the superficial NLSS despite being
composed of local terms Oi which do not individually
commute with the superficial NLSS. In order for this to
occur, the coefficients χi must conspire in a manner which
preserves the invariance of O under the subsystem sym-
metries, implying a measure of non-locality in the system.
In the language of Ref. [61], the existence of such an oper-
ator O implies the absence of a linearly-symmetric local
unitary transformation which can transform the cluster
state into a trivial product state, thereby demonstrating
the strong SSPT nature of the cluster state. In fact, the
quasi-local nature of the strong SSPT phase is implicit
in the classification developed in Ref. [58]: the unitary
circuit required to transform a strong SSPT into a triv-
ial product state, while of finite depth, must have sup-
port over a sub-extensive number of sites i.e., is “infinite-
length” in the thermodynamic limit. This is in contrast
with both SPT states, for which the corresponding uni-
tary would have support over a finite number of sites,
and with topologically ordered states, for which it would
need support over an extensive number of sites.

Thus, we see that strong SSPT states are quasi-locally
entangled, since they possess features characteristic of
long-range entangled states, but only for entanglement
cuts and perturbations respecting the subsystem sym-
metry: for a square entanglement cut, as long as the per-
turbations respect the subsystem symmetry, the EH is
equivalent to the d = 1 TFIM. If we allow perturba-

tions which break these “gauge-like” symmetries [65]12,
we generically find additional non-local terms in the EH,
destroying its mapping onto the TFIM. In contrast with
the EH for the d = 2 toric code, which is equivalent
to the d = 1 TFIM for generic perturbations, the EH
for the d = 2 cluster state only maintains this equiv-
alence for a certain class of perturbations; equivalently,
the mapping of the EH onto the d = 1 TFIM is pro-
tected by the subsystem symmetry. Hence, we see that
the EH for the cluster state resembles that for a topo-
logically ordered state but only as long as the subsystem
symmetry is preserved. Since the entanglement entropy
can be extracted from the EH, this further implies that
the so-called spurious contributions to the TEE in the
strong SSPT phase are in-fact relaying the quasi-local
entanglement present in the state. It is in this sense that
we assert that these seemingly ersatz contributions to
the TEE—although not topological in nature—possess a
measure of robustness beyond that found in conventional
SPT phases and are indicative of the gauge-like nature
of subsystem symmetries.

V. DISCUSSION: ROLE OF NLSS

The primary result of Section II, which is the deriva-
tion of the EH Eqs. 46 and 47 for stabilizer codes in the
presence of arbitrary (weak) local perturbations, leads
to several interesting entanglement Hamiltonians, as we
have established in the preceding sections. As a corollary,
we have also provided evidence that a weak edge-ES cor-
respondence, known to hold for non-chiral topologically
ordered states [20–23], also extends to systems with frac-
ton order. Another key result, which we now expound
upon, is the existence of non-trivial features in the entan-
glement structure which are protected by the NLSS. Note
that the notion of NLSS could in principle be generalized
beyond the stabilizer formalism as emergent gauge sym-
metries of a given topological order, whereby they fulfill
the same role as NLSS: protecting topological features
in the ES. In the case of conventional TO, these appear
as deformable k-form symmetries (k < d) whereas for
fracton order, they are rigid and respect the subsystems
which characterize the fractonic nature of that model.
Thus far, all of our results have been established for

the ground states of the perturbed systems. To extend
this, we conjecture that the EH for low-energy, perturbed
eigenstates takes the same form as that for the ground
state. More precisely, we posit that the EH for a low-
energy eigenstate of the perturbed system is also a sum
of projected cut stabilizers, but with coefficients which
may differ from those for the ground state. The validity
of this conjecture comes down to evaluating the validity

12A gauge-like symmetry is one which acts independently on a d-
dimensional sub-region of aD-dimensional system, with 0 < d < D.
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of the UPT unitary acting on the low-energy states. That
is, if we calculate Eq. (37) with U acting on a low-energy
stabilizer eigenstate |k〉, the analysis proceeds identically
(up to the exact coefficients) so long as the excitations do
not lie near the boundary defined by the cut. An impor-
tant consequence of this is that for the emergent Gauss
law

∏
i∈FA Oi = (g∂)A from Eq. (17), Eq. (48) becomes∏

q∈F∂

X̃q = (−1)c P (kA)
A , (85)

where F∂ is the set of stabilizer indices such that g∂ =∏
i∈F∂ Oi and c represents the number of excitations con-

tained in FA modulo 2 for the state |k〉. This implies the
surface charge of the EH is confined to the c-charge sec-
tor. If this holds, the charge of the surface EH can mea-
sure the charges in the bulk, which constitutes a “charge”
bulk-edge correspondence. Here, the charge is defined by
a global conservation law enforced by a topological con-
straint, which also enforces the existence of an NLSS (see
Refs. [71, 81]).

However, all excited states of the models considered
here can have additional non-topological degeneracy i.e.,
a degeneracy which is not related to logical operators. As
a result, it is not clear that we can ignore the choice of
basis within the excited degenerate eigenspaces13. An in-
tuitive argument for why one should be allowed to safely
ignore non-topological degeneracies is as follows: in the
original definition of the stabilizer Hamiltonian Eq. (6),
we allowed for arbitrary coefficients {Js}. Aside from
modifying the final coefficients appearing in the EH, al-
lowing arbitrary coefficients {Js} does not affect the re-
sults of Sections II B and IIC, but can remove any non-
topological degeneracies from the excited states. Stated
differently, simply by choosing a subset of the coefficients
{Js} to be negative, we can make any valid stabilizers’
eigenstate the unperturbed ground state uniquely, up to
the topological degeneracy.

Assuming this conjecture holds, the topological con-
straint is fundamentally responsible for enforcing the cor-
respondence between the surface charge sector and the
number of bulk Z2 charges, evidence that such a charge
bulk-edge correspondence is endowed with a measure of
topological invariance. For topologically ordered (LRE)
gapped phases, this bulk-edge correspondence has a strict
topological invariance, in that it is robust against any
local perturbations and appears universally for any en-
tanglement cut. Moreover, this conjecture also implies
that flux conservation presents clear signatures in the

13In UPT, this translates into the application of a constant (in
λ) unitary which is block diagonal in the degenerate subspaces, but
has no matrix elements between different eigenstates of the logical
operators. Because of this logical operator selection rule, the ground
space remains unaffected by the change of basis operator and we
are hence justified in ignoring any such operators in our original
analysis.

ES for d = 3 topological orders, such as the d = 3 toric
code model. If the entanglement boundary has non-trivial
topology, then one can measure a surface flux analogous
to Eq. (85), corresponding to the number of fluxes en-
closed or encircled by the cut. This is a consequence of
the NLSS being associated with flux and charge topo-
logical constraints in the bulk. On the other hand, for
strong SSPT phases such as the d = 2 cluster state, the
bulk-edge correspondence is robust only for entanglement
cuts and perturbations respecting the subsystem symme-
try. For gapped systems with fracton order, there exists
a mesh of both kinds of invariance (topological and sub-
system), since although the total number of charge types
is sensitive to the geometry, a subset of these are topo-
logical in nature i.e., exist universally for arbitrary local
perturbations and for generic cuts.

Where SSPT phases and fracton systems differ from
topologically ordered phases is in the existence of NLSS
which are not invariant under all equivalent bulk trans-
formations of A, but are only invariant under transfor-
mations within the intersection of A with the subsystem
symmetries. This is evidenced by the existence of superfi-
cial NLSS when the cut aligns with the rigid subsystems.
For SSPTs these subsystem symmetries are not strictly
topological, but rather quasi-local in nature (see previous
section), while for fractonic systems their nature may be
either topological (as is the case for the X-cube superficial
NLSS) or quasi-local (as is the case for the fractal superfi-
cial NLSS in Haah’s cubic code). Though the quasi-local
superficial NLSS can not be associated with a bulk-edge
topological charge correspondence, such NLSS can never-
theless be attached to a “pseudo-constraint” provided by
the subsystem symmetry and a restriction on the Pauli
space. Here, a restriction refers to a limitation on the
kind of Pauli operators which are allowed to act on a
subspace, whereby the type of excitations are limited as
well. Restrictions can be formalised in the language of
linear gauge structures, developed in Ref. [81]. In this
way, a subsystem symmetry which is contained in G im-
plies a psuedo-charge if there exists a restriction such
that the subsystem symmetry is elevated to a constraint.
Thus, under the restriction, the subsystem symmetry im-
plies a conservation law, as demonstrated explicitly for
the SSPT example in Sec. IV. It was in this sense that
we asserted that the seemingly spurious contributions to
the entanglement, despite not being topological in ori-
gin, are a consequence of the subsystem symmetry and
imply constraints analogous to those typically encoun-
tered in LRE states. The presence of such NLSS endows
the strong SSPT with a measure of quasi-local entan-
glement beyond that encountered in conventional SPT
states but lacking the full topological protection associ-
ated with topologically ordered states. Thus, the lexicon
of gapped quantum phases must be expanded to include
QLE states as intermediaries between those with either
short- or long-range entanglement.
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the entanglement
spectrum for the ground state of a general stabilizer
Hamiltonian, first by considering the unperturbed Hamil-
tonian and then by analysing the effects of weak, local
perturbations via UPT. This led us to find a version of
the edge-ES correspondence between the entanglement
Hamiltonian in the bulk and the edge Hamiltonian along
the boundary of the system. More importantly, we found
universal entanglement features which are preserved un-
der such generic perturbations as enforced by NLSS sym-
metries of the stabilizer Hamiltonian. These features take
the form of emergent surface charges/fluxes, which, via
the NLSS and the emergent Gauss’ law it implies, are
related to charges/fluxes in the bulk. We interpret this
as a type of “charge” bulk-boundary correspondence. We
applied our general results to several examples, includ-
ing conventional topological order as encapsulated by the
d = 2, 3 toric codes, type-I and type-II fracton order
as encapsulated by the X-cube model and Haah’s cubic
code, and strong SSPT phases as encapsulated by the
d = 2 cluster model.

Whereas the emergent surface charges/fluxes were
found to possess a robust topological invariance for con-
ventional topological order, both fracton and strong-
SSPT phases demonstrate a non-trivial dependence on
geometry, corresponding to their subsystem symmetries.
Our results hence establish the ES as a clear diagnos-
tic for not only fracton order, but also for strong SSPT
phases, with the latter characterised by a qualitatively
distinct pattern of quasi-local entanglement. This sug-
gests that SSPTs, despite not having the robust topologi-
cal invariance associated with LRE gapped states, exhibit
entanglement features beyond those expected for famil-
iar SPT phases, as reflected in the invariance of their ES
under subsystem preserving perturbations.

We also conjectured that the surface charges/fluxes
could be used to measure the bulk charges/fluxes for
perturbed excited states so long as certain assumptions
about UPT hold for these states. In principle, one should
be able to place bounds on the range of low-energy ex-
cited states for which we expect the conjecture to hold;
we leave a such a detailed analysis to future work. Fur-
ther, in this paper we have restricted our attention to
understanding the ES of fracton and SSPT phases de-
scribed by stabilizer code Hamiltonians. It would be in-
teresting to go beyond the stabilizer formalism and study
the ES for fracton orders not described by commuting-
projector Hamiltonians. While the edge-ES correspon-
dence has been established more generally for d = 2
non-chiral, non-Abelian topological orders with gapped
boundaries [23], it remains to be seen whether similar
results hold for d = 3 non-Abelian fracton models with
gapped boundaries [43, 51, 87]. As another extension,
we note that although commuting-projector Hamiltoni-
ans cannot describe chiral phases [94], it has been sug-
gested that gapped chiral fracton phases can instead be

captured by the language of higher-rank tensor gauge
theory [27, 95]. In the future, it would be interesting to
study whether a stronger edge-ES correspondence, simi-
lar to that for chiral topological orders, exists for chiral
fracton phases as well. More generally, understanding the
structure of entanglement in gapless fracton phases is an
important future direction, albeit one which lies beyond
the techniques developed in this paper.
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Appendix A: Unitary Perturbation Theory

We discuss our method for perturbatively construct-
ing a unitary operator U(λ) which relates eigenvectors
of an unperturbed Hamiltonian to the dressed eigenvec-
tors of a perturbed Hamiltonian. Our derivation, which
is a variation on the usual Schrieffer-Wolff perturbation
theory [77, 78], is designed to preserve the unitarity of
U(λ) to all finite orders in perturbation theory and is
closely related to the Wegner-Wilson flow discussed in
the context of many-body localization [96, 97].
Consider the case where one has an unperturbed

Hermitian operator H0 acting on members of a finite-
dimensional Hilbert space H with eigenvalues {En}n∈I
and a corresponding complete orthonormal set of eigen-
vectors {|n〉}n∈I . Note that this set is not unique in the
case of a degenerate spectrum. Now, suppose we add a
Hermitian perturbation V , weighted by a control param-
eter λ ∈ R, such that our new Hermitian operator be-
comes

H(λ) = H0 + λV. (A1)

We now wish to approximate the new eigenvalues
{E′n}n∈I′ and eigenbasis {|n′〉}n∈I′ of the perturbed
Hamiltonian at any finite order in λ. As discussed above,
we can achieve this by finding a unitary U(λ) which maps
{|n〉}n∈I to {|n′〉}n∈I′ . However, we must define the map-
ping between the two bases, in order for which we make
the following assumptions:

1. |n′(λ)〉 is an eigenvector of H(λ),
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2. |n′〉 is analytic within some non-zero radius of con-
vergence about λ = 0,

3. limλ→0 |n′(λ)〉 = |n′(0)〉 = |n〉, and

4. for any other |m〉 ∈ {|n〉}n∈I , its associated func-
tion |m′(λ)〉 satisfies 〈n′(λ)|m′(λ)〉 = δnm, for all λ
within the radius of convergence.

Taken together, these conditions imply that there ex-
ists an analytic, operator-valued function of λ, U(λ),
which transforms the unperturbed eigenbasis into the
new eigenbasis. Further, this implies the existence of an
analytic skew-Hermitian operator-valued function of λ,
F (λ), such that U(λ) = exp(F (λ)). We now define the

operator-valued function

D(λ) = U(λ)H(λ)U(λ)†, (A2)

which is also analytic. We can expand both sides of this
equation using the expansions

D =
∑
n

D(n)λn, (A3a)

F =
∑
n

F (n)λn, (A3b)

and match the two sides, order by order. Rearranging Eq.
(A2), one has that

H0 + λV = U†DU = exp(iAdF )D, (A4)

where for any operators A and O, AdAO = [A,O]. Now
we can expand both sides in λ and equate coefficients at
each order in λ. The LHS is already expanded, whereas
the RHS is a bit more complicated:

exp(iAdF )D =
∑
n

1
n!Ad

n
FD

=
∑
n,m

1
n!
∑
a1

∑
a2

· · ·
∑
an

λ‖~a‖+m[F (a1), [F (a2), [. . . [F (an), D(m)] . . . ]]]

=
∑
n

λn
∑
m

F (n−m)D(m), (A5)

where ‖~a‖ =
∑
i ai and where the super operator F (n) is

defined as acting as the identity for n = 0 and, for n > 0,
having the action on any operator O:

F (n)O =
∑
α

‖~a‖=n∑
~a∈N⊗α

1
α! [F

(a1), [F (a2), [. . . [F (aα), O] . . . ]].

(A6)

We then find the following relations, order by order:

λ0 :H0 = D(0), (A7a)
λ1 :V = F (1)D(0) +D(1) = D(1) − [H0,L], (A7b)

...

λn : 0 =
∑
m

F (n−m)D(m), (A7c)

where L := F (1). To solve for each operator, we define
the super-operator

∫
H0

, with an action on an operator O
of ∫

H0

O =
∑
n,m∈I

〈n|O|m〉 [En 6= Em]
En − Em

|n〉〈m| . (A8)

The super-operator
∫
H0

is a partial inverse to AdH0 up
to an arbitrary operator which commutes with H0. Fur-
thermore, the kernel of this function is all operators com-
muting with H0 which, by definition, includes all D(n).
Hence, at order n, we apply the

∫
H0

super-operator to
both sides of Eq. (A7), where we note that the m = 0
term is D(n), and so it drops out from the sum. Likewise,
the m = n term in the sum is F (n)H0, which includes
the term −AdH0F

(n), which maps to −F (n) under
∫
H0

.
Since all other terms only involve lower-order operators,
one can recursively solve for all F (n) and D(n). At lowest
order, we find that

L = −
∫
H0

V = −
∑
n,m∈I

〈n|V |m〉 [En 6= Em]
En − Em

|n〉〈m| ,

(A9)
as quoted in Eq. (21) in the main text for the stabilizer
Hamiltonian. Note that all F (n) are not unique as we are
always allowed to add an operator which commutes with
H0 at each step of the recursion. Above, we are implicitly
choosing this operator to be zero.
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Appendix B: Canonical Basis for the Pauli Group

In this Appendix, we describe the notion of a canoni-
cal basis for the Pauli group over N qubits. As the Pauli
group has been “Abelianized,” we can now treat it as
a vector space over Z2, where addition is given by the
product of Pauli operators and scalar multiplication is
given by the power of a Pauli operator. However, it ap-
pears that we have lost the commutation rules for Pauli
operators. We can recover this by introducing the sym-
plectic form λ : P × P → Z2, whereby for p1, p2 ∈ P ,
λ(p1, p2) = 1 if the two operators anti-commute, and is
zero otherwise.

We start by considering the trivial example of a canon-
ical basis as given by {Xi, Zi}i<N . Clearly, this is a basis
for P , but to use it along with λ to expand any Pauli
operator (in analogous fashion to an othonormal basis
in an inner product space), one observes that this ba-
sis has the properties λ(Xi, Xj) = λ(Zi, Zj) = 0 and
λ(Xi, Zi) = δij . Thus, one can expand any Pauli p ∈ P
as

p =
∑
i

λ(p,Xi)Zi +
∑
i

λ(p, Zi)Xi. (B1)

If we wish to have a similar expansion in some other basis,
we demand a similar set of requirements. We define a
canonical basis as a spanning set {pi}i<N ∪{p̃i}i<N such
that λ(pi, pj) = λ(p̃i, p̃j) = 0 and λ(pi, p̃j) = δij . These
conditions imply that we have an expansion similar to
Eq. (B1) for every Pauli operator within this basis. As
the stabilizer group G is mutually commuting, any basis
for it suffices as (nearly) one-half of a canonical basis,
but the other half, a canonical dual, is only unique up to
members of G. This also suffices to show the dimension
of any mutually commuting subspace of P is maximally
N .

Appendix C: Recoverable Information for the [111]
cut in Haah’s code

Here, we derive the recoverable information for an R×
R×R, 45°, 45°, 60° [111] parallelepiped entanglement cut,
as illustrated in Fig. 8. We use the definition

µ = d∂ − sA − sB = d∂ − 2s, (C1)

where the last equality is a consequence of using pure
states. To compute s, we use s = sA = |A| − dG and
the fact that for bounded simple cuts, all of GA is gen-
erated by stabilizers in A [70]. Note that we have also
removed the minimization over all possible generating
sets (see Eq. (14)) as there are no trivial constraints for
Haah’s code. So as to visually facilitate the derivation,
we note that we can visualise this cut as a stack of trian-
gular lattice layers, each of which is off-set with respect
to the others such that if we start at a vertex and proceed
upwards, we pass through a triangle of the layer imme-
diately above and an oppositely oriented triangle in the

layer above that one. This combination of a vertex and
two triangles is also one of the more illuminating ways of
visualising the stabilizers of Haah’s code. If we consider
the X stabilizer as “upwards-pointing” since it follows
the order: vertex← triangle← triangle, then the Z type
stabilizer is “downwards-pointing” since it follows the op-
posite order: triangle← triangle← vertex. Note that for
each triangle forming a stabilizer, the top (bottom) tri-
angular layer is only supported in one of the two qubits
at a vertex, the middle triangular layer is supported on
the remaining qubits, and the vertex layer is supported
on both. We refer to the position of the stabilizer as that
of the single vertex.
Clearly, the number of qubits in A is |A| = 2R3. As

for complete stabilizers, the top two layers contain no
complete X stabilizers while the bottom two layers con-
tain no Z complete stabilizers. In every other layer, all
stabilizers are complete except for along the two edges
near an acute angle of the parallelepiped. This implies
dGA = 2(R− 2)(R− 1)2 such that s = 8R2− 10R+ 4. As
for cut stabilizers, there are clearly 8R2 − 10R + 4 com-
ing from all vertices in A which were not counted while
calculating dGA . Every triangle in the bottom layer, as
well as all those along the edge, represents a cut X sta-
bilizer located in the two layers just below the surface
and likewise for the top layer and cut Z stabilizers. This
contributes 4R(R+ 2) cut stabilizers. For the remaining
layers, every upwards-pointing triangle along an obtuse-
angle boundary of the parallelepiped is an additional cut
stabilizer. This contributes 2(R − 1)(2R − 1). Applying
the definition, we find that

µ
[111]
Haah = 12R− 2. (C2)

Curiously, this is the same value as that for a cubic cut.
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