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We present magnetotransport measurements of a strongly hybridized inverted InAs/GaSb dou-
ble quantum well. We find that the spin-orbit interaction leads to an appreciable spin-splitting of
hole-like states, which form distinct Landau levels in a perpendicular magnetic field. The resulting
quantum Hall state is governed by a periodic even and odd total filling arising due to the simulta-
neous occupation of electron-like and hole-like Landau levels of differing degeneracy. Furthermore,
oscillatory charge transfer between all involved subbands leads to discrete phase slips in the usual
sequential filling of Landau levels, and coincidentally the phase slips are close to π. These results
shed new light on the Landau level structure in composite systems and have consequences for in-
terpreting intercepts obtained from index plots, which are routinely employed to investigate the
presence of Berry’s phase.

Quantum oscillations arise in the electronic transport
in metals and semiconductors in a magnetic field and pro-
vide insights into the physical properties of the system
under investigation. At low fields, Shubnikov-de Haas
(SdH) oscillations reveal the densities of the charge car-
riers present, as well as the degeneracy (spin, valley) of
the Landau levels (LLs) that result from the quantiza-
tion of motion in the magnetic field. At higher fields the
quantum Hall (QH) effect may develop, leading to quan-
tization in the Hall resistivity. Understanding the elec-
tronic structure in magnetic fields becomes an essential
undertaking whenever a new material system is discov-
ered. For instance, one of the major results accompa-
nying the first successful exfoliation of graphene was the
half-integer QH effect [1, 2]. Furthermore, quantum os-
cillations were used to infer the nontrivial Berry’s phase
of massless Dirac fermions.

InAs/GaSb double quantum wells (QWs) are a com-
posite system characterized by the hybridization of elec-
trons and holes. Hybridization may result in a nontrivial
band structure [3–8], making this system a platform for
the realization of the quantum spin Hall insulator [9–
14]. Here, we report on the LL structure in an inverted
InAs/GaSb double QW and critically discuss the deter-
mination of Berry’s phase from quantum oscillations.

We uncover a periodic even and odd filling of LLs lead-
ing to a checkerboard pattern in the longitudinal resistiv-
ity, reminiscent of recent observations in transition metal
dichalcogenides (TMDCs) [15–17]. We go on to explain
how the combination of spin-orbit interaction (SOI) and
Landau quantization can lead to an unconventional oc-
cupation sequence of LLs. Additionally, we discover an
anomalous shift which violates the usual 1/B⊥-periodic
sequence of LL filling. This shift is synonymous with
discrete phase slips in the quantum oscillations. A fun-

damental consequence of the phase slips is that the in-
tercept γ for 1/B⊥ → 0 in an index plot ν(1/B⊥), where
ν is the filling factor, is not meaningful for evaluating
Berry’s phase. We compare this finding to experiments
on other two- and three-dimensional (2D/3D) systems.

Measurements were performed on a gated Hall bar of
10 µm width and 20 µm length oriented along the [01̄1]
crystallographic direction on a heterostructure consisting
of an 8 nm GaSb QW and a 13.5 nm InAs QW [Fig. 1(a)].
All measurements were conducted in a dilution refrigera-
tor at a base temperature of 135 mK using low-frequency
lock-in techniques with constant current bias.

The inverted band structure of our double QW is
schematically depicted in Fig. 1(b). The InAs QW thick-
ness is sufficiently large to drive the system into the
semimetallic phase. This implies enhanced hybridization
between electron and hole bands, while the anisotropy of
the dispersion effectively quenches the hybridization gap.
The Rashba-type SOI already present in the constituent
QWs is amplified by the hybridization, and leads to sig-
nificant splitting of valence and conduction bands [18–
22]. The longitudinal resistivity ρxx, see Fig. 1(c), shows
no local resistance maximum at or close to the charge
neutrality point (CNP), indicating the lack of a true en-
ergy gap, as expected [23]. In the shaded area in Fig. 1(b)
between the CNP and the former top of the GaSb va-
lence band both electrons (majority) and holes (minority
charge carriers) are present. This region is probed in the
following.

Figure 1(d) shows a map of ρxx as a function of top
gate voltage Vtg and perpendicular magnetic field B⊥.
The voltage Vtg tunes the total charge carrier density in
the system. Two sets of lines fanning outwards from the
CNP follow minima in ρxx. Remarkably, we discern an
atypical yet regular pattern in the distribution of min-
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FIG. 1. (a) Conduction (valence) band edge energy Ec (Ev)
as a function of growth direction z for the InAs/GaSb system.
(b) Schematic band structure E(k) of the double QW system.
The shaded area is investigated in subsequent experiments.
(c) ρxx at B⊥ = 0 as function of Vtg with the position of the
CNP highlighted. (d) ρxx as function of Vtg and B⊥ with the
position of the CNP highlighted.

ima. Minima in ρxx of constant filling are modulated,
moving towards and away from zero resistivity in a sys-
tematic fashion depending on their position in the (Vtg,
B⊥) space. We focus on the region to the right of the
CNP where electrons are in the majority and discuss the
properties and origins of the observed checkerboard pat-
tern.

The region of interest in Fig. 1(d) is reproduced in
Fig. 2(a) for clarity. Figure 2(b) is a cut at constant to-
tal density at Vtg = 3 V, showing both longitudinal and
transverse resistivities ρxx and ρxy versus 1/B⊥. Well-
developed plateaus are described by ρxy = h/νe2 with in-
teger ν and occur concomitantly with minima in ρxx. Be-
cause we probe a composite system with multiple charge
carrier species, ν corresponds to a total filling factor, tak-
ing both electron- and hole-like LLs into account [24].
While minima typically do not reach zero, the quanti-
zation in ρxy suffices for an unambiguous assignment of
ν. Looking at the sequence of plateaus in ρxy, we deduce
that ν decreases in increments of two with 1/B⊥, with the
exception of selected transitions indicated by the dotted
lines. There, ν changes by one only. This way, the parity
of ν switches between even (denoted by stars) and odd
(circles) as a function of magnetic field. The positions
of the minima in ρxx at Vtg = 3 V are also marked by
symbols in Fig. 2(a). The minima in ρxx corresponding
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FIG. 2. (a) Zoom-in of Fig. 1(d). Contour lines marking
minima associated with either even or odd total filling fac-
tor ν are colored differently, with ν given explicitly for some
minima. The dotted line connecting several minima of odd
parity exemplifies how adjacent minima of the same parity lie
on lines of negative slope. Circles (stars) mark positions of
odd (even) ν minima at Vtg = 3 V as in (b), (c), (d). Triangles
and the dashed line serving as a guide to the eye correspond
to the situation where the density p2, as introduced in the
main text, equals eB⊥/h. (b) ρxx, ρxy as function of 1/B⊥
at Vtg = 3 V with positions of minima in ρxx and expected
positions of plateaus in ρxy, h/ie2 with integer i, marked by
dashed lines. Associated ν = i are also indicated. (c) ρxx re-
produced from (b) with minima marked by dotted lines and
rulers associated with each segment of constant parity of ν
showing the expected positions of minima and the affiliated
values of ν. (d) Steps in the oscillations’ phase as a function
of ν for several values of Vtg, see main text for details. Hor-
izontal dashed lines spaced by ∆Φν = π provide a guide to
the eye.

to the missing plateaus are suppressed. Using the quanti-
zation of ρxy, we assign a filling factor to each minimum
and highlight minima of even and odd ν in Fig. 2(a) with
differently colored contour lines. We observe that neigh-
boring minima of the same parity seemingly lie on lines of
negative slope, as illustrated by the dotted line. A cut at
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fixed Vtg such as in Fig. 2(b) typically intersects multiple
such lines, so that minima correspond to ν being piece-
wise even or odd. The pattern apparently changes upon
approaching the CNP, becoming more complex. Similar
even-odd behavior in TMDCs was attributed to interplay
between cyclotron and Zeeman energies and to a density
dependent g-factor [15–17]. We also observed faint signs
of said behavior in weakly inverted InAs/GaSb double
QWs, erroneously attributing it only to avoided cross-
ings between LLs mediated by ordinary and spin-orbit
interband coupling effects [7].

In addition to the unconventional filling sequence,
there exists another peculiarity in the form of discrete
phase slips occurring whenever the parity switches. Fig-
ure 2(c) depicts ρxx(1/B⊥), again at Vtg = 3 V. Starting
from low 1/B⊥, we see that the minima corresponding to
ν = 7, 9, 11 are equidistantly spaced in 1/B⊥. However,
the subsequent ν = 12 minimum is not located at the ex-
pected position, but instead halfway between where the
ν = 12 and ν = 13 would lie according to the periodicity
set by the ν = 7, 9, 11 minima. The same phenomenon
repeats itself at higher 1/B⊥ at the transition from even
to odd ν. There, the ν = 21 minimum lies halfway be-
tween the nonexistent ν = 21 and ν = 22 minima which
would follow the periodicity determined by the observed
ν = 12–20 minima. The period in 1/B⊥ remains approxi-
mately constant regardless of the shifts. We have verified
that the shifts occur generically for all (Vtg, B⊥) shown
in Fig. 2(a) whenever the parity of ν changes.

We may describe the shifts in terms of discrete phase
slips. To quantify the phase slips, we extract an average
total density nQHE of charge carriers in the QH state by
piecewise fitting of ν(1/B⊥) in an index plot for fixed
Vtg [25]. Then, we calculate the phase slip ∆Φν/π us-
ing ∆Φν/π = 2hnQHE∆(1/B⊥)/e, where ∆(1/B⊥) is the
difference in 1/B⊥ between the expected position of the
minimum corresponding to ν, eν/hnQHE, and the posi-
tion where it actually occurs. Figure 2(d) presents the
evolution of ∆Φν/π for several Vtg. The phase is seen
to jump downwards by around π whenever the parity
switches.

To understand the origin of the even-odd periodicity
and the phase slips we investigate the densities of all
charge carriers, as displayed in Fig. 3 [25]. The low-
field SdH oscillations exhibit a single frequency f2 for
Vtg > 2.5 V which decreases upon decreasing Vtg and
therefore corresponds to electron-like states. The fre-
quency f2 is related to the Hall density ntot obtained
from fitting ρxy above a certain B⊥-value where ρxy is
linear in B⊥ through ntot ≈ 2f2 × e/h. Because ntot
determined in this way measures the total density of
free charge carriers, the factor of two implies that the
population imbalance due to spin-splitting is negligible
and that carriers populate a twofold degenerate electron-
like band. For Vtg ≤ 2.5 V, an additional frequency
f1 appears, see Fig. 3(a). The frequency f1 increases
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FIG. 3. (a) Exemplary low-field SdH oscillations after back-
ground subtraction with the corresponding normalized power
spectra for several Vtg. (b) Hall density ntot and the total
density (2f2 − f1) × e/h obtained from the SdH oscillations
as function of Vtg. In the shaded region, reliable data points
are lacking. (c) As in (b), but showing n, the electron den-
sity, as well as p1 and p2, the densities of the spin-split hole
subbands. p1 is determined from SdH oscillations (diamonds)
and two-band fitting (squares).

upon decreasing Vtg, implying hole-like states. Close to
Vtg = 2.5 V we have ntot ≈ (2f2 − f1) × e/h, signifying
that f1 describes a single spin-orbit split hole subband.
Upon decreasing Vtg further a systematic deviation be-
tween ntot and (2f2 − f1) × e/h appears, as observed in
Fig. 3(b). The frequencies f1 and f2 cannot account for
all charge carriers, increasingly overestimating the den-
sity, ntot < (2f2−f1)×e/h. This motivates us to look for
the second spin-orbit split hole subband containing the
missing holes that does not partake in SdH oscillations.
We therefore fit ρxx and ρxy simultaneously with a three-
band model by inverting σxx =

∑
σixx and σxy =

∑
σixy

with σixx, σ
i
xy being the conductivities of the individual

bands (i = 1, 2, 3). We fix two of the three densities to
p1 = f1 × e/h and n = 2f2 × e/h, respectively, leaving
four fitting parameters, namely p2, the missing density,
and three mobilities µi [25]. The complete result for all
Vtg is shown in Fig. 3(c). Three-band fitting works for
Vtg ≤ 1 V. For Vtg > 1 V p2 is too small compared to p1
and n to be determined reliably and a two-band model
sufficiently describes the data, resulting in densities that
agree with p1 and n as defined above for 1 < Vtg ≤ 2.5 V.
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For Vtg > 2.5 V a two-band fit allows us to determine
the continuation of p1 where f1 disappears from the SdH
oscillations.

We found that the spin-splitting of the electron-like
band of density n cannot be experimentally resolved. The
same is true for the conventional Zeeman splitting of this
band [26]. Hole-like states exist in two subbands and have
different dispersions due to the SOI, and therefore Lan-
dau quantization of each results in nondegenerate levels.
The hole-like subband of density p1 enters the QH state,
whereas the subband of density p2 does not. Above the
dashed line in Fig. 2(a), p2 < eB⊥/h, being insufficient to
change the total filling factor by one, and we may think
of these holes as forming a background density.

The dispersion of LLs close to a (anti-) crossing point
between twofold degenerate electron-like and nondegen-
erate hole-like levels is schematically depicted by lines in
Fig. 4(a) together with νe and νh, the filling factors of the
electron- and hole-like levels, respectively (ν = νe − νh).
Filling factors νe are even and change in increments of
two, whereas νh is even or odd and changes in increments
of one. Converting from (E,B⊥) to (Vtg, B⊥), we obtain
the diagram in Fig. 4(b), recognizing the even-odd pat-
tern. The hole mass being larger than the electron mass
explains why typically several electron-like LLs are de-
populated before a hole-like LL is depopulated for con-
stant Vtg. A simple density of states model confirms this
picture [25].

The electrochemical potential µelch oscillates as a func-
tion of B⊥ at constant total density for fixed Vtg. How-
ever, the densities of the individual subsystems also os-
cillate together with µelch. The phase slips occur because
the density of charge carriers in the QH state, nQHE, is
not constant due to the self-consistent charge transfer
between the electron- (n) and hole-like states (p1) in the
QH state and the hole-like states constituting the back-
ground charge reservoir (p2). Because the charge transfer
is particularly favorable whenever µelch jumps between
hole LLs, that is where the phase slips occur. The phase
slips reflect the fact that the points in the index plot
ν(1/B⊥) do not all lie on a single line. The index plot is
only piecewise linear, as highlighted in the Supplemental
Material [25], with shifts in 1/B⊥ wherever the parity
jumps. Each horizontal shift in 1/B⊥ is equivalent to a
phase slip of around π. While the deviation of the points
from a single line is easily overlooked [Fig. 4(c)], it unveils
itself dramatically when looking at ρxx traces [Fig. 2(c)]
or at the phases of the oscillations [Fig. 2(d)].

In 2D systems in which the total density nQHE of
charge carriers quantized in a magnetic field is constant,
µelch is a function of B⊥. Then, the intercept γ for
1/B⊥ → 0 in an index plot must always be either 0
or 1/2 [27]. A nontrivial intercept γ = 1/2 reflects the
existence of a LL at zero energy, as in graphene, whereas
a trivial γ = 0 reflects the lack thereof, independent of
the zero-field spectrum. Since a zero energy LL may be
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FIG. 4. (a) Filling of LLs in (E,B⊥)-space in the vicinity
of a crossing point between a doubly degenerate electron-like
LL and a nondegenerate hole-like LL of corresponding filling
νe and νh, respectively. (b) As in (a), but upon conversion to
(Vtg, B⊥)-space. The crossing point from (a) is now located
at the position indicated by the square. Dashed lines connect
minima of constant ν. (c) Index plots demonstrating the
extrapolation of ν for 1/B⊥ → 0 at Vtg = 2 V and −2 V.

viewed as a consequence of a nontrivial Berry’s phase of
π, γ = 1/2 was used in graphene to infer the nontriv-
ial Berry’s phase of massless Dirac fermions [1, 2]. In
3D topological insulators (TIs), the situation is differ-
ent. The electrochemical potential is pinned by localized
states in the bulk (whose number scales with the volume),
so the 2D density at the conducting surfaces may vary,
while µelch is fixed. Then, γ may take on nontrivial values
between 0 and 1/2, reflecting Berry’s phase [27–31].

There are experimental reports in the literature on 2D
systems where nQHE = const should hold, yet a nontriv-
ial γ was seen and linked to Berry’s phase. Examples
include HgTe [32] and InAs/GaSb double QWs [21]. In
the latter Ref. 21, a nontrivial intercept 0 < γ < 1/2 was
reported close to the CNP and interpreted as originating
from a nonzero Berry’s phase. We also find a nontrivial
γ close to the CNP (γ = 0.30± 0.05 at Vtg = −2 V) and
a trivial γ ≈ 0 away from the CNP (γ = 0.18 ± 0.17 at
Vtg = 2 V), see Fig. 4(c). However, taking a single, com-
mon intercept is not a meaningful approach since the in-
dex plot is piecewise linear. Away from the CNP, γ ≈ 0
due to averaging over the piecewise linear segments in the
index plot. This is exemplified in the Supplemental Ma-
terial [25]. Therefore, attributing nonzero intercepts to a
nontrivial Berry’s phase is not justified here. When both
nQHE and µelch depend on B⊥, utmost care is required
in interpreting γ.

In summary, electron-hole hybridization and the SOI
lead to an even-odd periodicity upon Landau quantiza-
tion. Electron- and hole-like LLs have different degenera-
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cies, leading to parity jumps. Clandestine hole-like states
that do not directly appear in quantum oscillations nev-
ertheless have a profound impact, causing abrupt phase
slips in the usual 1/B⊥-periodic sequence of LLs due to
intersubband charge transfer. This phenomenon can lead
to nontrivial intercepts obtained from index plots which
are not associated with a nontrivial Berry’s phase. Our
findings are not specific to InAs/GaSb double QWs, but
also apply to other 2D and quasi-2D systems which show
appreciable SOI or are composite (multi-band) in nature,
so that they may not fully quantize in a magnetic field,
such as HgTe QWs [32, 33], TMDCs [34, 35], layered
pnictides [36], few-layer black phosphorous [37] and 3D
TI thin films and nanoribbons [38–40].
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