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An analytical model for investigations of multipole coupling effects in the finite and infinite
nanoparticle arrays supporting electromagnetic resonances is presented and discussed. This model
considers the contributions of both electric and magnetic modes excited in the nanoparticles includ-
ing electric and magnetic dipoles and electric and magnetic quadrupoles. The magnetic quadrupole
propagator (Green’s tensor) that describes the electromagnetic field generated by a point magnetic
quadrupole source in all wave zones are derived. As an example, we apply the developed model to
study infinite two-dimensional rectangular periodic arrays of spherical silicon nanoparticles support-
ing the dipole and quadrupole resonant responses. The correctness and accuracy of the analytical
model are confirmed by the agreement of its results with the results of full-wave numerical simula-
tions. Using the developed model, we show the electromagnetic coupling between electric dipole and
magnetic quadrupole moments as well as between magnetic dipole and electric quadrupole moments
even for the case of an infinite rectangular periodic array of spherical nanoparticles. The strong sup-
pression of dipole or quadrupole moment due to the coupling effects is demonstrated and discussed
for spherical nanoparticle arrays. The analytical expressions for the reflection and transmission
coefficients written with the effective dipole and quadrupole polarizabilities are derived for normal
light incidences and zero-order diffraction. The derived expressions are applied for explaining the
lattice anapole (invisibility) states when the incident light is transmitted unperturbed through the
silicon nanoparticle array. The important role of dipole and quadrupole excitations in scattering
compensation resulting in the lattice anapole effect is explicitly demonstrated. The presented ap-
proach can be used for designing metasurfaces and further utilizing them in developing ultra-thin
functional optical elements.
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I. INTRODUCTION

Nanostructures have demonstrated a great potential to
be utilized in optical applications and photonic devices
with particular interest in photovoltaics1, sensing2, flat
functional elements (e.g. based on metasurfaces)3–5, en-
hanced photoemission6, near-field microscopy7, and oth-
ers. Different materials with negative8,9, positive10,11,
and undefined12 permittivity and nanoparticle shapes
have been explored with the aim to enhance light-
matter interaction in the nanostructure8–12. Nanocom-
posites, including core-shell nanoparticles, allow for ex-
citation of various multipole resonances and precise
control of nanostructures’ scattering and absorption
properties13–16.

The strong magnetic response of the nanostructures is
crucial for efficient control of light at the nanoscale. In
the visible and infrared spectral ranges, materials have
a very weak magnetic response, and nanostructures are
needed to be designed to possess not only electric reso-
nances but also artificial magnetic ones. To induce the
artificial magnetic response in metallic (plasmonic) par-
ticles, one has to use U-shaped particles, split-ring res-
onators, or similar shape, and fabrication of such metal-

lic particles imposes severe limitations to their practical
implementations. Recently, dielectrics with high refrac-
tive index (e.g. semiconductors, like silicon, germanium,
and III-V compounds) have attracted a lot of attention
as their particles with a relatively simple shape such as
sphere or disk have shown ability to support both electric
and magnetic resonances10,17. Resonance interplay and
their overlap in such high-index particles offer the possi-
bility to effectively control light at subwavelength dimen-
sions and design ultra-thin photonic elements based on
such antennas and their arrays18–24.

Being arranged in the lattice, particles interact with
each other, and their effective polarizabilities are de-
fined not only by the properties of the individual par-
ticle but all particles in the array as well as the distance
between them25–28. Periodic arrays of nanoparticles en-
able excitation of additional resonance, so-called lattice
resonance, that appears in the proximity to Rayleigh
anomaly (wavelength of diffraction)29–36. Different par-
ticle multipoles respond differently to the change of lat-
tice period in a particular direction and incident light
polarization10,37. It has been shown that one can in-
dependently control electric and magnetic dipole reso-
nances in the rectangular periodic lattice and achieve
resonance overlap38,39. Analytical models for the infi-
nite rectangular periodic array based on coupled dipole
equations show that electric and magnetic dipoles do not
couple10, which is similar to the case of a single parti-
cle without an array. Likewise, an electric dipole does
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not couple to electric quadrupole37. However, magnetic
dipole couples to electric quadrupole40,41, and this cou-
pling brings novel interesting effects enabled by the lat-
tice (see e.g. demonstration of generalized Kerker effect
in Ref.40).

Here we take the next step in the analysis of nanos-
tructure properties with electric and magnetic multipole
resonances. We take into consideration both electric
and magnetic responses of the particle for dipole and
quadrupole moments, and we mainly focus on magnetic
quadrupole response of the nanoparticles. We study ef-
fects stemming from including magnetic quadrupole mo-
ment in both cases of single particle and rectangular
periodic array arrangement. First, we derive magnetic
quadrupole propagator (Green’s tensor) and show how
electromagnetic fields are defined through this tensor.
Second, we derive the equations for an array of nanoparti-
cles with the electric and magnetic dipole and quadrupole
responses in a general case of arbitrary nanoparticles (dif-
ferent from each other in terms of size, shape, material,
position in the array, etc).

Consideration of a general case of arbitrary nanopar-
ticle arrangement is followed by study of a particular
case of an infinite rectangular periodic array of identical
spheres. We introduce effective polarizabilities of each
multipole of the identical nanoparticles in the rectan-
gular periodic array and derive their expressions which
include terms responsible for coupling between electric
dipole and magnetic quadrupole as well as reflection and
transmission coefficients of the array. Our results show
that it is important to take into account excitation of
magnetic quadrupole moment in the nanoparticle lattice:
(i) if magnetic quadrupole polarizability is negligible for a
single particle, it can be significant in the lattice because
of its coupling to electric dipole; and (ii) non-negligible
magnetic quadrupole polarizability alerts electric dipole.
Finally, we show a possibility to achieve a condition when
particle multipoles are excited, but the transmitted wave
changes neither amplitude nor phase. Thus, we show the
origin of lattice anapole effect. We would like to empha-
size that this effect is different from the perfect trans-
mission in metalattices and metasurfaces occurring when
electric and magnetic dipoles compensate each other’s
scattering and the first Kerker condition is satisfied18. It
is often referred to as Kerker effect, manifests only as
suppression of backward scattering, and the phase dif-
ference for the incident and transmitted waves can be
arbitrary.42

One of the main results of our work is the explicit
demonstration of the coupling effects between the electric
dipole and magnetic quadrupole moments of the identi-
cal nanoparticles arranged in the infinite rectangular ar-
ray. In contrast to our previous work40 devoted to the
coupling between electric and magnetic multipoles of the
same order (magnetic dipole to electric quadrupole cou-
pling), here we demonstrate the electromagnetic coupling
between multipoles of different orders. In our work, we
show that under the condition of the resonant dipole and

quadrupole nanoparticle responses, their coupling can
play a crucial role, strongly affect effective polarizabil-
ity of both multipoles, and define spectral features in
transmission, reflection, and absorption in the array.

II. ELECTRIC AND MAGNETIC FIELDS OF
MULTIPOLES

In the multipole approximation including the dipole
and quadrupole moments, nanoparticles are considered
as point electric (ED) and magnetic dipoles (MD) and
point electric (EQ) and magnetic (MQ) quadrupoles.
The analytical expressions for the electric and magnetic
fields generated by point electric and magnetic dipoles
and electric quadrupole are considered elsewhere10,17.
Here we obtain the expressions for the electric and
magnetic fields generated by point magnetic quadrupole
source. In general, the presented procedure can be ap-
plied for calculation of field propagators of any multipole
moments. For example, using this approach the field
propagator for electric toroidal dipole has been calcu-
lated in Ref.43.

A. Magnetic quadrupole propagator

Electric field propagator of multipole sources can be
obtained from the general expression for electric field E
generated at a space point r by polarization P excited in
a local region with volume Vs:

44

E(r) =
k2

0

ε0

∫
Vs

Ĝ(r, r′)P(r′)dr′ , (1)

where k0 is the wave number in the vacuum, ε0 is the
vacuum dielectric constant, Ĝ(r, r′) is the Green’s tensor
of the system without the polarization P (see Ref.10,45).
The multipole decomposition of the induced polarization
P up to magnetic quadrupole term can be written as43

P(r′) ' pδ(r′′)− 1

6
Q̂∇δ(r′′) +

i

ω
[∇×mδ(r′′)]

− i

2ω
[∇× M̂∇δ(r′′)] + ... , (2)

where δ(r′′) is the Dirac delta-function, r′′ = r′ − r0 (r0

is the radius-vector of the multipoles’ location), ∇ is the
gradient operator with respect to the radius-vector r′,
ω is the angular frequency (here we consider monochro-

matic time dependence exp(−iωt)), the values p, m, Q̂,

and M̂ are the electric dipole vector, magnetic dipole vec-
tor, electric quadrupole tensor, and magnetic quadrupole
tensor, respectively. Inserting Eq. (2) in (1) and consid-
ering every term separately, one can obtain electric field
generated by every mutipole in the all wave zones. The
fields generated by the dipoles and electric quadrupole
are considered elsewhere10,17,37 and the results will be
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used in next sections. The field generated by the mag-
netic quadrupole tensor M̂ is calculated from the follow-
ing equation

EM (r) = − ik2
0

2ε0ω

∫
Vs

Ĝ(r, r′)[∇×M̂∇δ(r′−r0)]dr′ . (3)

After integration of (3), taking into account that the

tensor M̂ is the traceless (Mxx + Myy + Mzz = 0) and
symmetric (Mxy = Myx; Mxz = Mzx; Myz = Mzy), and

the Green’s tensor Ĝ(r, r′) corresponds to homogeneous
medium with εS ,43,45 one obtains, for the local electric
field at a point rl generated by the M̂ source located at
a point rj , the following expression:

EM (rl) =
ik0k

2
S

2

√
µ0

ε0

eikSRlj

4πRlj
(1 +

3i

kSRlj

− 3

k2
SR

2
lj

)[njl × (M̂njl)] , (4)

where njl = (rl − rj)/|rl − rj | is the unit vector directed
from rj to rl, i is the imaginary unit, Rlj = rl−rj , Rlj =
|Rlj |, µ0 is the vacuum permeability, kS = k0

√
εS , the

sign × denotes the vector product between corresponding
vectors.

The expression (4) can be presented as

EM (rl) = [GM
lj × (M̂njl)], (5)

where the vector

GM
lj =

ik0k
2
S

2

√
µ0

ε0

eikSRlj

4πR2
lj

(
1 +

3i

kSRlj
− 3

k2
SR

2
lj

)
Rlj

(6)

is the magnetic quadrupole propagator. From Maxwell
equations, the magnetic field can be found as

HM (rl) =
cε0

ik0
∇×EM (rl) (7)

and correspondingly defined through the propagator ĜMlj
as

HM (rl) = k2
SĜ

M
lj (M̂njl), (8)

where, after derivations, the magnetic quadrupole
Green’s tensor of the medium without particles is

ĜMlj ≡
i3kSe

ikSRlj

24πRlj

[(
−1− i3

kSRlj
+

6

k2
SR

2
lj

+
i6

k3
SR

3
lj

)
Û

+

(
1 +

i6

kSRlj
− 15

k2
SR

2
lj

− i15

k3
SR

3
lj

)
njlnjl

]
, (9)

Û is the 3× 3 unit tensor, and njlnjl is the dyadic prod-
uct.

B. Electric and magnetic fields of dipole and
quadrupole sources

Here we present general expressions for electric and
magnetic fields generated by dipole and quadrupole point
sources. The electric dipole and electric quadrupole
Green’s tensors of the medium without particles are de-
fined as (see previous works10,37)

Ĝplj ≡

{(
1 +

i

kSRlj
− 1

k2
SR

2
lj

)
Û +

(
−1− i3

kSRlj

+
3

k2
SR

2
lj

)
njlnjl

}
eikSRlj

4πRlj
(10)

and

ĜQlj ≡
ikSe

ikSRlj

24πRlj

{(
−1− i3

kSRlj
+

6

k2
SR

2
lj

+
i6

k3
SR

3
lj

)
Û

+

(
1 +

i6

kSRlj
− 15

k2
SR

2
lj

− i15

k3
SR

3
lj

)
njlnjl

}
, (11)

respectively. We take into account that tensors Q̂ and
M̂ are traceless and symmetric and that

Ĝmlj = Ĝplj , ĜMlj = 3ĜQlj , (12)

where Ĝmlj is the tensor determining the magnetic field
at the point rl generated by a magnetic dipole located at
the point rj . In this case, one can express electric and
magnetic fields of multipoles as the following

Ep(rl) =
k2

0

ε0
Ĝpljp

j , (13)

Hp(rl) =
ck0

i
∇× Ĝpljp

j =
ck0

i
[glj × pj ],

Hm(rl) = k2
SĜ

p
ljm

j , (14)

Em(rl) =
ik0

cε0
∇× Ĝpljm

j =
ik0

cε0
[glj ×mj ],

EQ(rl) =
k2

0

ε0
ĜQlj(Q̂

jnjl), (15)

HQ(rl) =
ck0

i
∇× ĜQlj(Q̂

jnjl) =
ck0

i
[qlj × (Q̂jnjl)],

HM (rl) = k2
SĜ

M
lj (M̂ jnjl) = 3k2

SĜ
Q
lj(M̂

jnjl) , (16)

EM (rl) =
ik0

cε0
∇× ĜMlj (M̂ jnjl) = 3

ik0

cε0
∇× ĜQlj(M̂

jnjl)

= 3
ik0

cε0
[qlj × (M̂ jnjl)] ,

where c = 1/
√
ε0µ0 is the speed of light in vacuum; the

introduced, for convenience, vectors glj and qlj are

glj =
eikSRlj

4πRlj

(
ikS
Rlj
− 1

R2
lj

)
Rlj (17)
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and

qlj =
cε0

3ik0
GM
lj =

k2
Se
ikSRlj

24πR2
lj

(
1 +

3i

kSRlj
− 3

k2
SR

2
lj

)
Rlj .

(18)
The connection between qlj and GM

lj follows from Eqs.

(5), (6), and (16).

III. MULTIPOLAR NANOPARTICLE
STRUCTURES

A. General system of equations

Let us consider an arbitrary-shape particle with num-
ber j in the structure of N identical particles with ED,
MD, EQ, and MQ polarizability tensors α̂p, α̂m, α̂Q, and
α̂M , respectively. The vectors of the electric pj and mag-
netic mj dipole moments and the tensors of the electric
Q̂j and magnetic M̂ j quadrupole moments at the particle
location rj are proportional to the local electric Eloc(rj)
and magnetic Hloc(rj) fields and symmetrical parts of
the gradients of the local electric or magnetic field, re-
spectively:

pj = α̂pE
loc(rj), (19)

mj = α̂mHloc(rj), (20)

Q̂j =
α̂Q
2

[∇Eloc(rj) + Eloc(rj)∇], (21)

M̂ j =
α̂M
2

[∇Hloc(rj) + Hloc(rj)∇], (22)

where ∇ is the nabla operator. For tensorial terms, we
use the convention46 to define tensor elements ∇F+F∇
in a Cartesian coordinate system as

(∇F + F∇)βγ =
∂Fγ
∂β

+
∂Fβ
∂γ

,

where F is vector of electric or magnetic field, β = x, y, z,
and γ = x, y, z.

For the particle located at the position rj , the local
electric field is a superposition of the external electric
E0(rj), the field Ẽp(rj) produced by all EDs of the sys-

tem except pj , the field Ẽm(rj) of all MDs except mj , the

field ẼQ(rj) of all EQs except Q̂j , and the field ẼM (rj)

of all MQs except M̂ j , and the same considerations are
applied to the magnetic field:

Eloc(rj) = E0(rj) + Ẽp(rj) + Ẽm(rj)

+ẼQ(rj) + ẼM (rj), (23)

Hloc(rj) = H0(rj) + H̃p(rj) + H̃m(rj)

+H̃Q(rj) + H̃M (rj). (24)

Using the exact expressions (13)–(16) for electromag-
netic fields generated by dipole and quadrupole sources,
the equation system (19)–(22) for calculation of the

dipole and quadrupole moments of all particles can be
written in a more explicit form:

pj = α̂pE0(rj) + α̂p
k2

0

ε0

N∑
l 6=j

{
Ĝpjlp

l +
i

ck0
[gjl ×ml]

+ ĜQjl(Q̂
lnlj) +

3i

ck0
[qjl × (M̂ lnlj)]

}
,

mj = α̂mH0(rj) + α̂mk
2
0

N∑
l 6=j

{
c

ik0
[gjl × pl] + εSĜ

p
jlm

l

+
c

ik0
[qjl × (Q̂lnlj)] + 3εSĜ

Q
jl(M̂

lnlj)

}
,

Q̂j =
α̂Q
2

[∇E0(rj) + E0(rj)∇]

+
α̂Qk

2
0

2ε0

N∑
l 6=j

{
[∇j(Ĝpjlp

l) + (Ĝpjlp
l)∇j ]

+
i

ck0
[∇j [gjl ×ml] + [gjl ×ml]∇j ] (25)

+ [∇j(ĜQjl(Q̂
lnlj)) + (ĜQjl(Q̂

lnlj))∇j ]

+
3i

ck0
[∇j [qjl × (M̂ lnlj)] + [qjl × (M̂ lnlj)]∇j ]

}
,

M̂ j =
α̂M
2

[∇H0(rj) + H0(rj)∇]

+
α̂Mk

2
0

2

N∑
l 6=j

{
c

ik0
[∇j [gjl × pl] + [gjl × pl]∇j ]

+ εS [∇j(Ĝpjlm
l) + (Ĝpjlm

l)∇j ]

+
c

ik0
[∇j [qjl × (Q̂lnlj)] + [qjl × (Q̂lnlj)]∇j ]

+ 3εS [∇j(ĜQjl(M̂
lnlj)) + (ĜQjl(M̂

lnlj))∇j ]
}
,

where j = 1, 2, 3, ...N , and ∇j is the nabla operator with
respect to rj .

Note that the cases of rectangular periodic nanoparti-
cle array with only ED, MD, or EQ response are con-
sidered in earlier works10,37. After solving the sys-
tem (25) for an array of N nanoparticles, one can cal-
culate the extinction power Pext, using its multipole
presentation,10,37,47

Pext =
ω

2
Im

N∑
j=1

[
E∗0(rj) · pj + µ0

(∇H∗0(rj))
T

2
: M̂ j

+µ0H
∗
0(rj) ·mj +

∇E∗0(rj) + E∗0(rj)∇
12

: Q̂j
]
,

(26)

where the asterisk ∗ denotes complex conjugation, T de-
notes the transpose operation, and the signs · and : de-
note the scalar products between vectors and dyads (ten-
sors), respectively.17
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B. Dipole and quadrupole polarizabilities of sphere

Let us consider homogeneous nanoparticles of spheri-
cal shape. In this case, the multipole responses of the
nanoparticles are characterized by corresponding scalar
polarizabilities αp, αm, αQ, and αM for ED, MD, EQ,
and MQ, respectively. In this subsection, we demonstrate
the approach to derive effective polarizabilities of spheri-
cal particle through Mie coefficients. We show it based on
example of MQ and refer to the literature (see e.g.10,37)
for derivations and expressions of ED, MD, and EQ.

For a single nanoparticle located at the origin of a co-
ordinate system, the angular dependence of the complex
scattered electric fields Eθ and Eφ in the far-field can be
written48:

Eθ ≈ E0
eikSr

−ikSr
cosφ

∞∑
n=1

2n+ 1

n(n+ 1)
(an

dP 1
n

dθ
+ bn

P 1
n

sin θ
) ,

Eφ ≈ −E0
eikSr

−ikSr
sinφ

∞∑
n=1

2n+ 1

n(n+ 1)
(an

P 1
n

sin θ
+ bn

dP 1
n

dθ
) ,

(27)

where E0 is the strength (amplitude) of the incident elec-
tric field, θ and φ are the polar and azimuth scattering
angles, respectively, n defines the degree of the multipole
mode, i.e. n = 1 and n = 2 for dipole and quadrupole
modes, respectively, P 1

n represents the set of associated
Legendre polynomials of order 1, P 1

2 (cos θ) = 3 cos θ sin θ,
dP 1

2 /dθ = 3(cos2 θ − sin2 θ), and an and bn are the com-
plex Mie coefficients calculated by evaluating the overlap
integral between the incident field and the field associated
with the natural modes of the system. For MQ related
to the coefficient b2:

EMθ ≈ E0
eikSr

−ikSr
cosφ

5

2
b2 cos θ ,

EMφ ≈ −E0
eikSr

−ikSr
sinφ

5

2
b2(− sin2 θ + cos2 θ) .

(28)

From another side, the angular field components can be
expressed as47

EMθ (r, φ, θ) =
−ikS

2

√
µ0

ε0εS

k2
Se
ikSr

4πr
(µy cosφ− µx sinφ) ,

EMφ (r, φ, θ) =
−ikS

2

√
µ0

ε0εS

k2
Se
ikSr

4πr
(−µx cosφ cos θ

−µy sinφ cos θ + µz sin θ) , (29)

where the vector µ ≡ (M̂n) and for sphere µ =
(0, nz, ny)M0 = (0, cos θ, sin θ sinφ)M0. Here we con-
sider that the nanoparticle is illuminated by a monochro-
matic plane wave with linear polarization along x-axis
similar to the case from37. Taking into account that
the incident magnetic field H = (0, H0, 0) exp (ikSz) and

M̂ = αM (∇H+H∇)/2, one obtains M0 = Myz = Mzy =

αM (ikS/2)H0 = αM (ikS/2)
√
ε0εS/µ0E0. Then, com-

paring (28) and (29), we obtain expression for MQ po-
larizability:

αM = i
40π

k5
S

b2 . (30)

The other three polarizabilities of interest αp, αm, and
αQ are expressed through the scattering coefficients a1,
b1, and a2 of Mie theory as (see e.g.49):

αp = i
6πε0εS
k3
S

a1, αm = i
6π

k3
S

b1, αQ = i
120πε0εS

k5
S

a2 .

(31)

In Mie theory, contributions of all toroidal moments
are included in the scattering coefficients aj and bj .
Therefore our theoretical model automatically takes into
account the toroidal moments associated with the con-
sidered coefficients a1, b1, a2, and b2. In particular, the
coefficient a1 includes a contribution of toroidal dipole
moment.

C. Infinite periodic array of identical spheres

1. Effective polarizabilities of sphere in array

The previous works10,37 have shown that in the infinite
periodic two-dimensional array with a single nanoparti-
cle in the elementary cell, ED does not couple to either
EQ37 or MD10, and all nanoparticles of the array have
the same induced ED, MD, and EQ moments at the nor-
mal incidence of external light excitation. We have also
shown that the coupling of EQ and MD takes place in
the infinite arrays40. In the present work we generalize
the concept to four multipoles ED, MD, EQ, and MQ
and demonstrate the coupling of ED and MQ.

Let us consider a normally incident, monochro-
matic, and x-polarized light wave with field components
(Ex(r) = E0 exp (ikSz), Hy(r) = H0 exp (ikSz), 0) (Fig.
1). Under these conditions, the dipole and quadrupole
moments of the identical spherical nanoparticles in infi-
nite periodic rectangular arrays will be the same for all
nanoparticles and have the following components: p =
(p0x̂+ 0ŷ+ 0ẑ), m = (0x̂+m0ŷ+ 0ẑ), Q̂ = Q0(x̂ẑ+ ẑx̂),

and M̂ = M0(ŷẑ + ẑŷ), where x̂, ŷ and ẑ are the unit
vectors of the Cartesian coordinate system. In this case,
the general system of Eqs. (25) can be simplified to the
following form:

p0 = αpEx(r0) +
αp
ε0

[
Sppp0 +

ik0

c
SpMM0

]
,

m0 = αmHy(r0) + αm

[
Smmm0 +

ck0

i
SmQQ0

]
, (32)

Q0 =
αQikSEx(r0)

2
+
αQ
2ε0

[
ik0

c
SQmm0 + SQQQ0

]
,

M0 =
αM ikSHy(r0)

2
+
αM
2

[
ck0

i
SMpp0 + SMMM0

]
,
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FIG. 1: Schematic of the rectangular periodic nanoparticle
array under consideration.

where r0 is the position of arbitrary particle with number
of zero in the array, and we will consider that this particle
is located at the origin of the chosen Cartesian coordinate
system (Fig.1) throughout the work. The multipole sums
in (32) are:

Spp ≡ k2
0

∑
l 6=0

Gpxx(0, rl) =
k2

0

4π

∑
l 6=0

eikSrl

rl

(
1 +

i

kSrl

− 1

k2
Sr

2
l

− x2
l

r2
l

− i3x2
l

kSr3
l

+
3x2

l

k2
Sr

4
l

)
, (33)

Smm ≡ k2
S

∑
l 6=0

Gpyy(0, rl) =
k2
S

4π

∑
l 6=0

eikSrl

rl

(
1 +

i

kSrl

− 1

k2
Sr

2
l

− y2
l

r2
l

− i3y2
l

kSr3
l

+
3y2
l

k2
Sr

4
l

)
, (34)

SQQ =
k2

0

6

ikS
4π

∑
l 6=0

eikSrl

r2
l

(
−2− i6 + k2

Sx
2
l

kSrl

+
12 + 7k2

Sx
2
l

k2
Sr

2
l

+ i
12 + 27k2

Sx
2
l

k3
Sr

3
l

−60x2
l

k2
Sr

4
l

− i60x2
l

k3
Sr

5
l

)
, (35)

SMM =
k2

0εS
2

ikS
4π

∑
l 6=0

eikSrl

r2
l

(
−2− i6 + k2

Sy
2
l

kSrl

+
12 + 7k2

Sy
2
l

k2
Sr

2
l

+ i
12 + 27k2

Sy
2
l

k3
Sr

3
l

−60y2
l

k2
Sr

4
l

− i60y2
l

k3
Sr

5
l

)
, (36)

SmQ ≡
1

Q0

∑
l 6=0

[q0l × (Q̂lnl0)]y

=
1

6

k2
S

4π

∑
l 6=0

x2
l e
ikSrl

r3
l

(
−1− 3i

kSrl
+

3

k2
Sr

2
l

)
,

(37)

SQm ≡
1

m0

∑
l 6=0

[∇0[g0l ×ml] + [g0l ×ml]∇0]xz

= 6SmQ =
k2
S

4π

∑
l 6=0

x2
l e
ikSrl

r3
l

(
−1− 3i

kSrl
+

3

k2
Sr

2
l

)
,

(38)

SpM ≡ 1

M0

∑
l 6=0

[q0l × (M̂ lnl0)]x

=
−k2

S

8π

∑
l 6=0

y2
l e
ikSrl

r3
l

(
−1− 3i

kSrl
+

3

k2
Sr

2
l

)
,

(39)

SMp ≡
1

p0

∑
l 6=0

[∇0[g0l × pl] + [g0l × pl]∇0]yz = 2SpM

=
−k2

S

4π

∑
l 6=0

y2
l e
ikSrl

r3
l

(
−1− 3i

kSrl
+

3

k2
Sr

2
l

)
.

(40)

If we do not take into account the terms proportional
to SpM , SmQ, SQm, SMp corresponding to the cross-
multipole coupling in the system Eqs. (32), the effec-
tive polarizabilities of dipoles and quadrupoles without
coupling to other multipoles are obtained as10,37:

1

αeff
p

=
1

αp
− Spp

ε0
,

1

αeff
m

=
1

αm
− Smm ,

1

αeff
Q

=
1

αQ
− SQQ

2ε0
,

1

αeff
M

=
1

αM
− SMM

2
. (41)

However, in the system (32), the coefficients SmQ,
SQm, SpM , and SMp are not equal to zero for infinite ar-
rays providing coupling between MD and EQ moments
as well as between ED and MQ moments. By solving
the whole system (32) taking into account the cross-
multipole coupling, one can find total effective polar-
izabilities of the particles in the array. These polariz-

abilities are determined by the expressions α
eff/coup
p =

p0/Ex, α
eff/coup
m = m0/Hy, α

eff/coup
Q = 2Q0/(ikSEx),

and α
eff/coup
M = 2M0/(ikSHy) taking into account Hy =

Ex
√
εSε0/µ0.

Thus we obtain

1

α
eff/coup
p

=
1− SMpα

eff
p · SpMαeff

Mk
2
0/(2ε0)

αeff
p [1− SpMαeff

Mk
2
S/2]

, (42)

1

α
eff/coup
m

=
1− SQmαeff

m · SmQαeff
Q k

2
0/(2ε0)

αeff
m [1 + SmQαeff

Q k
2
0/(2ε0)]

, (43)
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1

α
eff/coup
Q

=
1− SQmαeff

m · SmQαeff
Q k

2
0/(2ε0)

αeff
Q [1 + SQmαeff

m ]
, (44)

1

α
eff/coup
M

=
1− SMpα

eff
p · SpMαeff

Mk
2
0/(2ε0)

αeff
M [1− SMpαeff

p /(ε0εS)]
. (45)

The presentations (42)–(45) of the polarizabilities al-
low for analysis of the roles of coupling effects in nanopar-
ticle arrays.

2. Conditions of lattice resonances and polarizability
suppression due to cross-multipole coupling

General expressions (42)–(45) demonstrate that, due
to the cross-multipole coupling, the ED and MQ lattice
resonances are excited at the conditions[

1

αeff
p α

eff
M

− SMpSpMk
2
0

2ε0

]
→ 0 , (46)

The similar conditions of the MD and EQ lattice reso-
nances can be written out from (43) and (44), respec-
tively.

Let us analyze the condition when the effective MQ po-
larizability of the nanoparticle in the periodic lattice van-
ishes and the nanoparticles do not have considerable MQ

response. From Eq. (45), one can see that α
eff/coup
M = 0

occurs at the condition 1/αeff
p − SMp/(ε0εS) = 0 which

means

Re

[
1

αeff
p

]
= Re

[
SMp

ε0εS

]
and Im

[
1

αeff
p

]
= Im

[
SMp

ε0εS

]
.

(47)
This condition is similar to the condition for con-

ventional lattice resonances in the array of identical
multipoles, e.g. from Eqs. (41), electric dipoles
with Re[1/αp] = Re[Spp]/ε0 or electric quadrupoles
Re[1/αQ] = Re[SQQ]/(2ε0) Refs.10,37. As we show below,
the condition for imaginary parts in (47) can be satisfied
approximately. The imaginary part of the lattice sum can
only affect the radiative losses in the system. In contrast,
the imaginary part of the inverse multipole polarizability
contains, in general, two contributions which correspond
to absorptive and radiative losses. Discussion of this is-
sue with respect to the dipole systems can be found, for
example, in Ref.50. Surprisingly, the spectral position of

α
eff/coup
M = 0 does not depend on the α

eff/coup
M values and

is defined solely by the values in Eq. (47) which are αp
and lattice parameters.

One can also derive from Eq. (42) that under the con-
dition of Eq. (47),

1

α
eff/coup
p

=
1

αeff
p

, (48)

which means that the excitation of MQ moments is sup-
pressed in the array with the parameters satisfying the
condition (47) because of the dipole-quadrupole coupling.

Similar to the case of MQ, one can derive a condition
of vanishing ED because of cross-multipole coupling in
the periodic lattice. From Eq. (42), one can see that

α
eff/coup
p = 0 occurs at the condition 1−SpMαeff

Mk
2
S/2 = 0

which effectively means

1

α
eff/coup
M

=
1

αeff
M

=
SpMk

2
S

2
. (49)

Again the condition (49) can be satisfied only approxi-
mately for the imaginary part. Similar to Eqs. (47)–(49),
the analysis can be done for MD and EQ polarizabilities.

3. Reflection and transmission coefficients

After calculations of the effective polarizabilities of the
nanoparticles in array, using Eqs. (42)–(45), the reflec-
tion and transmission coefficients can be obtained if we
consider total electric field in the far-field region for z < 0
and z > 0:

E = E0 + Ep + Em + EQ + EM . (50)

The total electric field is a superposition of the incident
field E0 and the fields generated by the nanoparticle mul-
tipole moments. For x-polarization of the incident wave,
the electric fields generated by ED, MD, EQ, and MQ of
nanoparticles are

Ep =
k2

0

ε0
Exα

eff/coup
p (Grxx, 0, 0) , (51)

Em = − ik0

cε0
Hyα

eff/coup
m (grz , 0, 0) , (52)

EQ =
k2

0

ε0

ikSEx
2

α
eff/coup
Q (GQ,rx , 0, 0) , (53)

EM = − ik0

2cε0

ikSHy

2
α

eff/coup
M (GM,r

x , 0, 0) , (54)

respectively. Here, Ex and Hy =
√
ε0εS/µ0Ex are the

electric and magnetic field amplitudes of the incident
wave. Finally from (50), the non-zero total electric field
component Efx in the far field approximation is

Efx = Ex

[
eikSz +

k2
0

ε0
αeff/coup
p Grxx − ikSαeff/coup

m grz

+
k2

0

ε0
α

eff/coup
Q

ikS
2

GQ,rx +
k2
S

4
α

eff/coup
M GM,r

x

]
,

(55)



8

where the far-field approximation of the Green’s tensor
components, taking into account of the lattice and that
the wavelengths are larger than the array periods, are

Grxx =

∞∑
j=1

[
1 +

1

k2
S

∂2

∂x2

]
Φ(r, rj) ≈

i

2SLkS
e∓ikSz , (56)

grz =

∞∑
j=1

∂

∂z
Φ(r, rj) ≈ ±

1

2SL
e∓ikSz (57)

for ED and MD terms, respectively, and

GQ,rx =

∞∑
j=1

[
−1

6

∂

∂z
− 1

3k2
S

∂3

∂x2∂z

]
Φ(r, rj) ≈ ∓

e∓ikSz

12SL
,

(58)

GM,r
x =

∞∑
j=1

[
∂2

∂y2
− ∂2

∂z2

]
Φ(r, rj) ≈

ikS
2SL

e∓ikSz (59)

for EQ and MQ terms, respectively. Here

Φ(r, rj) =
eikS |r−rj |

4π|r− rj |
(60)

is the scalar Green’s function of homogeneous medium
with εS , SL is the area of the lattice unit cell, and the
upper sign corresponds to z < 0 and the lower sign for
the case when z > 0. Calculations of the sums in (56)–
(59) are carried out by the method shown in Ref.10 and
account for all particles in the array.

In this approach, the reflection and transmission coef-
ficients, both with respect to electric field, are (compare
with10)

r0 =
ikS
2SL

[
1

ε0εS
αeff/coup
p − αeff/coup

m − k2
0

12ε0
α

eff/coup
Q

+
k2
S

4
α

eff/coup
M

]
, (61)

t0 = 1 +
ikS
2SL

[
1

ε0εS
αeff/coup
p + αeff/coup

m +
k2

0

12ε0
α

eff/coup
Q

+
k2
S

4
α

eff/coup
M

]
. (62)

Note that the expressions of (61) and (62) can be ob-
tained from the formulas of the reflection and transmis-
sion coefficients presented in51, for x-polarization, if one
writes the multipole moments of spherical nanoparticles
through the corresponding polarizabilities.

The intensity reflection R0 and transmission T0 coeffi-
cients are

R0 = |r0|2 , T0 = |t0|2 .

Note that the expressions (61) and (62) are obtained
for the case when the wavelength of the incident light

FIG. 2: Analytical (denoted ’with coup.’) and numerical cal-
culations (denoted ’numeric’) of the intensity reflection and
transmission coefficients for the infinite periodic array of sili-
con spheres. The lattice periods are Dx = Dy = 300 nm, and
the silicon particles have radius R = 125 nm.

is larger than the periods of the array. However, these
expressions can also be applied for calculation the trans-
mission and reflection coefficients of zero diffraction or-
der in nanoparticle arrays with arbitrary relation between
wavelength of the incident light and array periods.

IV. APPLICATIONS

To demonstrate applicability of the developed ap-
proach, in this section, we perform analytical calcula-
tions following the equations derived above and numer-
ical simulations using frequency-domain solver in CST
Microwave Studio. Crystalline silicon spheres with R =
125 nm are considered ensuring that strong dipole and
quadrupole resonances are excited in the visible and near-
infrared spectral range. Crystalline silicon permittivity
is taken from the experimental data52 and illustrated
elsewhere10. In our simulations, the surrounding mate-
rial has dielectric permittivity εS = 1 and the normally
incident light is polarized along the x-axis (see Fig. 1).

To start with, we perform analytical calculations of re-
flection and transmission for a square array with periods
Dx = Dy = 300 nm using Eqs. (61) and (62). The com-
parison of these calculations with results of numerical
simulations are shown in Fig. 2. There is a good agree-
ment confirming that the multipole model derived above
can be successfully applied to predict optical properties
of high-density arrays. Moreover, the polarizability pre-
sentations (61) and (62) allow us to study the coupling
effects in detail.
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(a)

(b)

FIG. 3: Multipole resonances in the individual sphere and
its periodic array. The lattice periods are Dx = Dy = 300
nm, and silicon particles have R = 125 nm. Absolute values
of (a) ED and MQ and (b) MD and EQ multipole effective
polarizabilities. The effective polarizabilities are calculated
with Eqs. (30) and (31) for the single sphere, Eqs. (41)
for the sphere in the array without cross-multipole coupling,
and Eqs. (42)–(45) taking into account coupling. Effective
polarizabilities of MQ and EQ are normalized to k2

0/4 and
k2

0/12, respectively, following the coefficients in Eqs. (61) and
(62), and all electric dipole and quadrupole polarizabilities
are divided on ε0.

A. Multipole coupling

Let us analyze the influence of nanoparticle lattice on
multipole effective polarizabilities. As it is expected, the
pronounce effect is realized at the resonant conditions.
Figure 3 shows spectral behavior of ED and MQ polar-
izabilities (panel (a)) and MD and EQ polarizabilities
(panel (b)) for three cases under consideration. The first
case is a single sphere, and calculations are performed
with Eqs. (30) and (31) (solid lines in Fig. 3). The sec-
ond case is sphere in the lattice without cross-multipole
coupling. Effectively, this case corresponds to the lattice
of the same multipoles, and calculations are performed

with Eqs. (41) (dashed lines in Fig. 3). And finally, the
third case is sphere in the lattice, and coupling of all mul-
tipoles is taken into account with Eqs. (42)–(45) (dotted
lines in Fig. 3). While polarizabilities of the single sphere
differ from the polarizabilities of the spheres in the array,
calculations taking and not taking into account cross-
multipole coupling are very similar in a wide range of
the spectrum. However, in the proximity to resonances,
the coupling is strong and significantly changes effective
polarizability of the particle. In particular, the value of

|αeff,coup
M k2

0/4| is significantly suppressed at the resonant
region due to energy exchange between MQ and ED (λ ≈
680 nm, Fig. 3a). Moreover, due to the coupling, the
resonances of ED and MQ polarizabilities demonstrate
the Fano-type profiles, where the maximum of MQ term
coincides with the minimum of ED term and vice versa
(λ ≈ 680 nm, Fig. 3a). Similar behavior can be observed
for another MD-EQ multipole pair: MD term |αeff,coup

m |
experiences a decrease at the same wavelength that EQ
term |αeff

Q k
2
0/12| has peak (λ ≈ 575 nm), and EQ term

|αeff,coup
Q k2

0/12| has near-zero value at the proximity to

MD term |αeff
m | peak (λ ≈ 825 nm, Fig. 3b). Thus, the

cross-multipole coupling in the arrays may cause a signif-
icant changes (especially at the resonant conditions) and
needs to be taken into account in the array multipole
approximations.

In order to demonstrate the role of the array periodic-
ity in the cross-multipole coupling effects, we calculated
the ED and MQ polarizabilities without and with cross-
multipole coupling term as a function of the array pe-
riod and incident light wavelength. Results are shown in
Fig. 4. Without cross-multipole coupling, the panels (a)
and (b) include only the ED and MQ resonances, respec-
tively, which are affected only by the Rayleigh anomaly
(RA lines in Fig. 4). In contrast, in the case of the cross-
multipole coupling, the panels (c) and (d) also demon-
strate the anti-resonant regions, where ED polarizability
is suppressed in the proximity to MQ resonances (panel
(c)) and vice versa (panel (d)). Note that, at the period of
300 nm, both ED and MQ polarizabilities are suppressed
owing to the cross-multipole coupling effect.

In experimental investigations, it is not possible to ob-
tain direct information about nanoparticle polarizability
in the arrays. Therefore, it is important to understand
how the cross-multipole coupling effects can appear in
reflection and transmission. So we calculate the reflec-
tion from the array in all the cases under consideration:
(i) polarizability of the single particle (without array ac-
count), (ii) coupling of the multipoles of the same kind
in the lattice, and (iii) cross-multipole coupling (Fig. 5).
Without multipole coupling, the reflection coefficient is
significantly overestimated in the resonant regions and
has unphysical values larger than unit (panels (a) and
(b)). In contrast to the case without cross-multipole cou-
pling, the reflection coefficient calculated with the cross-
multipole coupling polarizabilities (Fig. 5c) does not con-
tradict the physical requirement that R0 + T0 ≤ 1 which
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FIG. 4: Effective polarizabilities of (a), (c) ED and (b), (d) MQ. Panels (a) and (b) calculated without accounting for cross-
multipole coupling between ED and MQ, and panels (c) and (d) with the cross-multipole coupling. The lattice periods are
Dx = Dy, and silicon particles have R = 125 nm. The results are shown in a logarithmic scale. Note that the plotted quantity
is log10 of the absolute value of the effective multipole polarizability and takes into account k2

0/4 for MQ. The dotted lines RA
mark the position of Rayleigh anomaly. Here all electric dipole and quadrupole polarizabilities are divided on ε0.

FIG. 5: Intensity reflection coefficient from the array of particles with the lattice periods Dx = Dy and silicon particles R = 125
nm. (a) Calculations are performed using only single-particle polarizability Eqs. (31), without taking into account interaction
of particles in the lattice. (b) Calculations are performed with polarizabilities defined through Eqs. (41) and accounting only for
the interactions of multipoles of the same kind in the lattice. (c) Calculations with cross-multipole coupling of the multipoles
defined by Eqs. (42)–(45). Panels (a) and (b) include regions with unphysical results with the reflection coefficient values
greater than 1. The dotted lines RA mark the position of the Rayleigh anomaly.
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(a)

(b)

(c)

FIG. 6: Cross-multipole coupling of ED and MQ in the lat-
tice. The lattice periods are Dx = Dy = 270 nm, and silicon
particles have R = 125 nm. (a) Absolute values of ED and
MQ effective polarizabilities without and with cross-multipole
coupling. Effective polarizability of MQ is normalized to k2

0/4
following the coefficients in Eqs. (61) and (62). Blue and light
blue circles correspond to the minimum of effective MQ and
ED polarizability accounting for cross-multipole coupling, re-
spectively. Blue and light blue squares correspond to the same
spectral point as circles and indicate |αeff

p | = |αeff,coup
p | and

|αeff
M | = |αeff,coup

M |, respectively. (b) Inverse MQ polarizability
and cross-multipole coupling sum. (c) Inverse ED polariz-
ability and cross-multipole coupling sum. In (b) and (c), blue
and light blue circles correspond to the same spectral points
as circles in (a). Here all electric dipole and quadrupole po-
larizabilities are divided on ε0.

results from energy conservation for passive systems.

B. Demonstration of polarizability suppression

As has been shown above, the effective polarizability of
ED and MQ can be significantly reduced down to near-
zero value if the conditions (47)–(49) are satisfied, which
can be typically achieved in the proximity to resonances.
Here we verify these conditions. Figure 6a shows that
upon overlap of ED and MQ resonances in the dense
lattice with Dx = Dy = 270 nm, the ED and MQ polar-
izabilities experience minimum.

We compare the corresponding cross-multipole cou-
pling sum SpM and SMp with inverse ED and MQ po-
larizabilities 1/αeff

p and 1/αeff
M shown in Fig. 6b,c. The

results confirm that the polarizability minimum in Fig.
6a happens at the spectral point where conditions defined
by Eqs. (47) and (49) are exactly satisfied for the real
parts of the sum and inverse polarizabilities

Re(SMp/ε0εS)

Re(1/αeff
p )

= 1 or
Re(SpMk

2
S/2)

Re(1/αeff
M )

= 1.

In turn, the conditions for imaginary parts are satisfied
only approximately. In the case shown in Fig. 6b,c, it is

Im(SMp/ε0εS)

Im(1/αeff
p )

≈ 0.90 or
Im(SpMk

2
S/2)

Im(1/αeff
M )

≈ 0.86.

The near-zero EQ polarizability in cross-multipole cou-
pling model at the wavelength 825 nm in Fig. 3b also
occurs due to the cross-multipole coupling between EQ
and MD moments.

C. Lattice anapole effect

The recent work has shown51 that light can be trans-
mitted almost unperturbed by the lattices (metasurfaces)
composed of dielectric nanoparticles supporting resonant
optical response. This lattice invisibility effect is realized
due to light excitation of certain multipole combination
in the nanoparticles of the metasurface. This multipole
combination provides simultaneous strong minimization
of forward and backward scattering of light resulting
in its propagation almost without amplitude or phase
change. Note that such behaviour can be called ’lattice
anapole effect’ because of its similarity to the light scat-
tering by particles in anapole states53. In these states,
nanoparticles do not scatter light providing the unper-
turbed incident wave. Here we show that the lattice
anapole effect can be realized in array of spherical silicon
nanoparticles due to interference of the fields generated
by ED, MD, EQ, and MQ moments excited in the array’s
nanoparticles. For this, we perform calculations for a pe-
riodic array of silicon spheres with periods Dx = 530 nm
and Dy = 410 nm (Fig. 7). The spectral region of inter-
est is the wavelength internal 610 – 630 nm indicated by
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(a) (c)

(b) (d)

FIG. 7: Multipole resonances and reflection and transmission through the periodic array of spheres. The lattice periods are
Dx = 530 nm and Dy = 410 nm, and silicon particles have R = 125 nm. (a) Absolute values of each separate multipole term
in the brackets of Eqs. (61) and (62) for the reflection and transmission coefficients (the MQ and EQ effective polarizabilities
are normalized to k2

0/4 and k2
0/12, respectively, and ED and EQ polarizabilities are divided on ε0). (b) Corresponding phases

of the multipole terms in Eqs. (61) and (62); (c) Intensity reflection and transmission coefficients; (d) Phase of field reflection
and transmission coefficients (61) and (62). At the wavelength 610-630 nm, the contributions of multipole moments in the
reflection and transmission coefficients have comparable values; phases of ED and EQ terms almost equal to each other and
the same holds for MD and MQ. At this wavelength range, reflection is near zero, transmission is close to 1 and its phase does
not change, indicating lattice anapole state.

a blue circle in Fig. 7a. There, all four multipole terms in
the brackets of the expressions (61) and (62) have com-
parable values. At the same time in this spectral region,
the phases of ED and EQ terms are almost equal to zero,
and the phases of MD and MQ terms are close to π (Fig.
7b). Using the information about the amplitudes and
phases of the polarizability terms in the field reflection
and transmission coefficients, we obtain from (61) and
(62) that r0 ≈ 0 and t0 ≈ 1 in the considered wavelength
range 610 – 630 nm. Direct numerical and analytical
calculations of the intensity reflection and transmission
coefficients shown in Fig. 7c confirm this result: The re-
flection from the array is near zero, and the transmission
is close to 1. Moreover, the phase change of the trans-
mitted wave is almost equal to zero (the red curve in Fig.
7d for wavelengths from 610 – 630 nm). Calculations of
the field distribution at λ = 629 nm, where transmission
is close to unit and the phase change is zero, confirms

that the wave propagates through the array unperturbed
(Fig. 8a,b). Contrarily, for the wavelength λ = 580 nm,
the phase of the transmission field changes, and one can
see a significant reflection from the array and a phase
shift of transmitted wave comparing with the free space
case (Fig. 8c,d). Note that from comparison of the an-
alytical and numerical curves presented in Fig. 7c, one
can see that the analytical model taking into account
only ED, MD, EQ, and MQ multipole terms can describe
well the optical properties of the arrays under consider-
ation. Thus, we have designed the array of spherical
silicon nanoparticles where the propagating light excites
moderate resonances (off-set from resonance peaks), but
is not reflected, and the light transmits almost with the
same amplitude as the incident light and without phase
changes. As a result, this behavior can be associated
with a lattice anapole state.
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FIG. 8: Total Ex field distribution (incident and scattered
waves) in numerical simulations of (a),(c) empty domain and
(b),(d) domain with sphere in the array with Dx = 530 nm
and Dy = 410 nm. Simulations are performed at the wave-
length (a),(b) λ = 629 nm (that correspond to transmission
phase φ = 0 and lattice anapole state) and (c),(d) λ = 580
nm. Light incidence is from the left side. Cross-section is
taken in xz-plane.

V. CONCLUSION

A general case of nanoparticles and their array with
the electric and magnetic dipole and quadrupole mo-
ments has been theoretically considered. Equations that
include the contribution of the MQ moment and the MQ
Green’s tensor for the description of electromagnetic

fields generated by MQ moment in all wave zones
is derived. We have developed an analytical model
based on coupled dipole-quadrupole equations for the
investigation of the optical responses of nanoparticle
arrays supporting dipole and quadrupole, including MQ
term, resonances. Further, the developed model has
been applied for the study of optical properties of infinite
periodic arrays of identical silicon spheres. Analytical
expression of effective particle polarizabilities, taking
into account multipole coupling, have been obtained.
Performing calculations with the developed analytical
model, we demonstrated the importance of the coupling
effects between ED and MQ moments in the infinite
arrays. It has been shown that excitation of all dipole
and quadrupole moments in the silicon nanosphere
arrays can lead to the realization of lattice anapole
state. This state corresponds to a condition when
particle resonances are excited, but neither amplitude
nor phase of the transmitted wave changes. Thus,
we believe that the presented analytical model can be
used for the development and investigation of nanoparti-
cle structures with different functional optical properties.
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