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We develop a theory for interlayer tunneling in van der Waals heterostructures driven under a
strong electromagnetic field, using graphene/h-BN/graphene as a paradigmatic example. Our theory
predicts that strong anti-resonances appear at bias voltage values equal to an integer multiple of
the light frequency. These features are found to originate from photon-assisted resonant tunneling
transitions between Floquet sidebands of different graphene layers, and are unique to two-band
systems due to the interplay of both intraband and interband tunneling transitions. Our results
point to the possibility of tunneling localization in van der Waals heterostructures using strong
electromagnetic fields.

When light is incident on a tunneling junction, inelas-
tic tunneling transitions can occur via the exchange of
photons between electrons and the electromagnetic field.
This photon-assisted tunneling (PAT) phenomenon was
first predicted in the classic work by Tien and Gordon
[1] in superconductor-insulator-superconductor tunneling
junctions [2]. PAT has since been studied and observed
in many systems [3], including semiconductor quantum
dots [4–6], double quantum wells [7, 8] and superlattices
[9, 10], and optical lattices [11, 12]. In particular, tunnel-
ing dynamics can be suppressed [13–15] when the light
coupling parameter, given by the ratio of the driving field
amplitude and frequency, matches a zero of the Bessel
function, a celebrated phenomenon called dynamic local-
ization [16].
Van der Waals heterostructures (vdWHs) [17] are an

emerging class of nanoscale materials that hold great
promise as a platform for realizing unconventional elec-
tronic properties and desirable functionalities. Verti-
cally stacked vdWHs exhibit many distinctive proper-
ties not available in conventional semiconductor quan-
tum well systems, including enhanced longitudinal and
Hall Coulomb drag [18], tunable metal-insulator transi-
tion [19] and extraordinary photovoltaic response [20]. In
addition to in-plane transport, vertical tunneling trans-
port in a field-effect tunneling junction geometry exhibits
superior current-voltage characteristics [21–25].
A strong electromagnetic field can provide a heretofore

unexplored degree of freedom for tuning the tunneling
dynamics in vdWHs. In this work, we theoretically in-
vestigate interlayer tunneling in optically driven vertical
vdWHs, using graphene/h-BN/graphene as an archetyp-
ical system. Using the Keldysh-Floquet Green’s function
formalism, we formulate a theory for the non-equilibrium
PAT current and elucidate the non-perturbative effects
of the driving field on the intraband and interband tun-
neling transitions. Our theory predicts a new type of
tunneling localization effect where photon-enabled reso-
nant tunneling processes induce a dramatic suppression
of the interlayer tunneling current as a function of the

bias voltage, precisely at integer multiples of the photon
energy.
Model — Our tunneling structure consists of two par-

allel graphene layers, labeled as top (T ) and bottom (B),
that are separated by a middle insulating monolayer of
hexagonal boron nitride (h-BN). The layers are perfectly
aligned and stacked in the ABA (Bernal) configuration,
and a bias voltage V is applied across the top and bottom
layers. The low-energy excitations around the K and K ′

points (labeled by ξ = ±1, respectively) in the Brillouin
zone of each graphene layer is governed by the 2D mas-
sive Dirac model up to an energy cutoff Ec ≈ 2.68 eV:

hkξT,B = v~(ξkxσx + kyσy) + ∆σz/2± eV I2/2, (1)

where v ≈ 106m/s is the Dirac velocity, ∆ ≈ 20meV
is the band gap induced by the h-BN layer [26], −e
is the electron charge, and {I2, σx, σy, σz} denote the
identity and Pauli matrices in the sublattice-pseudospin
(i.e., a and b sites) space. We construct the Hamilto-
nian of the trilayer system in a nearest-neighbor hop-
ping approximation, including the coupling between each
graphene layer and the h-BN layer and ignoring the
negligible direct hopping between the graphene sheets.
Due to the large band gap ∆BN ≈ 4.82 eV [27], we can
trace out the h-BN layer and obtain an effective double-
layer Hamiltonian [28] H̃ =

∑

k

∑

ξ=±1 ψ̃
†
kξ(h̃kξ+W̃)ψ̃kξ,

where ψ̃†
kξ = (φ†

kξT , φ
†
kξB). Tilde symbolizes the layer-

pseudospin (i.e., T and B) space. It is convenient to de-
fine I± = (I2±σz)/2, Ĩ± = (̃I2±σ̃z)/2, σ̃± = (σ̃x±iσ̃y)/2

and use the new basis {Ĩ+, Ĩ−, σ̃+, σ̃−} for the layer
pseudospins to write the unperturbed Hamiltonian as
h̃kξ = hkξT ⊗ Ĩ++hkξB⊗ Ĩ− and the interlayer tunneling

Hamiltonian as W̃ = WTB⊗σ̃++WBT⊗σ̃−. The tunnel-
ing matrix elements are given by WTB = W†

BT = W0I−

with W0 = −2Γ2
ab∆

−1
BN, where Γab ≈ 0.4 eV is the inter-

layer hopping energy from a site in graphene to b site in
h-BN (or vice versa) [27].
We consider the two graphene layers to be coupled,

for simplicity, to the same optical field by imagining two
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independent but identical laser sources setup symmetri-
cally on both sides of the vdWH, illuminating the two
graphene layers at normal incidence. Thus, the sur-
face electric fields on both layers will be in phase with
the same amplitude and frequency. Choosing the prop-
agation direction along the z axis, the incident light
with electric field amplitude E, frequency Ω, and po-
larization ϑ is described by the vector potential A(t) =
(cE/Ω)[sin(Ωt)x̂ + sin(Ωt + ϑ)ŷ]. The Peierls substi-
tution ~k → ~k + eA(t)/c in the original Hamilto-
nian produces the time-dependent Hamiltonian H̃kξ(t) =

H̃kξ + Ṽξ(t), with the interaction Ṽξ(t) = Vξ(t) ⊗ Ĩ2,
where Vξ(t) = V0[ξ sin(Ωt)σx +sin(Ωt+ϑ)σy ]. The ratio
V0/∆ = (E/E0)/(~Ω/∆) with E0 = ∆2/(ev~) describes
the interaction amplitude in dimensionless form.

Theory — Our formalism is developed by treating the
interlayer tunneling Hamiltonian as a perturbation while
taking into account the optical field non-perturbatively.
Noting that the total charge is conserved in the sys-
tem, the interlayer electric current density takes the
form [29] J(t) = 2S−1〈Î(t)〉, where 2 counts the spin
degeneracy, S is the normalization area, 〈· · · 〉 is the
canonical ensemble average, and Î(t) = ∂tQ̂T (t) =
−∂tQ̂B(t) = (i/~)[H̃(t), Q̂T (t)] is the electric current
with Q̂T,B(t) being the electric charge operator on layer
T and B. The time evolution of J(t) is determined
from the equal-time lesser Green’s function, G<

kξ(t, t).
In a non-equilibrium steady state (NESS), the system
respects time translational symmetry and is thus gov-
erned by the Floquet theorem [31]. By using the
Floquet mode expansion of the Green’s function [32],
we obtain the time-averaged interlayer electric current

density J = −4(e/~)(1/S)
∑

k

∑

ξ=±1

∫ ~Ω/2

−~Ω/2
(d~ω/2π)

ReTr
{

[WBT ⊗ Î∞][Ĝ<
kξ(ω)]TB

}

, where an overhat refers
to a quantity in the Floquet space, the subscript “TB” of
the Green’s function refers to its off-diagonal element in
the layer subspace, “Tr” is the trace over sublattice pseu-
dospins and Floquet modes, and În is the n× n identity
matrix in the Floquet space.

The lesser Green’s function Ĝ<
kξ can be calculated

within the Keldysh-Floquet Green’s function formal-
ism [35–37]. The full, tunneling-coupled Green’s function
is uniquely determined by the uncoupled Green’s func-
tion of each layer and the interlayer tunneling Hamil-
tonian via the Dyson equation in the Keldysh-Floquet
space [38]. Expansion of Ĝ<

kξ up to first order in W0

yields the following photon-assisted tunneling current for-
mula:

Jtun = −4
e

~

1

S

∑

k

∑

ξ=±1

∫

~Ω/2

−~Ω/2

d~ω

2π

× Re
{

Tr
[

Ŵ
†
kξTB(ω)Ĝ

R
kξT (ω)ŴkξTB(ω)ĝ

<
kξB(ω)

+ Ŵ
†
kξBT (ω)Ĝ

A
kξB(ω)ŴkξBT (ω)ĝ

<
kξT (ω)

]

}

. (2)

This result is central to this paper. Its formal structure
is familiar from the conventional tunneling theory [34],
except that all the Green’s functions and tunneling am-
plitudes are now dependent on the electromagnetic field.
ĜR
kξT,B(ω) is the retarded Floquet Green’s function of

the T and B layers, and ĝ<
kξT,B(ω) is the lesser Floquet

Green’s function in the absence of light. Coupling to
metallic leads provides an energy relaxation mechanism
under the adiabatic switch-on of the optical field [38],
and enters into the Green’s functions as the broadening
parameter Γ. The tunneling process is renormalized by
light and is described by an effective photon-dressed in-
terlayer tunneling Hamiltonian

Ŵkξαᾱ(ω) = Wαᾱ

[

I2 ⊗ Î∞ + ĜR
kξᾱ(ω)V̂ξ

]

, (3)

where α ∈ {T,B} and the overbar denotes a comple-
ment, e.g., T̄ = B. It shows that non-perturbative pho-
ton dressing effects affect not only the electronic spec-
trum (through the Floquet Green’s functions), but also
the tunneling amplitude through the second term within
the brackets in Eq. (3).
To illustrate the physics contained in Eq. (2) and also

to connect with the more familiar case without light,
let us first consider the weak coupling regime [35, 51]
defined as V0/~Ω ≪ 1. In this scenario the photon-
induced correction ∼ ĜRV̂ to the tunneling Hamiltonian
[Eq. (3)] is negligible and the electronic distribution func-
tion of the graphene layers retain a quasi-equilibrium
form. For the ABA stacking configuration of our system,
[WTB]cc′ = [WBT ]

∗
c′c = W0δcc′δcb where c, c′ ∈ {a, b} la-

bel the sublattice pseudospins, we can reduce Eq. (2) to
a compact form

Jtun
J0

=
(2πv~)2

∆

1

S

∑

k

∑

ξ=±1

∫ ∞

−∞

d~ω̃ (4)

×
[

ρ
(ph)
kξBb(ω̃)ρ

(eq)
kTb(ω̃)fT (ω̃)− ρ

(ph)
kξTb(ω̃)ρ

(eq)
kBb(ω̃)fB(ω̃)

]

,

where J0 = e∆|W0|
2/(πv2~3) is a characteristic tunnel-

ing current density, and ω̃ ≡ ω + nΩ is the frequency in
the extended zone scheme [32]. The two terms of Eq. (4)
correspond to a forward and a backward tunneling chan-
nel, and each channel is modified by non-perturbative
light coupling effects through the Floquet mode spec-

tral function ρ
(ph)
kξαb(ω̃) = −π−1Im[ĜR

kξα(ω)]bb;nn. In the

absence of optical fields, ρ
(ph)
kξαb(ω̃) recovers its equilib-

rium counterpart ρ
(eq)
kαb(ω̃) = −π−1Im[ĝR

kξα(ω)]bb;nn with
Eq. (4) reducing to the well-known 2D-to-2D tunnel-
ing current formula [52, 53]. Fig. 1(a) shows the Flo-

quet mode spectral function ρ
(ph)
kξαb(ω̃) as a function of

the equilibrium energy dispersion Ek for different val-
ues of the driving field E. At small values of E, the
quasienergy dispersions of the Floquet sidebands (i.e.,
photon-dressed electronic bands) approximately coin-
cide with copies of the equilibrium bands shifted by
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FIG. 1: (a) Floquet mode spectral function ρ
(ph)
kξαb(ω̃) for val-

ley K′, layer α ∈ {T, B}, and sublattice b as a function of
Ek for different values of E/E0. The red dotted lines are
guidelines denoting the equilibrium bands and their corre-
sponding copies shifted by integer multiples of ~Ω. Three
main Floquet sidebands belonging to γ = −1 are indexed
by red-colored integers. Parameters used are Γ/∆ = 0.01,
ϕk = 0, ~Ω/∆ = 1.25, and ϑ = π/2. (b) Difference be-
tween the spectral weights wB,n=1 − wT,n=−1 of the Floquet
valence sidebands n = ±1 as a function of Ek for different
values of E/E0. For the parameters of graphene in Eq. (1),
E0 ≈ 608 kV/m.

integer multiples of ~Ω, and the reduced-zone Floquet
quasienergy Ēk ≈ Ek. The undressed conduction and va-
lence bands each generate their own Floquet sidebands,
which for convenience will be called Floquet conduction
and valence sidebands (FCSB and FVSB, respectively).
As E increases, mixing between Floquet states becomes
stronger and quasienergy band gaps appear prominently
at the locations of anti-crossing, given by (Ek, ~ω̃ − µα)
= (m− n,m+ n)~Ω/2 with m,n ∈ Z.

Single-photon excitations — Before carrying out fully
numerical calculations of Eq. (2), we first perform a
second-order perturbative analysis in the driving field
amplitude. In this work, we focus on low temperatures
kBT ≪ ∆ and evaluate the tunneling current, assuming
each graphene layer is at half-filling so that the electro-
chemical potential under bias is µT = −µB = eV/2 [54].
Treating the optical field Vξ(t) as a perturbation and ex-

panding the single-layer Green’s function into Ĝkξα(ω) =
∑

j=0,1,2(V0)
j Ĝ

(j)
kξα(ω) +O(V3

0 ) [28], Eq. (2) can be writ-

ten in the form Jtun =
∑

j=0,1,2(V0)
jJ

(j)
tun+O(V3

0 ), where
the zeroth-order term [55] yields the dark tunneling cur-
rent [56–58]. Fig. 2(a) shows, for different values of fre-

quency, the tunneling current Jtun = J
(0)
tun + V2

0J
(2)
tun ob-

tained within the present second-order perturbation the-
ory. It is seen that the overall profile remains close to
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FIG. 2: Photon-assisted tunneling current density Jtun in
units of J0 as a function of bias voltage V . (a) Solid lines
show the numerical results obtained from the second-order
perturbation theory for a fixed E/E0 = 0.015 and different
values of Ω. The dashed line shows the dark tunneling current.
(b) Exact numerical results [Eqs. (2)-(3)] for ~Ω/∆ = 1.25.
The upper set of solid lines shows the tunneling current at
a fixed polarization angle ϑ = π/2 for different values of the
optical field strength E. The lower set of solid lines shows the
tunneling current at a fixed E/E0 = 0.3 for different values of
polarization angle ϑ. In all figures, we use the common param-
eters kBT/∆ = 0.02, Γ/∆ = 0.01, and Ec/∆ = 4 [59]. The
scale of the tunneling current density is J0 ≈ 15.8mA/µm2.

the dark tunneling current J
(0)
tun (dashed line) except at

eV = ~Ω. When the bias voltage is equal to the photon
energy, single-photon assisted tunneling transitions oc-
cur, manifesting as a single anti-resonance in the second-

order contribution J
(2)
tun.

Photon-assisted tunneling suppression — To account
for strong field and multiphoton excitation effects, we
now evaluate the tunneling current from Eqs. (2)-(3) non-
perturbatively. Fig. 2(b) shows our full numerical results
for different field strengths E (upper set of solid lines)
and for different polarization angles ϑ (lower set) with an
optical frequency value ~Ω = 1.25∆ slightly larger than
the band gap. For this frequency value and up to the
maximum field strength E/E0 = 0.3, V0/~Ω < 1 always.
In the absence of light, the dark tunneling current re-
mains zero when the bias voltage is smaller than the band
gap, as shown by the dashed lines in both Figs. 2(a)-(b).
When light is turned on, we first notice that the PAT cur-
rent becomes non-zero even when eV < ∆, a feature not
captured by the second-order perturbation theory. For
bias values greater than the band gap eV > ∆, our the-
ory predicts periodic anti-resonance suppression of the
tunneling current with a separation ~Ω along the bias
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FIG. 3: Schematic for forward tunneling transitions for eV >
0. The left panel depicts the interband and intraband tunnel-
ing mechanisms assisted by multiphoton processes. The Flo-
quet sidebands are indexed by red-colored integers. The right
panel depicts the resonance tunneling conditions for the inter-
band (or intraband) tunneling processes from the undressed
valence band of the top layer to a Floquet conduction (or
valence) sideband of the bottom layer. Backward tunneling
transitions can be visualized similarly from Eq. (4).

voltage axis as seen in Fig. 2(b). Remarkably, the anti-
resonance positions are found to be independent of the
field strength E and polarization angle ϑ, and are pre-
cisely given by integer multiples of ~Ω, i.e., eV = N~Ω
with N ∈ Z. Close to the band gap eV & ∆ in par-
ticular, we find a dramatic suppression of the PAT cur-
rent to almost zero from its dark value due to the first
anti-resonance located at eV = ~Ω = 1.25∆. Fig. 2(b)
also shows that the strength of the anti-resonances in-
creases with the field strength, resulting in a progressive
suppression of the tunneling current [60] and indicating a
tendency towards complete localization at stronger fields.
Note here that the nature of our predicted tunneling sup-
pression under optical illumination is fundamentally dif-
ferent from dynamic localization [16, 31, 61], which oc-
curs only when the coupling parameter V0/~Ω is equal to
a zero of the Bessel function.

The periodic occurrence of the tunneling suppression
uncovered by our calculations stems from resonant intra-
band tunneling assisted by multiphoton excitations. Let
us first consider the case without illumination. Due to
conservation of in-plane momentum, conventional 2D-to-
2D resonant tunneling in coupled semiconductor quan-
tum wells occurs when the layers’ band dispersions are
closely aligned whereby Jtun ∼ τ becomes sharply peaked
(here τ is the electron’s lifetime) [62]. Graphene al-
lows for interband tunneling when the bias voltage ex-
ceeds the band gap. If illumination is absent in our sys-
tem, only interband (but not intraband) tunneling can
occur since the layers’ Fermi levels are assumed to be
inside the band gap. However, an optical driving field
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FIG. 4: Schematic for experimental proposal. Graphene/h-
BN/Graphene heterostructure is positioned at the center of
the optical cavity (left), in which an odd cavity mode is es-
tablished (right).

opens up many additional channels for intraband tun-
neling via photon-assisted transitions between Floquet
sidebands (see Fig. 3). When one layer’s undressed va-
lence band (VB) edge is aligned with one of the many
FVSB edges of the other layer, electron momentum and
energy conservation are simultaneously satisfied and res-
onant tunneling can occur. This Floquet band edge align-
ment happens when the bias voltage is tuned to an in-
teger multiple of the driving frequency. To understand
why a suppression instead of an enhancement occurs, it
is useful to refer to Eq. (4) under a forward bias condition
eV > 0. Physically, the forward tunneling contribution
involves tunneling from the undressed VB in the top layer
to the n > 0 FVSBs in the bottom layer (Fig. 3), while
the backward tunneling contribution involves tunneling
from the undressed VB in the bottom layer to the n < 0
FVSBs in the top layer. Because they are further re-
moved from the n < 0 FCSBs, the n < 0 FVSBs carry a
higher spectral weight than their n > 0 counterparts [63],
as confirmed by our numerical calculations of integrated
spectral weights of the Floquet mode spectral function
[Fig. 1(b)]. As a result, under the resonant condition
eV = N~Ω, the backward tunneling contribution is dra-
matically enhanced causing a suppression of Jtun [64].

Proposed experimental setup — We close by comment-
ing on observability in experiments. To realize the con-
dition with the same electric field amplitudes on both
layers, two scenarios can be devised. First, this condi-
tion can be approximately achieved when the laser wave-
length is long compared with the thickness of the vdWH
[65]. Second, an optical cavity can be used (see Fig. 4).
When the cavity mode of the standing wave is odd and
the vdWH is placed at the cavity’s center, both graphene
layers will experience the same electromagnetic field.

The resonant intraband tunneling mechanism we dis-
covered is a generalization of the usual dark resonant
tunneling to the scenario with Floquet sidebands under
strong optical illumination. This phenomenon should ap-
ply not only to graphene layers, but also to trilayer vd-
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WHs with other 2D materials such as bilayer graphene
and transition-metal dichalcogenides. The fact that the
tunneling current can be turned on and off by illumi-
nation at frequency values equal to an integral fraction
of the bias voltage suggests a time-dependent control
scheme for switching applications, opening the door to
dynamical tuning of tunneling dynamics using periodic
drives.
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