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We theoretically analyze the non-linear anomalous Nernst effect as the second-order response of
temperature gradient by using the semiclassical framework of electron dynamics. We find that a
non-linear current can be generated transverse to the applied temperature gradient in time-reversal-
symmetry materials with broken inversion symmetry. This effect has a quantum origin arising from
the Berry curvature of states near the Fermi surface. We discuss the non-linear Nernst effect in
transition metal dichalcogenides (TMDCs) under the application of uniaxial strain. In particular,
we predict that under fixed chemical potential in TMDCs, the non-linear Nernst current exhibits a
transition from T−2 temperature dependence in low temperature regime to a linear T -dependence
in high temperature.

Modern condensed matter physics looks for new phe-
nomena that arise from the properties of wavefunctions
beyond the band structure of materials. A remarkable
example of such phenomena is provided by the local (ge-
ometrical) properties of wavefunctions, defined as the
Berry curvature1,2. The Berry curvature has profound ef-
fects on thermoelectric transport by statistical force (the
gradient of temperature), e.g. anomalous Nernst ef-
fect3–6, which describes the generation of a charge cur-
rent in the transverse direction to an applied temperature
gradient in the longitudinal direction for a system with
broken time-reversal symmetry. Similar to the Hall con-
ductivity7–10, the Nernst coefficient of a time-reversal-
symmetric material vanishes in the first-order response to
temperature gradient. However, the nonlinear responses
could manifest distinctive behaviors and have become
promising tools for understanding novel materials with
low crystalline symmetry in experiment11–15. Especially,
it has recently been shown that nonlinear Hall current as
a second-order response to electric field can occur in a
wide class of time-reversal invariant and inversion break-
ing materials7–10. The Boltzmann approach has been
used to describe the nonlinear transverse current in terms
of the Berry curvature dipole (BCD), a first-order mo-
ment of the Berry curvature over the occupied states in
momentum space9,10,16,17.

Monolayer MoS2 and other transition-metal dichalco-
genides (TMDCs) represent a new class of two-
dimensional (2D) materials, intrinsically behaving as
semiconductors. Due to lack of an inversion center, their
nonvanishing Berry curvature in each valley and strong
spin-orbit coupling (SOC) lead to a series of valley and
spin related anomalous transport phenomena, such as

valley (spin) Hall effect18–20 and valley (spin) Nernst ef-
fect21,22. However, H-structure monolayer TMDCs can-
not host linear and nonlinear currents flowing transverse
to the driving forces (electric field or temperature gradi-
ent) due to the presence of time reversal and C3v symme-
try10,23. When uniaxial strain10,23–27 is applied, this C3v

symmetry can be reduced to only a single mirror symme-
try, in which case the nonlinear Hall current induced by
BCD is allowed10,23. In two dimensional materials, it has
been shown that the largest symmetry for a nonvanishing
BCD is a single mirror symmetry line10.

Recently, it has been reported that intrinsic anoma-
lous non-linear thermoelectric effect can emerge due to
orbital troidal moment which breaks time-reversal (T)
and inversion (I), but retains their combined symme-
try28. However, it is natural to ask whether the nonlinear
Nernst current could occur as a second-order response to
temperature gradient in novel materials with time re-
versal symmetry, but with broken inversion symmetry.
In this paper, we will demonstrate that the nonlinear
Nernst effect is determined by a pseudotensorial quan-
tity that, in a similar way as the BCD9,10, is also related
to the Berry curvature (BC) near the Fermi surface to
be discussed below. Our study shows that the thermally
driven non-linear current can be generated perpendicular
to applied temperature gradient in the uniaxial strained
1H-TMDCs. The proposed nonlinear effect here would
also be expected to occur in other materials whose inver-
sion symmetry is broken but with time reversal symme-
try, such as topological insulators and three-dimensional
Weyl semimetals9,10,23,29–37.

In the following, our study builds upon a seminal work
by Xiao et .al.

3, which shows that statistical force, aris-
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ing from the temperature gradient ∇T , gives rise to a
correction to the orbital magnetization and an anoma-
lous charge current jA perpendicular to the temperature
gradient

jA = −
∇T

T
×

e

~

∫

[dk]Ω (k) [(Ek − µe) f (k)

+ kBT ln
(

1 + e−β(Ek−µe)
)]

, (1)

where β = 1/kBT , kB represents the Boltzmann con-
stant, Ek is the band energy, µe indicates the chem-
ical potential, ~ is the Planck constant, ∇T denotes
the temperature gradient, Ω (k) is the Berry curvature,
and

∫

[dk] is the shorthand for
∫

dk/(2π)d. Here, we
have generalized the electron distribution in the for-
malism of thermally induced anomalous charge current
jA in Ref.3 into the non-equilibrium one, namely re-
placing equilibrium Fermi-Dirac distribution function

f0 (k) = 1
/(

exp Ek−µe

kBT
+ 1

)

by non-equilibrium distri-

bution function f (k) (details can be found in Ref.38). In
fact, the current jA is zero in the linear response regime,
i.e. f = f0, for a time-reversal-invariant system, owing
to the relation Ω (k) = −Ω (−k) guaranteed by time-
reversal symmetry and the equal occupation for states at
k and −k in linear regime. However, when the distribu-
tion is non-equilibrium, the transverse anomalous charge
current jA can survive as the second-order response to
the temperature gradient, which we will show below.
With the relaxation time approximation, the Boltz-

mann equation for the distribution of electrons in absence
of electric field is43

f − f0 = −τ
∂f

∂ra
· va, (2)

where τ represents the relaxation time, va and ra de-
note the a component of the velocity and coordinate
position of electrons, respectively. We are interested in
the response up to second order in temperature gradient,
and hence have the nonequilibrium distribution function
f ≈ f0 + f1 + f2 with the term fn understood to vanish
as (∂T/∂ra)

n. After a series of careful derivation (see
details in Ref.38), one obtains

f1 =
τ

T~
(Ek − µe)

∂f0
∂ka

∂aT,

f2 = −
τ2

T~
(Ek − µe) vb

∂f0
∂ka

(

∂abT −
1

T
∂aT∂bT

)

+
τ2

~2T 2
(Ek − µe)

2 ∂2f0
∂ka∂kb

∂aT∂bT,

(3)

where ∂a = ∂/∂ra and ∂ab = ∂2/∂ra∂rb. Based on Eqs.
(1) and (3), the nonlinear Nernst-like current density
jnlA (where the subscript “A”/ superscript “nl” refer to
anomalous /nonlinear, respectively) in the a direction,
as the response to second order in temperature gradient,

is found to be

[

jnlA

]

a
= −εabc

∂bT∂dT

T

τe

T~2

∫

[dk] (Ek − µe)
2 ∂f0
∂kd

Ωc,

(4)
where εabc is Levi-Civita symbol. Eq. (4) indicates that

the current
[

jnlA

]

a
is linearly proportional to the relax-

ation time τ and a pseudotensorial quantity, defined as

ΛT
cd = −

1

T 2

∫

[dk] (Ek − µe)
2 ∂f0 (k)

∂kd
Ωc. (5)

The presence of the factor ∂kd
f0 implies that the non-

linear current is associated with a ”Fermi-surface” con-
tribution, because only the states close to the Fermi sur-
face contribute to the integral in the low temperature.
The novel pseudotensorial quantity ΛT

cd features an ex-

tra factor (Ek − µe)
2/T 2 in the integral, therefore it has

different physical meaning in contrast to the Berry cur-
vature dipole, Dcd =

∫

[dk]f0∂kd
Ωc = −

∫

[dk]Ωc∂kd
f0

10

although they play a similar role in generating current
density (see Eq. (7)) as that in Ref. 10.
In two dimensional materials, the Berry curvature Ω

is reduced from a pseudovector to a pseudoscalar and
only the component perpendicular to the plane, namely
Ωc=z, can be nonzero. Hence, pseudotensorial quantity
ΛT
cd behaves as a pseudo-vector contained in the two-

dimensional plane:

ΛT
d = −

1

T 2

∫

[dk]
∂f0 (k)

∂kd
(Ek − µe)

2
Ωz (k) , (6)

where d = x, or y indicating the component of ΛT in
d direction. The ΛT is tied to the underlying crystal
symmetries. The largest symmetry of a 2D crystal that
allows for nonvanishing ΛT is a single mirror line (i.e., a
mirror plane that is orthogonal to the 2D crystal)10. The
presence of mirror symmetry accompanying with time
reversal symmetry would force the ΛT

d to be orthogonal
to the mirror plane, which can be easily illustrated by
analyzing the symmetric/ antisymmetric properties for
kd → −kd of the energy dispersion E(kd) (E(k) = Ek)
and Berry curvature Ωz (kd), respectively.
Let us consider a time-reversal invariant system in

which only mirror symmetry Md exists. Time-reversal
symmetry requires that the energy dispersion respects
E (k) = E (−k) and the mirror symmetry Md imposes
the constraint E (kd, kd⊥

) = E (−kd, kd⊥
), where d⊥ in-

dicates the coordinate axis orthogonal to axis-d in 2D
plane. Both constraints on the energy dispersion also
imply the relation E (kd, kd⊥

) = E (kd,−kd⊥
). There-

fore, it is evident that the partial derivative of Fermi-
Dirac distribution function g(k) = ∂f0 (k)/∂kd or d⊥

is
an odd function with respect to kd and kd⊥

, namely
g(kd) = −g(−kd) and g(kd⊥

) = −g(−kd⊥
). Mean-

while, the mirror symmetry Md requires Ωz (kd, kd⊥
) =

−Ωz (−kd, kd⊥
), and time reversal symmetry leads to

Ωz(−k) = −Ωz(k). When combining the mirror symme-
try and the time reversal symmetry, we get Ωz (kd, kd⊥

) =
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FIG. 1. (a)(b) Schematic of energy dispersion of a uniaxially
deformed TMDCs. (c)(d) Berry curvature Ωτvc (k) and the
strain-influenced Fermi-surface (solid circle) for the conduc-
tion band at the K (-K) valley, respectively. The blue arrow
denotes the strained induced shift of the band extrema with
respect to k

′ = 0. The colour scale for the solid circle show
schematics of ∂f0/∂kx distribution at the Fermi energy. α is
the lattice constant.

Ωz (kd,−kd⊥
). Hence, the integrand in Eq.(6) is even for

ΛT
d but odd for ΛT

d⊥
, indicating that only the d compo-

nent of ΛT could be nonzero.

In fact, the current can be expressed in vector notation
as

jnlA =
eτ

~2
(z ×∇T )

(

∇T ·ΛT
)

. (7)

When only a single mirror symmetry exists, the linear
thermally driven transport coefficient tensor has its prin-
cipal axis aligned with the mirror line and ΛT is forced
to be orthogonal to mirror line. Consequently, According
to Eq. (7), when the temperature gradient is perpendic-
ular to the mirror line, one can recognize that the current
that flows perpendicular to temperature gradient has a
quantum origin arising from ΛT.

One of candidate 2D materials to observe the nonlin-
ear Nernst effect is monolayer transition-metal dichalco-
genides. The C3v symmetry of these crystals with 1H
structure would force the pseudo-vector quantity ΛT to
vanish. However, application of uniaxial strain can re-
duce this symmetry and leave only a single mirror opera-
tion, in which case the proposed effect would be observed.

Under uniform uniaxial strain along high-symmetry,
the strained-dependent Hamiltonian of TMDCs around

K or -K valley is24,44

Ĥ =
∆′

2
σ̂z+vF~

(

τvk
′
xσ̂x + k′yσ̂y

)

+τvγvF~ (uxx − uyy) k
′
x,

(8)
where τv(= ±1) is the valley index, σ̂ denote the Pauli
matrices for the two basis functions of the energy band,
vF represents the Fermi velocity and ∆′ is the strain-
modified energy band gap. Due to the strain-induced
fictitious vector potential A ∝ (uyy − uxx, 0), we sub-
stitute the canonical momentum k′ = k − eτvA for the
momentum k which is measured relatively to the valley
K (τv = 1) or valley -K (τv = −1) point of the Bril-
louin zone. The third term that does not couple to the
sublattice pseudospin is strain-dependent with γ and uij

denoting, respectively, a dimensionless parameter and a
strain tensor element. The SOC has been ignored since
we consider only n-type TMDCs and the SOC is weak in
the lowest-energy conduction bands of TMDCs45. The
energy eigenvalues are

Eτvn (k
′) = τvγvF~ (uxx − uyy) k

′
x + nǫ1 (k

′) ,

ǫ1 (k
′) =

√

(

∆′

2

)2

+ (vF~k′)
2
,

(9)

where n(= ±1) is the band index. The Berry curvature of
band is determined by Ωτvn (k) = ẑ·∇k×〈uτvn|i∇k|uτvn〉
for 2D materials, where uτvn is the eigenfunction of the
Hamiltonian, For the massive Dirac fermions described
by the effective Hamiltonian in Eq. (8), the Berry cur-
vature of the conduction band is

Ωτv,n=1 (k
′) = −τv

v2F~
2∆′

4 [ǫ1 (k′)]
3 . (10)

In the valence band, we have Ωτv,n=−1 (k
′) =

−Ωτv,n=1 (k
′). For relatively small strain level, the sec-

ond line of Eq. (9) becomes ǫ1 (k
′) ≈ ∆′

2 + (~k′)2

2m , where

m = ∆′

2v2

F

is band mass. With this approximation the en-

ergy dispersion can be expressed as Eτv,n=1 (k
′) ≈ ∆′

2 +
~
2(k′+τvk0)

2

2m , where the shift of the band extrema with re-

spect to k′ is determined by k0 = k0x̂ =
γ(uxx−uyy)∆

′

2~vF
x̂.

Building on the above analytical expressions for energy
dispersion and Berry curvature, we present an analysis
for ΛT that describes the nonlinear anomalous Nernst
effect. The quantity ΛT for TMDCs in conduction band
is given as

ΛT
d = −

2

T 2

∑

τv ,n=1

∫

[dk′] [Eτvn (k
′)− µe]

2 ∂f0,τv
∂k′d

Ωτvn (k
′) ,

(11)
where 2 is for spin. It should be noted that ΛT

d be-
comes zero when T approaches zero since ∂f0,τv/∂k

′
d →

−δ (Eτvn (k
′)− µe)

∂Eτvn(k′)
∂

k′d. In the following, we will
only consider the nonlinear Nernst effect at finite tem-
perature. Application of the uniaxial tensile strain along
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the zigzag direction (x direction) indicates that only the
x component of ΛT in Eq. (11) could be nonzero due
to the mirror symmetry Mx. To better understand the
physics, let us first look at the case of one valley. For each
valley, ∂f0,τv/∂k

′
x = −[(1 − f0,τv)/f0,τv ]∂Eτv ,n=1/∂k

′
x is

equal but opposite on both sides of the Fermi surface [Fig.
1 (c)(d)]. The Berry curvature of the conduction band
[Eq. (10)] is also isotropic for each valley in k′. If there
is no uniaxial strain, this circulating pattern resulting
from the BC and ∂f0,τv/∂k

′
x will have exact cancellation

around Fermi energy, giving rise to a vanishing ΛT at
each valley. Under the uniaxial strain along x direction,
however, the band extrema are shifted from the original
K(−K) point to opposite directions in kx-axis [Fig. 1
(a)(b)]. As a result, the center of Fermi sphere for each
valley will no longer coincide with the extrema of the
Berry curvature [Fig. 1 (c)(d)] in kx direction, leading to
the non-zero ΛT

x for single valley.
As illustrated in Fig. 1, it is visible that gτv (k) =

∂f0,τv/∂kx has opposite sign on the opposite side of
Fermi energy for different valleys, namely gK (kx, ky) =
−g−K (−kx, ky), which is entailed by the mirror sym-
metry. Furthermore due to time-reversal symmetry, the
Berry curvature at the two valleys takes opposite values.
Therefore, ΛT

x at two valleys can have same sign and con-
tribute additively, resulting in the total ΛT

x as

ΛT
x = −ζuxx

[(

kBT

∆′
Q1 (βµ) +Q2 (βµ)

)]

, (12)

with

Q1 (βµ) = 2β2µ2 ln
(

1 + eβµ
)

+ 4µβLi2
(

−eβµ
)

− 4Li3
[

−eβµ
]

,

Q2 (βµ) =
1

3
π2 − 2Li2

[

(1 + eβµ)−1
]

−
[

ln
(

1 + eβµ
)]2

,

(13)

where β = 1/kBT , Lin(x) =
∑∞

k=1
xk

kn is the polylog-
arithm. And the chemical potential µ = µe − ∆′/2 is
measured from the bottom of the conduction band. The
presence of ΛT

x indicates that with C3v symmetry bro-
ken by uniaxial strain, a net transverse current occurs
as the second-order response to the longitudinal temper-
ature gradient in TMDCs. Besides, this net transverse
current is dominant in this time reversal-invariant sys-
tem, since there is no transverse current in the linear
response regime. The typical scale ζ = 6k2BvF~γ/(∆

′)
characterizing ΛT

x is 3.838 k2BÅ for MoS2, where we use a
Fermi velocity vF ≈ 6.559× 105m/s, γ = 0.2708 and the
strain modified energy ∆′ ≈ 1.82eV at relatively small
strain levels44.
Fig. 2 shows the dependence of the dimensionless func-

tions Q1(2) on the chemical potential µ and tempera-
ture kBT . When the chemical potential is much smaller
than the temperature, namely µ ≪ kBT , both dimen-
sionless functions Q1(2) tend to be constant and inde-
pendent on the chemical potential and temperature [Fig.
2(a)]. As a result, the quantity ΛT

x determining the non-
linear Nernst effect behaves as ΛT

x ∝ T . In the regime,

0.0 0.5 1.0
1

2

3

4

0 2 4

0

5

10

15

(b)

 Q1

 Q2
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 Q1/( )3

 Q2/( )2

FIG. 2. The dimensionless function Q1 and Q2 in (a) and
Q1/(µβ)

3 and Q2/(µβ)
3 in (b) are calculated with βµ, re-

spectively. µ is the chemical potential and measured from
the conductance-band minimum. T is temperature, and
β = 1/kBT .

µ ≫ kBT, we observe that Q1 shows (µ/kBT )
3 and Q2

shows (µ/kBT )
2-dependence [Fig. 2(b)]. Hence, for a

fixed chemical potential, the non-linear Nernst current
[Eq.(7)(12)] exhibits a transition from jnlA ∼ T−2 tem-
perature dependence in the low temperature regime to a
stronger jnlA ∼ T dependence in the high temperature.

In summary, we study the non-linear Nernst effect as a
second order response of temperature gradient. We have
derived the non-linear Nernst current by using the semi-
classical framework of electron dynamics. The non-linear
Nernst current, induced by the combination of Berry cur-
vature and the non-equilibrium carrier distribution, flows
transverse to temperature gradient in the time-reversal
symmetry system but with inversion symmetry delib-
erately broken. Applying the uniaxial strain along the
zigzag direction (x-direction) to 1H-TMDCs can break
the underlying C3v symmetry and leave only the mirror
symmetry Mx, giving rise to non-linear Nernst current.
Remarkably, the non-linear Nernst current is insensitive
to the chemical potential in the “low doping” or “high
temperature” regime (µ ≪ kBT ). In contrast, in the
“high doping” or “low temperature” regime (µ ≫ kBT ),

the current shows j
nl
A ∝ µ3 chemical potential depen-

dence. For a fixed chemical potential, the non-linear
Nernst current exhibits j

nl
A ∼ T−2 temperature depen-

dence in the low temperature regime to jnlA ∼ T in the
high temperature. In this paper our discussion focus
on low energy effective Hamiltonian model of strained
TMDCs. In fact, the asymmetry distributions on BC
and velocity are also expected to generate finite ΛT

x in
high energy regime.23 Finally we wish to remark that
the proposed non-linear Nernst effect should be observed
in other 2D and 3D materials subject to the proper sym-
metry constraints.
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