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We study the coupled quantum Hall bilayers each at half-filled first excited Landau levels with varying the
layer distance. Based on numerical exact diagonalization on torus, we identify two distinct phases separated by
a critical layer distance dc. From dc to infinite layer distance, the topological phase is smoothly connected to a
direct tensor product of two Moore-Read states, while the interlayer coherence emerges at d < dc characterized
by the xy easy-plane ferromagnetic energy spectra, gapless pseudospin excitations, long range current-current
correlations and the finite exciton superfluid stiffness, corresponding to the exciton superfluid state. More in-
terestingly, the results of the ground state fidelity, the evolution of energy spectra, and the superfluid stiffness
indicate a possible continuous transition. Theoretically it can be interpreted as a topological phase transition
which simultaneously changes the topology of ground state and breaks symmetry, providing an interesting ex-
ample of transitions beyond Landau paradigm.

PACS numbers: 73.43.-f, 73.21.-b

Introduction.—The quantum Hall bilayers [1, 2], which can
be realized in quantum wells [3, 4] or bilayer graphenes [5–
7], have triggered substantial interest in pursuing exotic phe-
nomena such as the Bose-Einstein condensation of the ex-
citons [8, 9] and anyonic statistics [10–15]. The possible
emerging non-Abelian physics and quantum phase transitions
remain not well understood [16–18].

In particular, the bilayers with half filled lowest Landau
level (LL) for each layer have attracted great interest from
both experimental measurements [9, 19–23] and theoreti-
cal investigations [24–49]. The exciton superfluid phase (or
Halperin “111 state” [2, 50]) was first established experimen-
tally at a layer distance comparable to the magnetic length [9]
based on a zero-bias interlayer tunneling conductance [51]
and a vanishing Hall counterflow resistance [22, 52]. Other
phases like the composite Fermi liquid (CFL) at larger dis-
tance [53] and the novel intermediate phase [28–30] have also
been extensively investigated. In addition, the nature of quan-
tum phase transitions among various phases is still controver-
sial. Inspired by the rich physics of these νT = 1 bilayers with
half filled lowest LL in each layer, a natural question arises
about the quantum phase diagram for the electronic systems
with fully filled lowest LL and half-filled first excited LL, cor-
responding to the bilayers with total filling νT = 5. Each
decoupled layer with filling ν = 5/2 is believed to be the
Moore-Read (MR) state [11, 54, 55]. When the layer distance
goes to zero, the interlayer coherent state is theoretically ex-
pected though there is no experimental study presented along
this line. By tuning the layer distance, the nature of possible
intermediate phase and the quantum phase transition remain
unclear, which motivate our present work.

Previous theoretical studies have not reached a consis-
tent conclusion on this problem. The calculations based
on Hartree-Fock approximation claim a transition from “111
state” to a charge ordered state [40, 56], while the varational
and exact diagonalization (ED) calculations on sphere geome-

try found a bilayer phase coherent state at small layer distance
and two uncoupled 5/2 state at large layer separations by Shi et
al [57]. Nevertheless, unbiased exact simulations for quantum
states at intermediate layer distances and the quantum phase
transition for torus geometry are still absent. Different from
the sphere geometry, there is no orbital number shift on torus
and the competing states with the same filling factor can be
compared on an equal footing [58].

In the present work, we use ED to calculate systems with up
to 18 electrons on torus. Based on the energy spectra, pseu-
dospin gap, exciton superfluid stiffness, current-current corre-
lations, the Berry curvature as well as drag Hall conductance,
we identify a direct phase transition at dc between the exci-
ton superfluid phase with interlayer coherence and the phase
with strong intralayer correlations, the latter can be smoothly
connected to the decoupled two copies of MR state. Here
the finding of dc is consistent with previous varational cal-
culation [57]. Moreover, the calculation of fidelity, the ex-
citon superfluid stiffness, the evolution of energy spectrum,
and the ground state energy derivatives indicate the transition
is continuous, which is beyond the Landau paradigm [16–
18, 59, 60]. Based on the analysis of symmetries and topo-
logical orders, we propose the theoretical interpretations of
such a transition as exciton condensation which simultane-
ously breaks U(1) × U(1) symmetry and changes the topol-
ogy. The exciton condensation leads to the C = 2 topologi-
cally ordered state in Kitaev’s notation [61], which is consis-
tent with the “111” state.

Model and Method.— We consider the νT = 5/2 + 5/2
bilayer electronic systems subject to a perpendicular magnetic
field. We neglect the width of these two identical layers and
put them on torus spanned by vectors Lx and Ly. The orbital
number (or flux number) in each layer Nφ is determined by
the area of torus, i.e., |Lx × Ly| = 2πNφ. In the absence of
the interlayer tunneling, this system with fully polarized spins
can be described by the projected Coulomb interaction, which
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Fig. 1. (Color online) The energy spectra of different pseudospin Sz
sectors at layer distance (a) d/lB = 0, (b) d/lB = 0.4, (c) d/lB = 2.
(d) The low-lying energy spectra as a function of layer distance d/lB .
Here, the total electron numberN = 16 and each layer has equal
number of electrons. (e) The energy spectrum of single layer N = 8
system at n=1LL, the green stars highlight the topological sectors of
MR state.

reads

V =
1

Nφ

∑
i<j,α,β

∑
q,q6=0

Vαβ (q)e−
q2

2 L2
n[
q2

2
]eiq·(Rα,i−Rβ,j).

(1)
Here, α(β) = 1, 2 denote two layers or, equivalently,

two components of a pseudospin-1/2. q =|q| =
√
q2x + q2y ,

V11(q) = V22(q) = e2/(εq) and V12(q) = V21(q) = e2/(εq)·
e−qd are the Fourier transformations of the intralayer and in-
terlayer Coulomb interactions, respectively. d represents the
distance between two layers in the unit of magnetic length lB .
Ln(x) is the Laguerre polynomial with Landau level index
n and Rα,i is the guiding center coordinate of the i-th elec-
tron in layer α. Here we consider rectangular unit cells with
Lx = Ly = L [62].

Energy Spectra.—Without the interlayer tunneling, the bi-
layer system has separate conservations for the electron num-
ber in each layer, which allows us to label eigenstates by pseu-
dospin Sz defined as Sz ≡ (N↑ −N↓)/2, where N↑ and N↓

denote the number of electrons for the top and bottom lay-
ers, respectively. Then we can study the energy spectra by
targeting different pseudospin sectors. Here, the energy shift
d · S2

z/Nφ induced by the imbalance of charge in two lay-
ers [64] has been considered. When the layer distance goes
to zero, as shown in Fig. 1 (a), the lowest energies in each
pseudospin Sz sector are exactly degenerate, indicating that

we have not only conserved Sz but also full SU(2) symme-
try. This spectrum is consistent with the exciton condensed
“111 state”, with spontaneous ferromagnetization which can
be seen from the ground state spin degeneracy. However,
when the layer distance is finite but small enough, as shown in
the Fig. 1 (b), our data shows the nondegenerate ground state
located in the Sz = 0 sector, and the low energy excitations
are pseudospin excitations among different Sz sectors, which
can be fitted into ∆E = E(Sz) − E(Sz = 0) = αS2

z . These
facts indicate that the ground state is an xy easy-plane ferro-
magnet instead of Ising ferromagnet, and the interlayer corre-
lations dominate the low energy physics for small d. Physi-
cally, an electron in one layer is bound to a hole in the other
layer forming an exciton at d = 0, then the bilayer system
can be mapped into a monolayer at ν = 1 for the first ex-
cited Landau level. When d is finite but smaller than a crit-
ical value, a difference between the interlayer and intralayer
Coulomb interaction breaks the pseudospin invariance down
to U(1), leading to the xy easy-plane pseudospin ferromagnet
as indicated in Fig. 1 (a) and (b). However, for larger layer
distance d = 2.0lB , the lowest energy excitations exist within
the same pseudospin Sz sector [see Fig. 1 (c)], indicating the
low-lying excitations are dominated by the intralayer correla-
tions. These results indicate there are two distinct phases as
the layer distance d is varied.

The flow of low-lying energies with d/lB indeed indicates
a direct transition at dc/lB ≈ 1.2 from exciton superfluid
phase (d < dc) to a phase with distinct structure of spectra
(d > dc) which can be smoothly connected to the decoupled
two copies of MR state at d/lB = +∞ [see Fig. 1(d)]. Fig-
ure 1 (e) shows the energy spectrum of each decoupled layer
with 8 electrons, where the threefold degeneracy (in addition
to the twofold center of mass degeneracy) in momentum sec-
tors (Kx,Ky)/(2π/N) = (N/2, N/2), (0, N/2), (N/2, 0)
occurs supporting that each decoupled layer is indeed in the
MR state. When coupling two layers together, we identified a
36-fold near degeneracy of two copies of MR state at d > dc
side.

Pseudospin Excitations.—From the energy spectra we
identify a single phase transition at dc/lB ≈ 1.2 without en-
ergy level crossing. Below we characterize the transition from
the perspective of low energy excitations. We directly calcu-
late the pseudospin excitation gap, which measures the en-
ergy cost when flipping the pseudospin of one particle. The
pseudospin gap is defined as ∆ps(d) ≡ E0(N↑, N↓, d) −
E0(N/2, N/2, d)+d·S2

z/Nφ [63], whereN↑ = N/2+Sz and
N↓ = N/2−Sz . As shown in Fig. 2 (a) and (c), the finite size
scaling of ∆ps(d) for Sz = 1 and Sz = 2 show the excitation
gap goes to zero in the thermodynamic limit for d/lB . 1.2.
However, for d/lB & 1.2, the Sz = 1 pseudospin excitation
displays significant even-odd effect determined by the elec-
tron number in each layer, as shown in Fig. 2 (b). For the
systems with even number of electrons in each layer, flipping
a single pseudospin costs finite energy [see the inset of Fig. 2
(b)] while the energy cost vanishes when the electron num-
ber in each layer is odd. This even-odd effect disappears in
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Fig. 2. (Color online) (a) to (c) show the pseudospin excitation gap ∆ps for Sz = 1 and d < dc(a); Sz = 1 and d > dc (b) and Sz = 2 (c).
The finite size scaling of ∆ps using parabolic function indicates the gapless nature at d < dc [(a) and (c)], the inset of (c) shows ∆ps for the
systems with even number of particles in each layer. The even-odd effect disappears at d > dc for Sz = 2 (c).

the Sz = 2 pseudospin gap [see Fig. 2 (c)]. The distinct be-
havior of Sz = 1 and Sz = 2 pseudo-spin gap is consistent
with the picture of the existence of intralayer paired compos-
ite fermions. Furthermore, we will show below that the inter-
layer coherence immediately establishes in the gapless phase
at d 6 dc, leading to the exciton superfluidity.

Exciton Superfluidity.— To study the exciton superfluid-
ity, we calculate both the current-current correlations and su-
perfluid stiffness. We define the interlayer current opera-
tor Jm ≡ i(c†m↑cm↓ − h.c.) and probe the interlayer coher-
ence by studying current-current correlations 〈JmJn〉, where
m,n = 1, . . . , Nφ are orbital indices and the correspond-
ing distance is |n − m|L/Nφ. As shown in the inset of
Fig. 3 (a), 〈JmJn〉 decays very slowly and saturates to a finite
value when d < dc while it becomes vanishingly small when
d > dc, which directly proves the existence of interlayer co-
herence in “111 state”. To keep track of such property when
tuning layer distance d, we choose the value of 〈JmJn〉 at the
largest distance |n − m| = Nφ/2 and study its value versus
d, as shown in Fig. 3 (a), the interlayer coherence is softened
with the increase of layer distances and finally disappears after
the transition at dc smoothly.

In order to get the exciton superfluid stiffness ρs, we add
twisted boundary phases 0 ≤ θαλ ≤ 2π along λ direction
(λ = x or y) in the layer α, and study the energy evolution.
Physically imposing opposite boundary phases for two lay-
ers plays a similar role as the counterflow experiments, where
the longitudinal counterflow conductivity indicates the super-
fluidity. Fig. 3 (b) show the energy flow of the lowest two
states in the same momentum sector (Kx,Ky) = (π, π) with
twisted phases. The exciton superfluid stiffness ρs, can be ob-
tained by fitting the energy flows according to [26]

E(θt)/|Lx × Ly| = E(θt = 0)/A+
1

2
ρsθ

2
t +O(θ4t ), (2)

where E(θt) is the ground-state energy with twisted (oppo-
site) boundary phases θt between two layers. As shown in

Fig. 3 (b), we have finite exciton superfluid stiffness when
d < dc , while ρs = 0 at d > dc side due to the totally
flat energy curve against twisted phases, indicating the vanish
of superfluidity. The quantitative evolution of the superfluid
stiffness ρs > 0 with the layer distance will be discussed later
in Fig. 4 (b) to address the precise nature of the quantum phase
transition.

The interlayer correlations can also be detected by the drag
Hall conductance, which can be calculated by integrating the
Berry curvature F (θαx , θ

β
y ). Physically a gapped state has

a well-defined Berry curvature and thus well-defined Chern
number, while a gapless state has singularities in Berry curva-
ture due to the energy level crossing. As shown in Fig. 3 (c)
for the energy gapE1−E0 as a function of twisted phases, one
can only get well defined Berry curvature or Chern number at
d > dc side since there is always a finite gap between the
ground state and the first excited state. When d < dc, the gap
closes near twisted phase point (2π, 2π), indicating singulari-
ties in the Berry curvature. At d > dc side, we find the Berry
curvature is near flat without any singularity (see supplemen-
tary materials) and its integral leads to drag Hall conductance
σdxy = 0, indicating the Hall conductances are equal in both
layer symmetric and antisymmetric channels [62].

Continuous phase transition.—Since the exciton superfluid
phase and two copies of MR phase have different symmetries
and topological orders, a direct continuous transition is be-
yond the Landau paradigm. From the energy spectra in Fig. 1
(d), the level crossing is absent in the vicinity of the critical
distance dc, indicating a continuous transition. We further
probe the nature of such a transition by calculating the ground
state fidelity, superfluid stiffness as well as the ground-state
energy derivatives. The fidelity is defined by the wave func-
tion overlap between the ground state at d − ∆d and d, i,e,
F (d,∆d) = |〈Ψ(d−∆d)| Ψ(d)〉|, which has been shown to
be a good indicator to distinguish continuous transition from
first-order transition for both symmetry-breaking and topolog-
ical phase transitions [71, 72]. As shown in Fig. 4 (a), we find
the ground-state fidelity displays a single weak dip at the criti-
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cal distance dc instead of showing a sudden jump. In addition,
as shown in Fig. 4 (b), the exciton superfluid stiffness ρs is fi-
nite at d < dc, but smoothly decreases with the increase of the
layer distance, and becomes vanishingly small after the tran-
sition. Figures 4 (c) shows the first-order and second order
derivatives of the ground-state energy, which are both smooth
functions of layer distances. Thus the numerical evidence in-
dicates the direct transition between these two phases might
be continuous.

Field theory of transition and exciton condensation.—Here,
we provide a possible scenario of the observed transition. We
consider the electron to be fractionalized into a boson and a
fermion with emergent u(1)i gauge field at each layer, i.e.,
ci = biψi, where i =↑, ↓ denotes two layers. While the ψi
only carries u(1)i charge, bi carries both emergent u(1)i and
global U(1)i charge (corresponding to the charge conserva-
tion at each layer). To obtain MR state at each layer, pairs of
fermions form p + ip superconductor [11, 54], while pairs of
bosons form ν = 1/8 state called u(1)8 state [73–75]. The
effective theory is

L =
∑
i=↑,↓

( 8

4π
αidαi +

2

2π
(eAi + ai)dαi −

2e2

4π
AidAi

+Ψ†i [i∂0 − ai,0 + hi(~p+ ~ai)]Ψi

)
, (3)

where ai,µ is the emergent gauge field from fractionaliza-
tion, and αi,µ characterizes the u(1)8 state at i-th layer.
ada is a short hand notation of the Chern-Simons term
εµνρaµ∂νaρ [76, 77]. The first two terms correspond to u(1)8
state, and the third term characterizes the Hall response of
the filled lowest LL. Integrating out αi field gives rise to the
quantized Hall conductivity σxy = 5

2
e2

h for each layer. In
the second line, Ψi(p) = (ψi(p), ψ

†
i (−p))T is the Nambu

spinor, hi(~p) =
(
p2x+p

2
y

2m − µ
)
σz + ∆i(pxσ

x + pyσ
y) is the

Bogoliubov-de-Gennes (BdG) Hamiltonian of p + ip super-
conductors (SC) at i-th layer with Pauli matrix σ acting on
Nambu space, and ∆i denotes the pairing condensate. m > 0
and µ are the effective mass and chemical potential of frac-

tionalized fermion. When µ > 0, the p + ip SC is in the
topological phase with BdG Chern number C = 1 at each
layer [54, 61, 78].

The transition to “111 state” is described by interlayer exci-
ton condensation 〈c↑c†↓〉 = 〈b↑b†↓〉〈ψ↑ψ

†
↓〉 6= 0, which simul-

taneously breaks Sz conservation and leads to C = 2 topo-
logical order [61]. It is possible that 〈ψ↑ψ†↓〉 becomes nonzero
breaking the residue Z↑2 × Z

↓
2 of the emergent u(1)↑ × u(1)↓

symmetry before exciton condensation, but exciton inducing
the condensation of 〈ψ↑ψ†↓〉 is not a fine tuned result, and in-
deed the numerical results show a single transition. In the
presence of interlayer coherence, the Hamiltonian of frac-

tionalized fermion is H =

(
h↑ h↑↓
h†↑↓ h↓

)
, where h↑↓ =

diag(Φ,−Φ∗) with Φ = 〈ψ↑ψ†↓〉. The BdG Chern number
is the sum of two layers C = 1 + 1 = 2. The topological
order of the C = 2 state is Abelian, which can be captured by
a Chern-Simons term [45, 61]:

L =
∑
i

[ 8

4π
αidαi +

2

2π
(eAi + ai)dαi

+
1

2π
βidai

]
− 4

4π
β−dβ−, (4)

where β− =
β↑−β↓

2 , βi is the dual theory [75, 79, 80] of Higgs
field ∆i that breaks u(1)i to Zi2, and gapped fermion part is
neglected. The last term is the forecasted Chern-Simons term
to capture the quartonic statistics of the C = 2 topological
order. Now we can integrate out ai since they are linear in the
Lagrangian to get L =

∑
ij βiKijdβj +

∑
i
e
2πAidβi, where

K =

(
1 1
1 1

)
corresponding to the “111 state” [32]. The K

matrix indicates a gapless gauge field, β−, dual to Goldstone
bosons originated from Sz symmetry breaking.

Concluding remarks.—We have shown a direct continuous
transition in νT = 5 quantum Hall bilayers based on both
ED calculations on torus, moreover, we proposed an exotic
scenario of such transition, where the topology changing and
symmetry breaking take place simultaneously. The νT = 5
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bilayers host significantly different physics from νT = 1,
which can be seen more clearly when coupling two indepen-
dent layers by changing the layer distances. When νT = 1,
each decoupled layer is gapless CFL state, while for νT = 5,
each decoupled layer is fully gapped MR state. The previ-
ous studies indicate the νT = 1 system has an intermediate
phase when tuning the layer distance [28–30], while it is ab-
sent when νT = 5 based on this work. We propose that our
findings of the exotic topological quantum transition and ex-
citon superfluid at νT = 5 can be detected in quantum Hall
bilayers composed of double well GaAs heterostructures or
bilayer graphene, which has been successfully engineered to
probe νT = 1 bilayer system.
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[28] G. Möller, S. H. Simon, and E. H. Rezayi, Phys. Rev. Lett. 101,
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