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In hyperbolic 2D materials, energy is channeled to their deep subwavelength polaritonic modes
via four narrow beams. Here we consider the launching of surface polaritons in the hyperbolic 2D
materials and demonstrate that efficient uni-directional excitation is possible with an elliptically
polarized electric dipole, with the optimal choice of dipole ellipticity depending on the materials
optical constants. The selection rules afforded by the choice of dipole polarization allow turning off
up to two beams, and even three if the dipole is placed close to an edge. This makes the dipole a
directionally switchable beacon for the launching of sub-difractional polaritonic beams, a potential
logical gate. We develop an analytical approximation of the excitation process which describes the
results of the numerical simulations well and affords a simple physical interpretation.

3D hyperbolic materials, i.e., strongly anisotropic ma-
terials that have metallic-type response along one of
the optical axes and dielectric-type response along the
other two (or vice versa), have recently attracted a
lot of attention1–5. These materials support propaga-
tion of sub-diffractional waves over long distances, and
are promising for applications such as waveguiding,6–9,
hyperlensing and focusing10,11, negative refraction12,
and enhancement of dipole-dipole interactions between
emitters13–15. Recently, the existence of 2D hyper-
bolic materials and metasurfaces, supporting in-plane hy-
perbolicity, was theoretically proposed16–20 and demon-
strated experimentally21–23. Particularly, characteristics
of the surface hyperbolic polaritons in a natural vdW
material, α-MoO3, have been measured21,22. Moreover,
a hyperbolic metasurface was implemented in GHz fre-
quency range using anisotropic metallic crosses printed
on a dielectric substrate23.

2D hyperbolic materials are of particular interest as
they support propagation of surface polaritons that carry
energy in the form of four narrow rays16–18, as can be seen
in Fig. 1a. This allows for efficient channeling of the sig-
nal from the source toward the desired target, which is
crucial for the nanophotonics and applications in such
fields as communication, computing, energy and quan-
tum information. The advent of novel low loss 2D hy-
perbolic platform could present a paradigm shift in how
energy can be steered. Typically, however, only one ray
(connecting source and target) carries a signal, while the
other three siphon energy away from the source. Thus
it is highly desirable to develop an efficient way for the
uni-directional excitation of the hyperbolic polaritons.

There are two broad approaches that can be used
to mitigate the problem. The first one involves non-
reciprocal materials that support uni-directional polari-
tonic modes that can only propagate along a given set of
directions. This includes magnetoplasmons24–27 in sys-

tems subjected to a strong static magnetic field, chiral
plasmons in systems with non-zero Berry curvature28,29,
graphene sheets biased with drift electric current30 and
topologicaly protected modes in photonic crystals with
topologically non-trivial band structure31–33. Unfortu-
nately, to implement these non-reciprocal systems proves
to be quite cumbersome.

An alternative approach relies on exploiting spin-orbit
interactions of light in reciprocal materials34–36. Par-
ticularly, control over the direction of propagation of
guided modes in metallic or dielectric waveguides37–41

has been achieved by launching the guided modes from
nano-antennas illuminated by circular polarized light
fields. Moreover, the near-field of circular polarized
electric and magnetic dipoles has been extensively used
for unidirectional excitation of guided modes in various
isotropic reciprocal systems42–46. Recently, 3D uniaxial
hyperbolic materials were used for realizing similar spin-
orbit coupling of light into polaritons47–49. Marrying the
highly anisotropic optical density-of-states in a hyper-
bolic medium with the directional coupling via spin-orbit
interaction would then enable highly efficient directional
launching of surface plasmon modes.

Here, we present the theory of optimal coupling of
light into polaritonic modes in hyperbolic 2D materials
via general elliptical dipoles, and address the possibil-
ity of unidirectional excitation. We describe hyperbolic
2D materials as conducting sheets of zero thickness, with
a conductivity tensor given by16–18 ¯̄σ = diag{σx, σy} =
diag

{
σ′x + iσ′′x , σ

′
y + iσ′′y

}
, where σ′′xσ

′′
y < 0, and σ′ and

σ′′ designate real and imaginary parts. In hyperbolic 2D
materials, surface polaritons excited by a linear polarized
electric dipole generally channel energy along four narrow
rays as is shown in Fig. 1(a). We demonstrate that the
efficient one-way excitation of the hyperbolic rays can be
achieved by using elliptically50 (rather than circularly)
polarized dipoles (see Fig. 1(b-d), where the optimum
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dipole polarization depends on the material conductiv-
ity. Particularly, in the case of the dipole polarized in xz
plane, p = pxex − iez A·m, the optimum dipole momen-

tum is px =
√

1 + |σ′′x/σ′′y | (see Fig. 1f). The simulations

in Figs. 1(a-d) were performed using the Maxwell’s equa-
tion solver COMSOL Multiphysics RF Module51, assum-
ing that σ′′x = 2.85 mS, σ′′y = −0.95 mS.

FIG. 1. Plasmon launching with elliptical dipole. (a-d).
Electric field, |E|, of plasmons excited in a disk of hyperbolic
material (φ = 60◦) by an electric dipole placed in a center
of a disk 5 nm above the surface. The disk radius is 800
nm. The dipole momentum is (a) p = −iez A·m, (b) p =
ex/ cosφ − iez = 2ex − iez A·m, (c) p = ey/ sinφ − iez =
1.15ey− iez A·m, (d) p = ex/ cosφ−ey/ sinφ = 2ex−1.15ey

A·m. (e) k surface, ω(qx, qy) = const, for plasmons in the
hyperbolic material in panels (a-d). (f) Ratio of intensities,
I1/I3, carried by hyperbolic rays through detectors (white
lines in panels (a-b), and Eq. (1)) for four different hyperbolic
materials. The electric dipole momentum is p = pxex − iez

A·m. The materials are distinguished by an angle, φ, between
the hyperbolic rays and the y-axis. ~ω = 0.19 eV.

In order to understand this behavior, let us consider
the dispersion relation for the surface plasmons in a
hyperbolic material16–18,

(
q2x − k20

)
σx +

(
q2y − k20

)
σy =

2iγ0ω (ε0 + µ0σxσy/4), where q = qxex + qyey is a plas-

mon wave vector, γ0 =
√
q2x + q2y − k20, k0 = ω

√
ε0µ0 is

the vacuum wavenumber, and ε0, µ0 are vacuum permit-
tivity and permeability, respectively. The k surface (i.e.,
ω(qx, qy) = const) of a hyperbolic material is presented
in Fig. 1(e). We see that the k surface takes a hyperbolic

shape, with the hyperbola asymptotes making angles ±φ
with the x-axis, where tanφ =

√
|σ′′x/σ′′y | and φ = 60◦.

This is different from the case of an isotropic 2D material,
such as graphene, where the k-surface is a circle.

The direction of the plasmon energy flow is defined by
the group velocity, vg = ∇qω(q), which is orthogonal
to the k-surface (see Fig. 1e). In an isotropic mate-
rial, where the k-surface is a circle, there is no preferen-
tial direction for the normal to the k-surface, and thus
the plasmons carry energy in all directions. In the hy-
perbolic material, where the k-surfaces are hyperbolas,
the normals to the hyperbola asymptotes (and thus the
group velocities) are parallel to each other. The nor-
mals in Fig. 1e point towards qx axis (rather than away
from it) as the plasmon frequency increases along this
direction52,53(see also Fig. S2 in SM54). Thus the hy-
perbolic plasmons carry energy in the form of four sub-
diffractional rays (one in each of the four quadrants) in
the directions making angles ±φ with the y-axis (Figs.
1(a-d)). The points where the hyperbolic rays hit the
disk edges serve as sources for the secondary hyperbolic
rays.

The energy flow of the hyperbolic plasmons along the
certain directions can be suppressed by choosing the po-
larization plane of the electric dipole (see Figs. 1b-d).
Particularly, the elliptical dipole polarized in xz plane
can suppress the hyperbolic rays propagating either in
first and fourth quadrants (p = ex/ cosφ− iez A·m, Fig.
1b) or third and fourth quadrants (p = ey/ sinφ − iez
A·m, Fig. 1c). On the other hand, the linear dipole po-
larized in the xy plane can suppress the energy flow in the
second and fourth quadrants (p = ex/ cosφ − ey/ sinφ
A·m, Fig. 1d). Moreover, we can silence only one ray,
while allowing for an excitation of the other three, if
the dipole is not bound to any coordinate plane, i.e.,
p = 0.5(ex/ cosφ − ey/ sinφ) − iez A·m (see Fig. S8).
The amount of energy deposited by the dipole into each
of the rays can be controlled by choosing the elliptic-
ity of the dipole. We estimate the efficiency of the ray
suppression by calculating the ratio, I1/I3, between the
intensities carried by the hyperbolic rays in the first and
third quadrants (see Fig. 1(f)), where

Ii =

∫
Si

dr |E(r)|2 . (1)

Here Si is the cross-section of the detector placed at a
distance 300 nm away from the point source (see white
dashes on Figs. 1(a-d)) and oriented orthogonally to the
direction of the ray in each of the four quadrants (i.e.,
a normal to Si always points along the direction of the
ray), i = 1, 2, 3, 4.

In Fig. 1(f), we study the efficiency of hyperbolic ray
suppression in four hyperbolic materials distinguished by
an angle, φ, between the rays and the y-axis (or be-
tween the hyperbola asymptotes to k-surface and the
x-axis), i.e., φ = 75◦ (σ′′y = −0.19 mS), φ = 70◦

(σ′′y = −0.36 mS), φ = 60◦ (σ′′y = −0.95 mS), and
φ = 45◦ (σ′′y = −2.85 mS). We considered an ellipti-
cally polarized electric dipole, p = pxex − iez A·m, and
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assumed that σ′′x = 2.85 mS. We observed efficient sup-
pression of two out of four hyperbolic rays for an opti-
mum value of the dipole momentum, with the intensity
of the suppressed rays more than an order of magnitude
weaker than that of the excited rays. We want to em-
phasize that the circular polarized dipole, p = ex − iez,
does not provide efficient one-way guiding of the hyper-
bolic rays. Instead, the optimum value of px depends
on the material conductivity and changes between 1.44
(φ = 45◦) and 4 (φ = 75◦). The precise relation between
px and optical constants will be derived below.

The uni-directional excitation of the surface plasmons
can be explained by studying the problem analytically in
the quasi-static approximation. The electrostatic poten-
tial in the point (x,y) at the surface of the 2D material
(z = 0) induced by an electric dipole, p = (px, py, pz),
placed at a height z0 above the 2D material, can be writ-
ten as (see SI for details)

Φ(x, y) = −
∫∫

dqxdqy
(2π)2

vc(q)tqe
i(qxx+qyy)e−|q||z0|

× (iq + |q|sign(z0)ez) · p, (2)

where vc(q) = 1/2ε0|q|, χ0(q) = −(i/ω)q · σ · q, tq =

(1− vc(q)χ0(q))
−1

. The electrostatic approximation,
Eq. (2), provides a very good description of the uni-
directional excitation of the plasmons in the hyperbolic
2D material (see Figs. S1-S4 for details).

Integral (2) can be estimated analytically assuming
that the dominant contribution to the integral comes
from the poles in tq (see SI). The approximate electro-
static potential is a sum of the contributions from four
quadrants in the q-space

Φappr(x, y, z = 0) =

4∑
i=1

Φi(x, y) (ei · p), (3)

The spatial distribution of the hyperbolic rays intensity
is defined by Φi(x, y), where each of Φi is obtained by
integrating (2) over the ith quadrant in q-space, and

Φ1(x, y) = −θ(r−)
q0e

iq0(r−+r+)/2

4ε0π sin 2φ

e−q0(z̃0+γ0|r−|/2)

r+ + i (2z̃0 + γ0|r−|)
,

(4)
Φ2(x, y) = Φ1(−x, y), Φ3(x, y) = Φ1(−x,−y), Φ4(x, y) =
Φ1(x,−y). The strength of the dipole coupling to
the hyperbolic rays is defined by the vectors e1 =
(i cosφ, i sinφ, 1), e2 = (−i cosφ, i sinφ, 1), e3 =
(−i cosφ,−i sinφ, 1), e4 = (i cosφ,−i sinφ, 1), which are
complex conjugate of the mode vectors of the hyper-
bolic plasmons in each of the four quadrants (see Sec.
S1 for details). Here θ is the Heaviside function, r± =

x/
(√

2 sinφ
)
± y/

(√
2 cosφ

)
, q0 =

√
2ε0ω/σ̄| sin 2φ|,

σ̄ = (|σ′′x | +
∣∣σ′′y ∣∣)/2, z̃0 = z0/(

√
2| sin 2φ0|), γ0 =

(1/8)
(
σ′x/(σ̄ sin2 φ) + σ′y/(σ̄ cos2 φ)

)
. The distribution of

the plasmon electrostatic potential calculated using ap-
proximate Eq. (3) is in good agreement with the results
obtained by direct numerical integration of Eq. (2) (see
Sec. S5).

FIG. 2. Edge excitation. (a-c) Electric field, |E|, of the
plasmons excited in a half-disk of the hyperbolic material (φ =
60◦) by an electric dipole, p = pxex − iez A·m, placed next
to the disk edge (x0 = 0 nm, y0) 5 nm above the surface. (a)
px = 0, y0 = 0 nm; (b) px = 2, y0 = 0 nm; (c) px = 2, y0 = 30
nm. (c) Ratio of intensities, I1/I2, carried by plasmons in the
first and second quadrants through detectors (white lines in
panels (a),(b), and Eq. (1)).

Let us consider Φ1, which is maximum when the real
part of the denominator is zero, i.e., r+ = x/

(√
2 sinφ

)
+

y/
(√

2 cosφ
)

= 0. This defines a line, y = −x/ tanφ,
along the direction of hyperbolic rays in the second and
fourth quadrants. The width of the line, accounting for
the beam collimation, is given by the imaginary part of
the denominator in Eq. (4) and is mainly controlled
by distance between the dipole and the 2D material.
The Φ1 is non-zero only when r− = x/

(√
2 sinφ

)
−

y/
(√

2 cosφ
)
> 0, or y < x/ tanφ (due to θ(r−) fac-

tor in Eq. (4)). The inequality is satisfied for the fourth
quadrant and thus the term Φ1 describes the hyperbolic
ray carrying energy in the fourth quadrant only. This is
in agreement with the qualitative analysis presented in
Fig. 1e, where the group velocity of the plasmons in the
1st quadrant of q space points to the 4th quadrant (Φ1

originates from the integration over the first quadrant).
Similarly, it is straightforward to demonstrate that Φ2

describes the hyperbolic ray in the 3rd quadrant, Φ3 —
in the 2nd quadrant, and Φ4 — in the first quadrant.

For the dipole with momentum p = pxex − iez A·m,
e1 ·p = e4 ·p = i(px cosφ−1) = 0 if px = 1/ cosφ. Thus,
the dipole does not excite the hyperbolic rays e1,4 carry-
ing energy in the 4th and 1st quadrants, respectively. On
the other hand, coupling between the dipole and the rays
e2,3 is maximum, e2 ·p = e3 ·p = −i(px cosφ+1) = −2i.
Thus, the dipole excites only the hyperbolic rays propa-
gating in the second and third quadrants, while suppress-
ing the hyperbolic rays propagating in the first and fourth
quadrants. Moreover, the actual value of the dipole mo-
mentum that allows maximum suppression depends on
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the material conductivity through the angle, φ, as

px = 1/ cosφ =
√

1 + |σ′′x/σ′′y |. (5)

In particular, px = 4, 3, 2,
√

2 when θ = 15◦, 20◦, 30◦,
45◦. In summary, Eq. (3) shows that each beam can
be individually addressed and even silenced by means of
the selection rule encoded in the term, ei · p (see Sec.
S5.9). These results are in a good agreement with the
simulations results presented in Fig. 1.

We want to stress that an electric dipole can not launch
a single hyperbolic ray while suppressing the other three.
A truly uni-directional excitation of a single hyperbolic
ray can be achieved by placing an electric dipole at the
edge of the material, as is shown in Figs. 2a,b. Partic-
ularly, by using the dipole p = 2ex − iez A·m placed
at the hyperbolic material edge it is possible to excite
only one hyperbolic ray (see Fig. 2(b)). Moreover, the
intensity of the suppressed hyperbolic ray is more than
an order of magnitude lower than the intensity of the ex-
cited hyperbolic ray (see Fig. 2(d)). Also, hypothetically,
one could switch off the third beam by using magnetic
dipole moment (albeit gigantic)46, in a combination with
an electric dipole moment. Excitation of a single beam
is also possible in a disk of an anisotropic material as is
discussed in Sec. S7.

In order to get more insight in the process of launching
of the hyperbolic mode from the edge, we considered the
elliptically polarized dipole placed 30 nm away from the
half-disk edge (see Fig. 2c). The dipole still launches two
hyperbolic rays, as is the case for a full disk (see Fig. 1b).
However, the second ray is back reflected from the edge
and thus both of the rays carry energy in the same direc-
tion. The total intensity is additive when the two rays
can be clearly resolved, as in Fig. 2c, so that the energy
carried by these two rays through the detector is approx-
imately twice the energy of each of the single rays in 1b.
When we move the dipole closer to the disk edge (Fig.
2b), the two rays merge and interfere constructively, as
inferred from the fact that the energy flow increases al-
most four fold compared to that of each of the single rays
in Fig. 1b.

This constructive interference can be understood using
the following simple model. The effect of the edge can be
approximated by placing an additional fictitious dipole at
the usual image position. The fictitious dipole polariza-
tion should be chosen to enforce zero normal component
of the total field at the edge, so that the normal current
also vanishes. For the case considered in Figs. 2b,c, this
condition prescribes that the dipole and its image should
be identical. Therefore, when the two dipoles merge, the
total dipole doubles, and the intensity of the only surviv-
ing ray (in the physical region) quadruples. The further
control of the energy flow is possible by placing the dipole
near the edges of more complicated shape (see Sec. S6).

Finally, let us consider an experimental possibility of
the uni-directional launching of the hyperbolic rays. In
order to do this we place a metallic sphere of radius 40 nm

and relative permittivity εm = −2 on top of the hyper-
bolic material. The hyperbolic plasmon is then launched

FIG. 3. Plane wave excitations. Unidirectional excitation
of plasmons in a hyperbolic material (φ = 60◦) by an ellip-
tically polarized plane wave, E = epe

ikyy. A metallic sphere
of radius 40 nm and relative permittivity, εm = −2, is placed
on top of a 2D material. (a) ep = −iez, (b) ep = 2ex − iez.

by illuminating the system with a plane electromagnetic
wave propagating along y direction, E = epe

ikyy. The
electromagnetic wave excites plasmons in the metallic
sphere, which acts now as an effective electric dipole and
thus can effectively couple to the plasmons in the hyper-
bolic material. Indeed, as can be seen in Fig. 3a, the
linearly polarized plane wave, ep = −iez, excites all four
hyperbolic rays with equal efficiency. However, by using
an elliptically polarized wave, ep = 2ex − iez, two out
of four hyperbolic rays can be efficiently suppressed (see
Fig. 3(b)). Recent development of resonant metal anten-
nas for 2D plasmonics suggests such experimental setup
is feasible37.

Concluding, we studied switchable plasmonic beacons
and unidirectional excitation of the surface plasmons in a
hyperbolic 2D material. We demonstrated that efficient
unidirectional launching of hyperbolic rays requires an el-
liptically polarized electric dipole rather than a circular
polarized one. Moreover, the dipole ellipticity depends
on the direction of the hyperbolic rays propagation, i.e.
on the material conductivity. In general, we can only sup-
press two out of four hyperbolic rays by using an electric
dipole. However, we can excite a single hyperbolic ray
by launching plasmons at the edge of the hyperbolic ma-
terial. The coherent interference which lies at the heart
of this work does not have to be confined to different
component of a single dipole. One can easily envision
the manifold of possibilities that the presence of two or
more dipoles will open, potentially making 2D hyperbolic
materials an ideal platform for polaritonic beam steering.
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