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We study the doping evolution of spin excitations in a 1D Hubbard model and its downfolded
spin Hamiltonians, by using exact diagonalization combined with cluster perturbation theory. In all
models, we observe hardening (softening) of spin excitations upon electron (hole) doping, which are
reminiscent of recent experiments on 2D cuprate materials. We also find that the 3-site and even
higher-order terms are crucial for the low-energy effective spin models to reproduce the magnetic
spectra of doped Hubbard systems at a quantitative level. To interpret the numerical results, we
further employ a strong coupling slave-boson mean-field theory. The mean-field theory provides an
intuitive understanding of the overall compact support of dynamic spin structure factors, including
the shift of zero-energy modes and change of spin excitation bandwidth with doping. Our results
can serve as predictive benchmarks for future inelastic x-ray or neutron scattering experiments on
doped 1D antiferromagnetic Mott insulators.

PACS numbers: 71.10.Fd, 74.72.Cj, 75.10.Pq, 78.70.Ck

I. INTRODUCTION

Among the intertwined degrees of freedom in corre-
lated materials, spin and spin excitations are of particular
significance. Various emergent phases, including pseudo-
gap, stripe, high-Tc superconductivity and strange metal,
arise from doping a spin-ordered Mott insulator.1,2 Spin
fluctuations are widely believed to act as the pairing
glue for unconventional superconductivity.3–5 In addi-
tion, a number of novel solid-state phenomena are driven
by the spin interaction, including magnetoresistance,6

spin liquid,7 and topological insulator.8 Spin excitations
also offer a promising route for the development of
future magnetic, spintronics and transistor devices.9,10

The importance of characterizing spin excitations has
dramatically pushed down the experimental resolution
of the resonant inelastic x-ray scattering (RIXS) and
inelastic neutron scattering (INS) experiments.11–17 In
contrast, theoretical description of spin excitations in
correlated systems remains an open question, except for
a few simplified toy models.18

Spin excitations are not even fully understood in a
one-dimensional (1D) correlated system, which directly
describes Sr2CuO3, SrCuO2,

19–21 and organic salts such
as TTF-TCNQ.22 Very recently, 1D systems have been
also realized using cold atoms23 and quantum circuits.24

The minimal physics of correlated electrons can be
described by the Hubbard model. An asymptotically
exact solution of the ground-state energy of 1D half-
filled Hubbard model was obtained by Lieb and Wu by
mapping the Hubbard model onto algebraic equations
through the Bethe ansatz.25,26 Though exact, its im-
plicit wavefunctions lack direct intuitions and remain

unhandy in calculating the excitation spectra relevant
to experiments.27 Different aspects of 1D half-filled Hub-
bard model have been extensively studied using various
numeric techniques,28–32 and the density matrix renor-
malization group (DMRG)33–36 is believed to provide an
exact solution of the ground-state properties.

Compared to the ground-state properties, the exci-
tation or dynamics is much more difficult to compute
theoretically. At half filling, the spin spectrum can be
solved using Takahashi’s theory,37,38 while with doped
carriers the spectrum can become complicated to obtain
due to the breaking of SO(4) symmetry.39 In realistic
materials, the existence of next-nearest-neighbor hopping
and the particle-hole asymmetric nature brings extra
complexity even at half filling. Therefore, obtaining a
comprehensive understanding of spin excitations in a
doped 1D Hubbard model remains a challenge.30,40–42

Due to the effective spin-charge separation nature in
1D,40,43 the elementary excitations of the 1D Hubbard
model are spinon and holon carrying respectively only
spin and charge degrees of freedom, and they propagate
with different velocities.26,44 Attempts have been made
to simplify the Hubbard model and obtain a low-energy
Hamiltonian. Using the canonical perturbation theory
one can show that the Hubbard model can be mapped
onto a t-J-like model45,46. The latter class of models
requires far less numerical effort due to a restricted
Hilbert space,44 and provides a good approximation for
correlated electrons. In particular, in the half-filled limit
the t-J model becomes identical with the Heisenberg
model. In this case, the ground state of such an
S = 1/2 spin 1D Heisenberg model can be obtained
using the Bethe ansatz47 and exhibits a quasi-long-range
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antiferromagnetic (AFM) order. A few conclusions have
been drawn analytically, including the des Cloizeaux-
Pearson lower bound of the excitation continuum48 and
the elementary spinon excitation.49 The dynamical spin
structure factor of a half-filled spin chain has been
calculated with both (analytical) Bethe ansatz50–52 and
(numerical) DMRG techniques,53,54 and the results are
consistent with the INS and RIXS experiments.14,55–58

However, away from half filling, due to the unphysical
restriction of Bethe ansatz59 and general difficulty of
treating dynamical properties in numerics, a systematic
description of the doping evolution of spin excitations is
still lacking.60–64

Another motivation for this work is the recent discov-
ery of persistent spin excitations in doped (2D) cuprate
high-Tc materials.13,15,65–67 In these experiments, para-
magnon excitations were observed along the antinodal
direction even in the overdoped regime. This lack of
softening upon hole doping is quite puzzling. In addition,
the paramagnons in electron-doped cuprates were found
to harden with doping, which is unexpected considering
the loss of long-range AFM order. Theoretical explana-
tions for these phenomena include the attribution to the
3-site correlated hopping68 and the longer-range hopping
t′.69,70 Without efficient and reliable numerical tools in
2D correlated systems, it is hard to reach a definitive
answer. Therefore, an analog analysis in a 1D system is
on demand as a key step.42,71

In this paper, we systematically study the doping
evolution of the spin dynamical structure factor of
the 1D Hubbard, t-J and t-J-3s models (see Sec. II
for the model definitions) using exact diagonalization
(ED) and cluster perturbation theory (CPT). In the
absence of longer-range hopping t′, we find that the t-
J-like models can well capture spin excitations of the
Hubbard model, providing lower and upper bounds of
the compact support. However, for a finite t′, the
quantitative agreement between the Hubbard and t-
J-like models becomes worse. We also find that the
hardening of spin excitations upon electron doping and
their persistence upon hole doping are well-addressed
by the presence of t′, with an additional contribution
from the 3-site term. We further supplement these
results with a simplified analytical slave-boson mean-field
approach, which allows for an intuitive interpretation
of the numerical results. Our systematic analysis not
only provides quantitative predictions for INS and RIXS
experiments on 1D materials, but also addresses the
anomalous hardening phenomenon in 2D cuprates.

This article is organized as follows. In Sec. II, we
introduce the Hubbard model and its low-energy effective
Hamiltonians, including the t-J and t-J-3s models. In
Sec. III, we introduce two approaches to evaluate the
dynamical spin structure factor, a numerical CPT and
an analytical slave-boson mean-field approach. We
present the calculated spectral results in Sec. IV and the
discussions in Sec. V. We conclude the study in Sec. VI.

II. MODELS

The single-band Hubbard model is the simplest model
describing strong Coulomb interactions between elec-
trons,72,73 and the Hamiltonian reads

HHubbard = −
∑

i,j,σ

tij

(

c†iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓. (1)

Here, c†iσ denotes an operator creating an electron on

site i carrying spin sz ≡ σ = ±1/2, niσ = c†iσciσ is the
electron number operator, and tij is the hopping integral.
The hopping integrals usually decay quite rapidly

with the interatomic distance |i − j| for the Wannier
wavefunctions. In the models for quasi-2D cuprates, they
are typically truncated at the nearest-neighbor hopping
t, the next-nearest-neighbor hopping t′, or (at most) the
third neighbor hopping t′′.74,75 The latter two hoppings
break particle-hole symmetry, as is seen in the well-
known asymmetric phase diagram of the cuprates. The
relatively narrow AFM phase in hole-doped cuprates
generally requires the leading longer-range hopping to
be negative. Therefore, to be consistent with 2D cuprate
system, we consider a negative next-nearest-neighbor
hopping −0.3 ≤ t′ ≤ 0 throughout this paper.
In the strong-coupling limit U ≫ t, the single-band

Hubbard model (with t′ = 0) can be mapped onto the
t-J model45,46,76–78 by projecting out doubly occupied
states:79

Ht-J = −
∑

i,j,σ

tij

(

c̃†iσ c̃jσ + h.c.
)

+ J
∑

〈i,j〉

(

Si ·Sj −
ñiñj

4

)

,

(2)
where the spin-exchange energy J = 4t2/U . In contrast
to the fermionic operators representing real electrons in
the Hubbard model, creation (annihilation) operators

c̃†iσ (c̃iσ) here act in the restricted Hilbert space where

double occupancy is forbidden: c̃†iσ = c†iσ(1 − niσ̄) and
ñiσ = niσ(1 − niσ̄). The spin operator Si · Sj =
Sz
i S

z
j +

(

S+
i S−

j + S−
i S+

j

)

/2, with Sz
i = (ni↑−ni↓)/2 and

S+
i = (S−

i )† = c̃†i↑c̃i↓. By performing a particle-hole
transformation, one can map an electron-doped system
to a hole-doped one with only a sign change of the longer-
range hoppings t′ and t′′.80 We adopt this trick for the
analysis of electron-doped system in the t-J framework,
but still define the physical parameters including t′,
doping concentration x, electron density n, Fermi energy
EF , and Fermi momentum kF in the original basis,
consistent with the Hubbard model.
During the strong-coupling expansion, in principle

Eq. (2) should contain one more term of the same order
as the spin exchange interaction (t2/U). This so-called
3-site term78,81–87 is described by

H3s = −J

4

∑

〈i,j〉,〈i,j′〉

j 6=j′ ,σ

(

c̃†j′σñiσ̄ c̃jσ− c̃†j′σ c̃
†
iσ̄ c̃iσ c̃jσ̄

)

. (3)
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Adding it to the t-J model produces the correct second-
order expansion of the Hubbard model. The t-J+3-site
Hamiltonian (denoted as t-J-3s in the following) reads:

Ht−J−3s = Ht−J +H3s. (4)

Since the 3-site terms do not contribute to the ground
state at half filling, they have quite often been ignored.
However, they were shown to be important for describing
the single-particle excited states and accordingly the
motion of the hole introduced in the ground states with
magnetic correlations.88,89

As the 3-site term describes an effective long-range
hopping mechanism within the same AFM sublattice, it
favors the persistence of spin correlations in the doped
t-J-like models. Indeed, it was proposed to partially
account for the anomalous paramagnon hardening in
the electron-doped 2D Hubbard model.68 Note that the
above expressions for the spin exchange J and 3-site
terms are precise only for t′ ≪ t,90 beyond which limit
the longer-range spin exchange J ′ and other 3-site terms
∝ t′t/U or ∝ t′2/U are non-negligible. In 2D cuprate
materials, it has been pointed out that these effective
longer-range terms are important to explain e.g. the
asymmetric nodal and antinodal magnon excitations.91,92

We will discuss the contribution from t′ in Sec. V.

III. METHODS

To understand the doping evolution of spin excitations
in correlated systems, we examine the zero-temperature
spectral properties of the Hubbard, t-J and t-J-3s
models, characterized by the dynamical spin structure
factor

S(q, ω) =
1

π
Im〈G|s−q

1

H− ω − EG − iδ
sq|G〉, (5)

where |G〉 is the ground state of the model Hamiltonian
with energy EG. Fourier transformation of the spin flip
operator is written as sq =

∑

j e
iqjS+

j /
√
L, where L is

the number of lattice sites.
In order to evaluate S(q, ω), we employ two comple-

mentary approaches. We first compute S(q, ω) numeri-
cally using finite-size cluster ED, with an infinite-chain
extrapolation in the CPT manner [see Sec. III A]. This
approach treats all many-body states of a small cluster
exactly and is applicable for any tight-binding models.
Such extrapolation is approximate but well-controlled,
where the result can be systematically improved by
increasing the cluster size in the ED calculations. This
approach provides a quantitative description for the
evolution of spin excitations upon doping the Hubbard
or t-J-like models. The second approach we adopt is an
analytical mean-field slave-boson theory [see Sec. III B],
which decouples the interacting degrees of freedom in t-
J-like models to evaluate the S(q, ω) compact support
(regions of allowed excitations in the energy-momentum

space). The latter analytical approach is also approxi-
mate but not limited by the system size, and it can help
to interpret the numerical spectra more intuitively.

A. Exact Diagonalization and Cluster Perturbation

Theory

Exact diagonalization (ED) can treat interaction ef-
fects exactly and provide direct access to the many-body
wavefunctions. Since it usually requires the enumeration
of the full Hilbert space of a many-body system, which
scales exponentially with the system size, the calculation
is usually restricted to a finite-size cluster. The excited
states, however, can be nevertheless captured properly by
linking finite clusters into an effectively infinite system.93

One successful approach is cluster perturbation theory
(CPT), which treats the Hamiltonian inter-cluster terms
as perturbation and extrapolates the result on a finite
cluster to that of an infinite system.94–96 It has been
demonstrated that CPT can solve the single-particle
spectral function for Hubbard and t-J-like models very
well for the 1D and 2D hypercubic lattices.88,89,97

This approach was recently extended to the spin spec-
trum.42,98

Within the ED+CPT framework, one first evaluates
the ground state of a given Hamiltonian in an open-
boundary cluster. Here we adopt the parallel Arnoldi
approach99 with the Paradeisos implementation100 per-
formed on a 16-site chain employing continued fraction
expansion (CFE).101 A broadening δ = 0.15t is chosen
to account for the intrinsic and experimental broadening
(of e.g. a typical RIXS experiment11–15) in the numerical
evaluation of Eq. (5). In 1D systems, the vertex
correction describing inter-cluster interaction has been
shown to be less important due to a minimal boundary-
bulk ratio,42,98 and it is set to zero for convenience in
this work. Moreover, the inter-cluster hopping does not
enter the CPT vertex, because the Green’s function is
replaced by the spin correlation function on the two-
particle level. A precise treatment of the hopping-
induced vertex correction would require a generalization
into a four-point Green’s function, which is substantially
more complicated.

B. Slave-boson mean-field approach

To gain a more intuitive understanding of the spin
dynamics in the 1D t-J model, we also employ an
analytical slave-boson mean-field approach. This tech-
nique utilizing the random phase approximation (RPA)
has been successfully used to describe the structure
above the pair-breaking peak in the Raman scattering
in HgBa2CuO4+δ,

102 and explain the large hardening
effect in the electron-doped cuprates as discussed in
Refs. 70,103.
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Here we derive the slave-boson equations for a hole-
doped system, and the electron-doped case can be de-
scribed by reversing the signs of t′ and x and by trans-
forming Fermi momentum kF to π − kF .

80 Within the
slave-boson framework, the electron creation operator is
expressed in terms of two operators

c̃†iσ = f †
iσai, (6)

where f †
iσ creates a fermion carrying the spin degree of

freedom (spinon), while ai annihilates a boson carrying
the charge degree of freedom (holon).104 The kinetic
energy term of the t-J model is then written as

Ht =
∑

〈i,j〉,σ

tij c̃
†
iσ c̃jσ =

∑

〈i,j〉,σ

f †
iσaia

†
jfjσ. (7)

To exclude double occupancies, a constraint

a†iai +
∑

σ

f †
iσfiσ ≡ 1 (8)

has to be imposed for every site i.105 We obtain for the

charge operator ñi =
∑

σ f
†
iσaia

†
ifiσ = 1 − a†iai and for

the spin operator Si =
1
2

∑

σ,σ′ f
†
iσσσ,σ′fiσ′ . Therefore

HJ =− 1

2
J
∑

〈i,j〉

∑

σ1,σ2

f †
iσ1

fjσ1
f †
jσ2

fiσ2

− 1

2
J
∑

〈i,j〉

(

1− a†iai

)(

1− a†jaj

)

. (9)

We then perform a mean-field decoupling of spinons
and holons. To this end, we define the resonance

valence bond mean fields D =
∑

σ〈f
†
iσfi+1,σ〉 and D′ =

∑

σ〈f
†
iσfi+2,σ〉, reflecting the strengths of nearest and

next-nearest neighbor spin bonds, as well as the mean-

field holon kinetic energies G = 〈a†iai+1〉 and G′ =

〈a†iai+2〉. As we are interested in the gapless spin
excitations, we do not consider possible spinon-pairing
term that can potentially lower the mean-field energy but
usually gaps out the spinons. We note that the values of
D, D′, G, and G′ are real due to the inversion symmetry.
With the mean-field decoupling, the t-J Hamiltonian is
expressed as

HMFT
t−J =

∑

kσ

ξkf
†
kσfkσ +

∑

k

ωka
†
kak, (10)

where fkσ =
∑

k e
−ikjfjσ

√
L and ak =

∑

k e
−ikjaj

√
L

are the mean-field free spinon and holon annihilation
operators in momentum space. The spinon and holon
dispersion relations read

ξk = −(JD + 2tG) cos k − 2t′G′ cos 2k, (11)

ζq = (1− |x|)J − (JG+ 2tD) cos q − 2t′D′ cos 2q. (12)

Here, x defines the doping level away from half filling
(with n = 1 + x being the average number of electrons
per site), and constant terms are neglected in Eq. (10).

To determine the values of the mean fields, we first
assume that the translational symmetry is preserved
and that D > 0 (will be demonstrated later). Then,
it can be calculated as an average over bonds: D =
∑

iσ〈f
†
iσfi+1,σ〉/N = 2 sin(kF )/π. Similarly, D′ =

sin(2kF )/π. Here, the Fermi momentum kF = πn/2,
which for a hole-doped system amounts to kF = π(1 −
|x|)/2. In a similar manner we obtain the mean-field

holon kinetic energies G =
∑

i〈a
†
iai+1〉/N = sin(qF )/π

and G′ = sin(2qF )/(2π), with qF = |x|π.
The mean-field solution employing these values pro-

vides the correct trend for the dynamical structure
factor upon doping, but it underestimates the correlation
effects. Since the solution of the undoped spin chain is
known exactly,52 we can match our mean-field solution
with the exact undoped spinon bandwidth, by taking
D = (π sin kF )/2. Also, we notice that G′ ≈ G for small
x, and we set them equal in this study G′ ≡ G. As
shown later, these assumptions result in good agreement
with the numerical solution. Upon substituting the Fermi
momenta into Eq. (11), the analytical form of the spinon
dispersion reads:

ξk=−
[

πJ

2
cos

πx

2
+2t

sin(|x|π)
π

]

cos k − 2t′
sin(|x|π)

π
cos 2k.

(13)

A similar dispersion has been obtained in Ref. 70 for a
2D spin model, where the G and G′ were taken to be half
of the Gutzwiller renormalization factor ∼ |x|/(1 + |x|).
Our G factor is very close to that value for |x| < 0.5.
After the mean-field decoupling, the Hamiltonian

Eq. (10) can be treated as a non-interacting tight-binding
model. Spin susceptibility can therefore be calculated
using the Lindhard theory:44,106

χ(q, ω) =
1

4N

∑

k∈BZ

fF (ξk)− fF (ξk+q)

ω + ξ(k)− ξ(k + q) + iδ
, (14)

where the Fermi distribution at zero temperature
fF (k) = θ(kF − k) is a Heaviside function, and δ = 0+.
The spin dynamical structure factor is then computed
using S(q, ω) = −Imχ(q, ω)/π.
It will be shown below that the spin spectra of the

1D Hubbard or t-J-like models can be qualitatively re-
produced by this simple slave-boson mean-field approach.
As this approach requires a decoupling of spin and charge
degrees of freedom, such a good agreement between
the slave-boson mean-field and the numerically exact
results can be viewed as a signature of the spin-charge
separation25, which occurs even at finite doping levels.107

IV. RESULTS

Using the two approaches described in Sec. III, we
calculate spin spectra of the Hubbard, t-J and t-J-3s
models. In order to highlight the role played by the
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particle-hole symmetry, we present the dynamical spin
structure factor S(q, ω) for t′ = 0 and finite t′ separately.

A. Particle-Hole Symmetric System: t′ = 0

The system without t′ exhibits particle-hole symmetry,
so spin excitations are equivalent for hole and electron
dopings. Figure 1 shows S(q, ω) for the doping levels
x = 0,±1/8,±1/4 obtained by ED+CPT calculations.
In the half-filled case (n = 1, left panels of Fig. 1), S(q, ω)
calculated for Hubbard, t-J-3s and t-J models are almost
identical. The spectrum shows gapless excitations at
q = 0 and q = π. As there is only quasi-long-range AFM
order, the spin spectrum does not exhibit sharp magnon
excitations, but instead it displays a continuum between
πJ
2
sin q and πJ sin q

2
. This so-called two-spinon contin-

uum stems from deconfined spin fractionalization: the
S = 1 spin excitation is constructed by two quasiparticles
(spinons) carrying each S = 1

2
spin. A single S = 1 spin

flip then decays into an even number of spinons. With the
quasi-long-range order, these spinons are correlated and
concentrate mostly at the lower bound. In this case, due
to the complete separation of spin and charge degrees
of freedom (also will be shown later in the mean-field
calculation), the spin models faithfully capture the spin
texture of the Hubbard model.42,108,109

Upon (either hole or electron) doping, the zero-mode
momentum shifts from π to smaller q values. Due to
a finite spectral broadening, it is hard to exactly extract
the position of the gapless excitation, but it is close to q =
π(1−|x|), consistent with Ref. 40. The lower limit of spin
excitations slightly softens; in contrast, the upper limit
increases with doping. At the same time, the spectral
weight spreads out instead of concentrating on the lower
bound, consistent with the destruction of the quasi-long-
range order. Particularly, the system maintains a large
residual of the q = π excitations, although being pushed
to higher energies.
Away from half filling, the spin models start to show a

deviation from the Hubbard model (see middle to right
panels of Fig. 1). Already seen at x = 0.125 doping,
the t-J model underestimates the spin excitation energy,
while the t-J-3s model slightly overestimates it. The
3-site term favors the persistence of spin correlations
upon doping and helps to maintain a large curvature
∼ J in S(q, ω).42,68 For the same reason, the t-J-
3s model reproduces the spectral weight distribution
of the Hubbard model better than t-J at all doping
levels. We note that even higher-order expansion terms
may be important, which could account for the slight
overestimation of spinon energy in the t-J-3s model.
To help understand the doping dependence of spin ex-

citations, we compute S(q, ω) of the t-J model using the
analytical slave-boson mean-field approach (see Fig. 2).
The compact supports of spin excitations (i.e. regions
of allowed excitations) obtained in mean-field theory and

in ED+CPT agree well, which means that the analytical
approach can provide a theoretical framework to explain
the observed doping evolution of spin excitations. We
note, however, that the spectral weight obtained in mean-
field theory does not carry any relevant information, so it
should not be compared to the spectral weight obtained
by ED+CPT. While more details will be given in Sec. V,
we already note here that the the mean-field approach
provides a straightforward explanation for the shift of the
zero-mode momentum upon doping, which follows from
particle-hole excitations between the two spinons on the
Fermi surface separated by 2qF = π(1 − |x|).

B. System Without Particle-Hole Symmetry: t′ 6= 0

While the t′ = 0 case provides the simplest scenario to
study the impact of carrier doping on spin excitations, it
cannot be directly applied to a realistic material where
the particle-hole symmetry is usually broken by further
neighbor hopping terms. To understand systems with
electron-hole asymmetry, we next examine the dynamical
spin structure factors of the Hubbard model with t′ 6= 0,
as well as for the t-t′-Jand t-t′-J-3s models.
Figure 3 shows S(q, ω) calculated by CPT+ED.113

With a small t′ = −0.3t, the spectra already exhibit clear
electron-hole asymmetry. The electron-doped S(q, ω)
displays an obvious hardening in energy. This is striking,
because the curvature of the two-spinon continuum re-
flects the effective local spin-exchange interaction. When
the system is doped away from half filling, the (quasi-
)ordered AFM background is expected to be rapidly
destroyed, which brings down the cost of a single spin
flip. The fact that doping induces a hardening indicates
that the effective interaction is strengthened, although
the overall spectral weight drops compared to half filling
due to the dilution of spin singlets. This persistence
and hardening of spin excitations have been observed in
2D cuprate systems, both experimentally and numeri-
cally.13,15,65,66,68 The similarity between the 1D and 2D
results suggests that the origin is generic to the model
and does not depend on the system dimensionality. We
attribute this phenomenon to a combined effect of the 3-
site term and t′ hopping (explained in detail in Sec. V).
The hardening maximizes at around x = 0.25 electron
doping; for even higher doping levels the carrier itineracy
starts to dominate the dynamics and the spin correlations
soften.
In contrast, with hole doping the dominant features of

S(q, ω) exhibit a rapid softening (see right panels of Fig.
3). In 2D systems, however, the spin spectra show only
little softening.15,110 While the reason for such a strong
quantitative difference is not exactly clear, we suggest
that in general it stems from the well-known distinct
nature of collective excitations in undoped 1D and 2D
systems. Interestingly, such a strong softening of the
two-spinon continuum observed here for the t′ = −0.3t
case also contrasts with the four-legged t-t′-J ladders111,
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FIG. 1: S(q, ω) calculated using ED+CPT for various doping levels (left to right: number of electrons n=1, 0.875, 0.75, and
0.625) on a 16-site 1D system with particle-hole symmetry (t′ = 0). Upper panels – Hubbard model with U = 8t; middle panels
– t-J-3s model with J = 0.5t; bottom panels – t-J model with J = 0.5t. A Lorentzian broadening of δ = 0.15t is adopted in
these calculations. Note that because of the particle-hole symmetry only the hole-doped spectrum is shown.

0

1

2

3

4

ω
[t

]

0 0.2 0.4 0.8 10.6
q/π

0 0.2 0.4 0.8 10.6
q/π

0 0.2 0.4 0.8 10.6
q/π

0 0.2 0.4 0.8 10.6
q/π

0 1 2 3 4 5 0 0.5 1 1.5 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6

n = 1 n = 1 - 1/8 n = 1 - 1/4 n = 1 - 3/8

FIG. 2: S(q, ω) calculated using the slave-boson mean-field approach for the t-J model with J = 0.5t, t′ = 0, at various doping
levels (left to right: number of electrons n=1, 0.875, 0.75 and 0.625). A Lorentzian broadening of δ = 0.05t is adopted in these
calculations. Note that because of the particle-hole symmetry only the hole-doped spectrum is shown.

which behave similarly to the 2D system with t′ =
−0.25t.112

At the same time, the overall spectral weight of S(q, ω)
for the hole-doped chain is smaller compared to that
at the corresponding electron doping. This is because
t′ plays an opposite role here: it weakens the effective
spin-exchange energy of collective excitations and helps
to destroy the AFM background. Because of that, the
spectra of the spin models differ from that of the Hubbard

model. Interestingly, in all models, the higher energy
features near q = π are similar for both electron and
hole dopings, which could probably be attributed to the
equal spin-exchange interaction ∼ J describing local (not
collective) excitations.

With finite t′, the slave-boson mean-field theory also
can qualitatively capture the compact support upon hole-
and electron-doping the t-J model (see Fig. 4): Indeed,
the lower bound of two-spinon continuum hardens for
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FIG. 3: S(q, ω) calculated using ED+CPT for various doping levels (left to right: number of electrons n=1.25, 1.125, 0.875,
0.75) on a 16-site 1D system without particle-hole symmetry (t′ = −0.3t). Upper panels – Hubbard model with U = 8t; middle
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electron doping and softens for hole doping. We note
that the curvatures of the two separate branches at
the lower bounds of the two-spinon continuum for finite
doping become different when t′ 6= 0. This reflects the
distinct motion of spinon and anti-spinon due to the
absence of particle-hole symmetry. The upper bound
and the nesting momentum of the two-spinon continuum
are sensitive only to the absolute value of the doping
concentration |x|. This reveals the fixed Fermi geometry

and bandwidth, as will be discussed in Sec. V.

V. DISCUSSION

In this section, we proceed with more quantitative
analysis of spin excitations presented in Sec. IV. To
parameterize the characteristic energy of spin excitations
obtained by ED+CPT, we define the peak energy at q =
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FIG. 5: The characteristic spin excitation energy ωc (see text)
as a function of doping x, obtained from ED+CPT results
for the Hubbard model (solid circles), t-J-3s model (open
squares), and t-J model (open triangles) with different values
of t′. Negative (positive) x corresponds to hole (electron)
doping. The gray curve denotes the corresponding mean-field
fermionic ξ(k) bandwidth. The inset of panel (c) illustrates
the definition of ωc and ωm as explained in the text.

q1/2 as ωc (i.e. the maximum energy in the lower bound
of the two-spinon continuum), where q1 corresponds to
the zero-mode momentum. We also define the maximum
spin excitation energy at q = π as ωm [see Fig.5(c) inset].
In the mean-field picture, ωc and ωm correspond to the
bandwidth of filled spinons and the full band dispersion.
Using these parameters, we quantitatively examine the
consistencies and discrepancies among different models
and methods. We then utilize the straightforward mean-
field picture to provide intuitive explanations of the
features observed in numerical calculations.

A. Quantitative Comparison between Different

Models and Methods

Using the results presented in the previous section,
we extract the evolution of ωc upon electron and hole

doping for the Hubbard, t-J and t-J-3s model with
different values of t′, as shown in Fig. 5. Concentrating
first at the t′ = 0 case, we note that the ωc values
calculated using different models match well at half filling
and follow the same trend with doping. Interestingly,
the t-J model underestimates the spin excitation energy,
while the t-J-3s overestimates it by a similar extent.
The underestimation in the t-J model takes place as
one neglects the 3-site term, which lowers the kinetic
energy by protecting the AFM sublattice and favors spin
order. The overestimation in the t-J-3s model might
arise as the model is projected onto a restricted spin
Hilbert space, which suppresses charge fluctuations. The
quantitative mismatch demonstrates that t-J-like models
cannot exactly reproduce spin excitations of the Hubbard
model even up to the second order t/U expansion. This
difference is not obvious at half filling due to the frozen
charge degrees of freedom, but becomes more pronounced
with doping due to enhanced charge fluctuations.

A similar trend also exists for finite t′, as shown
in Figs. 5(b) and (c). The ωc obtained from t-t′-J
and t-t′-J-3s models are respectively lower and higher
than that from the Hubbard model. Spin excitations
calculated for all three models exhibit a hardening on the
electron-doped side, and a softening on the hole-doped
side. Microscopically, this is a direct consequence of the
further-neighbor hopping t′, which breaks the particle-
hole symmetry by enhancing (suppressing) the tunneling
of holes (electrons). Thus, for electron doping, it helps
to decrease the scrambling of spin order induced by the
motion of doped electrons. For hole doping, on the
contrary, t′ promotes motion of the doped holes into
ordered spin clusters hence destroying the AFM order.
Therefore, we see a rapid drop of spin excitation energy
(and the spectral weight) with hole doping but no obvious
change with electron doping.

Interestingly, the Hubbard model results are closer to
the t-t′-J model on the hole-doped side and closer to the
t-t′-J-3s model on the electron-doped side. The former
can be easily understood as the t-t′-J model includes the
complete second-order t/U expansion, while the latter
can be attributed to the fact that the t-t′-J-3s model
misses the longer-range 3-site terms ∝ t′t/U . We note
that the 3-site term, in general, helps maintaining the
spin order and enhancing the spin excitation energy (re-
flected by the difference of t-t′-J and t-t′-J-3s models in
Fig. 5), while the longer-range 3-site terms can suppress
spin correlations upon hole doping. It is the combined
effect of t′ and 3-site term that leads to the hardening
of S(q, ω) on the electron-doped side. As a consequence,
we observe that the critical doping – the x where spin
excitation hardens the most – depends monotonically
on t′. This relation provides a way to experimentally
estimate the physical parameter t′.

Finally, we compare the numerical ωc from ED+CPT
with that from the slave-boson mean-field theory, which
is shown as gray curves in Fig. 5. The mean-field
result faithfully reflects the correct ωc when t′ = 0.
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However, although the overall trend is correct, it is
quantitatively different from the numerical value of any
model. Specifically, the mean-field calculation underesti-
mates the impact of t′, which can be attributed to two
reasons. First, the derivation of Eq. (13) considers the t′

impact only as a hopping term and ignores its indirect
impact on the spinon configurations (i.e. correction to
J). Second, Fig. 5 compares the lower bound of the
mean-field two-spinon continuum with the peak position
of S(q, ω) computed by ED+CPT. While the spectral
weight is expected to concentrate mostly on its lower
bound at half filling, a redistribution happens with
doping. It is clear that in electron-doped systems (see
the left column of Fig. 3), the spectral weight spreads
out towards higher energy. Therefore, the numerically
extracted peak position ωc is not necessarily located at
the lower bound of the compact support. The fact that
the mean-field result deviates more from the numerical
one in hole-doped systems indicates that the mean-field
ansatz is violated at large hole doping.
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FIG. 6: (a-c) S(q, ω) calculated using the slave-boson mean-
field approach for the t-J model with J = 0.5t, t′ = −0.3t,
at the doping level n = 1.25, 1.0 and 0.75, respectively.
(d-f) Mean-field fermionic spinon band ξk Eq. (13) for the
same doping levels. The shaded area of the fermionic band
ξk is occupied by particles (spinons), while the gray dashed
lines denote the Fermi energy EF and momenta kF . The
vectors q1 and q2 denote the allowed momenta for zero-energy
particle-hole excitations (see text). The colored (red, green,
or blue) arrows in (d-f) indicate the particle-hole excitations
that contribute to the excitations at particular (q, ω) points
denoted by the corresponding colored dots in (a-b).

B. Insights from the Slave-Boson Mean-Field

Theory

Within the slave-boson mean-field theory, the spin
dynamical structure factor S(q, ω) is completely governed
by the spinon dispersion ξk in Eq. (13) through the
Lindhard susceptibility. Therefore, the doping evolu-
tion of S(q, ω) can be understood intuitively by the
corresponding noninteracting spinon bandstructure. Fig-
ure 6(left panels) shows the S(q, ω), calculated in this
mean-field picture, of electron-doped, undoped, and hole-
doped systems in a full Brillouin zone.

First, we observe that zero-energy excitations
in S(q, ω) originate from particle-hole (i.e. spinon-
antispinon) excitations on the spinon Fermi surface.
Irrespective of the doping level, in the full Brillouin
zone such a zero-energy scattering is allowed only at two
different nesting momenta q1 = 2kF and q2 = 2π − 2kF .
Since the spinon band dispersion is convex, the Fermi
momentum kF is independent of the hopping parameters,
i.e. kF = π(1 − |x|)/2 (see Sec. III B). Therefore, q1
and q2 depend only on the absolute value of doping
concentration |x|. This accounts for the linear shift of
zero-energy momentum with doping (see Figs. 2 and 4),
and explains their independence of the sign of x.
Second, the two well-visible branches of the two-spinon

continuum can be tracked down to the scattering of
spinons to the Fermi surface (red arrows), and from the
Fermi surface (blue arrows). These two scattering chan-
nels are governed by the band structure below EF (for
spinons) and above EF (for antispinons), respectively.
Without t′, the particle-hole symmetric system has a
symmetric ξk below and above EF , resulting in the same
curvatures of the two branches in Fig. 2. With a finite
t′, the scattering of spinons and of antispinons is allowed
in two distinct parts of ξk, leading to different effective
masses of the two-spinon excitations. Thus, spinons
become heavier at hole-doping, while antispinons become
lighter (also see Fig. 4).

Third, the noninteracting band picture helps to under-
stand the origin of the hardening (softening) of S(q, ω)
upon electron (hole) doping with finite t′. With a
negative t′, the band structure ξk suffers from a doping-
induced ‘unbalance’ (due to the cos 2k term in Eq. (13))
below and above ω = 0 (Fermi level at half filling). The
band below ω = 0 is flatter with a narrow bandwidth,
while sharper above it. Therefore, the increase of the
depth of spinon Fermi sea compensates the band flat-
tening, leading to an unchanged or even hardened two-
spinon excitations. On the other hand, hole doping dries
out the Fermi sea and flattens the band bottom, both of
which lead to a softening of two-spinon excitations.

Finally, the upper edge ωm of the two-spinon contin-
uum is determined by the excitation from the bottom to
the top of the spinon band. Since in Eq. (13) t′ appears
in front of cos 2k, it does not change the energy difference
between the top (k = π) and the bottom (k = 0) of the
spinon band. Therefore, ωm remains the same with and
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without t′, for both hole and electron doping (compare
Figs. 2 and 4). Moreover, as the total bandwidth of ξ(k)
increases with doping, ωm always increases with doping
|x| away from half filling.

VI. CONCLUSIONS

We have systematically studied the doping evolution of
spin excitations in 1D Hubbard, t-J and t-J-3s models,
via both numerical and analytical approaches. Their
spectra exhibit several common trends, including (i) the
shift of the zero-energy momentum with doping, (ii) a
relatively weak softening of the dominant feature upon
doping a particle-hole symmetric system, (iii) a weak
hardening (strong softening) of the dominant feature
upon electron (hole) doping a system with finite longer-
range hopping t′. At a quantitative level, however, spin
excitations from both t-J and t-J-3s models differ from
that of the Hubbard model. In particular, for the hole-
doped system with finite t′, the t-J model seems to be
closer to the Hubbard model than the t-J-3smodel. This
counterintuitive result suggests that to obtain a genuine
quantitative agreement between the Hubbard and a low-
energy spin model, one needs to supplement the latter
by higher-order or longer-range terms in the expansion
in t/U and t′/U of the original Hubbard model.
In order to qualitatively understand the changes in the

spin spectrum upon doping, we compare the numerical
results with that from a slave-boson mean-field theory for
the t-J model.At half filling the latter faithfully captures
the compact support of S(q, ω). Moreover, it provides a
straightforward picture to understand the doping evolu-
tion of nesting momentum, as well as the hardening and
softening of the two-spinon continuum upon doping. The
hardening and softening of spin excitations observed in
the doped 1D models are comparable to those observed

experimentally in 2D cuprates. Although the tendency
towards the persistence or hardening is far weaker in 1D,
it provides a simpler platform to better understand these
phenomena. We note that the role of the 3-site terms are
far more important in 2D than in 1D, since in 2D the 3-
site terms allow for both next-nearest and third-neighbor
hoppings.

The quantitative analysis using different models and
approaches enriches our understanding of spin excitations
of the 1D Hubbard model. The nature of hardening or
softening in S(q, ω) reflects the underlying competition
between spin order and carrier itinerancy, and more im-
portantly, the interplay among spin-exchange interaction,
longer-range hopping, and correlated 3-site term. The
presented results should be broadly applicable to inelastic
neutron and x-ray scattering experiments on quasi-1D
correlated systems – such as doped cuprates and 1D cold
atom systems.
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95 D. Sénéchal, D. Perez, and D. Plouffe, Phys. Rev. B 66,
075129 (2002).

96 R. Eder, A. Dorneich, and H. Winter, Phys. Rev. B 71,
045105 (2005).

97 M. Kohno, Phys. Rev. B 92, 085128 (2015).
98 C.-C. Chen, M. van Veenendaal, T. P. Devereaux, and

K. Wohlfeld, Phys. Rev. B 91, 165102 (2015).
99 R. B. Lehoucq, D. C. Sorensen, and C. Yang,

ARPACK Users’ Guide (SIAM, 1998).
100 C. Jia, Y. Wang, C. B. Mendl, B. Moritz, and T. De-

vereaux, Computer Physics Communications 224, 81
(2018).

101 E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
102 R. Zeyher and A. Greco, Phys. Rev. B 87, 224511 (2013).
103 W. S. Lee, E. A. Lee, J. J.and Nowadnick, S. Gerber,

W. Tabis, S. W. Huang, V. N. Strocov, E. M. Motoyama,
G. Yu, B. Moritz, H. Y. Huang, et al., Nat. Phys. 10, 88
(2014).

104 M. Raczkowski and F. F. Assaad, Phys. Rev. B 88, 085120
(2013).

105 Q. Yuan, Y. Chen, T. K. Lee, and C. S. Ting, Phys. Rev.
B 69, 214523 (2004).

106 G. D. Mahan, Many-particle physics (Springer Science &
Business Media, 2013).

107 A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev.
Mod. Phys. 84, 1253 (2012).

108 M. Karbach, G. Müller, A. H. Bougourzi, A. Fledderjo-
hann, and K.-H. Mütter, Phys. Rev. B 55, 12510 (1997).

109 A. H. Bougourzi, M. Karbach, and G. Müller, Phys. Rev.
B 57, 11429 (1998).

110 G. Dellea, M. Minola, A. Galdi, D. Di Castro, C. Aruta,
N. B. Brookes, C. J. Jia, C. Mazzoli, M. Moretti Sala,
B. Moritz, et al., Phys. Rev. B 96, 115117 (2017).

111 S. R. White and D. J. Scalapino, Phys. Rev. B 60, R753
(1999).

112 T. Tohyama, C. Gazza, C. T. Shih, Y. C. Chen, T. K. Lee,
S. Maekawa, and E. Dagotto, Phys. Rev. B 59, R11649
(1999).

113 The unshown half-filled case is very similar to the t′ = 0
result in Fig. 1.


