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The discovery of quantum spin Hall materials with huge bulk gaps in experiment, such as bis-
muthene, provides a versatile platform for topological devices. We propose a topological quantum
dot (QD) device in bismuthene ribbon in which two planar magnetization areas separate the sample
into a QD and two leads. At zero temperature, peaks of differential conductance emerge, demon-
strating the discrete energy levels from the confined topological edge states. The key parameters of
the QD, the tunneling coupling strength with the leads and the discrete energy levels, can be con-
trolled by the planar magnetization and the sample size. Specially, different from the conventional
QD, we find that the angle between two planar magnetization orientations provides an effective way
to manipulate the discrete energy levels. Combining the numerical calculation and the theoretical
analysis, we identify that such manipulation originates from the unique quantum confinement effect
of the topological edge states. Based on such mechanism, we find the spin transport properties of
QDs can also be controlled.

PACS numbers: 73.63.-b, 73.23.-b, 85.75.-d

I. INTRODUCTION

The Quantum spin Hall (QSH) effect with topologi-
cal helical edge states is one of the focuses in the topo-
logical state studies1–8. In the QSH systems, carriers
can propagate without dissipation along the edge chan-
nels. At one edge, carriers of spin-up and spin-down
flow to opposite directions. Specifically, the propaga-
tion direction of the carriers of the same spin is reversed
at the opposite edge. Such unique transport properties
enable QSH systems to own promising applications in
low-power electronics and spintronics9–12. In the early
years, the studies of QSH systems mainly focus on group-
IV monolayers (e.g., graphene1,2 and silicene13,14) and
semiconductor quantum wells (e.g., HgTe/CdTe3,4 and
InAs/GaSb15,16). However, the weak spin-orbit coupling
of these systems only leads to a tiny bulk gap with the
order of a few meV, which limits the applications in the
topological devices. Recently, the QSH effect is pro-
posed in group-V monolayers (e.g., bismuthene17–20 and
antimonene21–24). In these systems, the bulk gap can
reach the same order of the atomic spin-orbit coupling
strength of Bi and Sb. Significantly, F. Reis et al. have
synthesized the bismuthene sample on the SiC substrate,
and they observed a large topological bulk gap up to 0.8
eV25. The discovery generates extensive attentions in
the QSH phase on group-V monolayers and the related
applications in topological devices26–28. Furthermore, it
is found that the topological characteristics of group-V
monolayers can easily be modified by doping, adsorption,
chemical modification or substrate effect29–38. For exam-
ple, the first-principles calculations have demonstrated

that the magnetic doping or substrate can induce very
large exchange fields (up to 400 meV) in the functional-
ized bismuthene39 and antimonene40,41, which drives the
system from the QSH phase to quantum anomalous Hall
and valley polarized QSH phases, respectively. This eas-
ily modified feature of group-V monolayer is favorable for
building topological devices.

Quantum dot (QD) is one of the most important de-
vices in mesoscopic physics42–48. Because of the promis-
ing application for quantum computation and quantum
information, engineering QDs with topological states
draws lots of interest49–53. A typical QD system is shown
in Fig. 1(c), where the QD is separated from two leads by
insulated barriers. The QD has discrete energy levels due
to the finite-size effect, and thus carriers can pass through
the QD by resonance tunneling. The techniques for fab-
ricating traditional QDs depend on chemical etching54,55

or gate voltage depletion47,56. However, such techniques
require precise micromachining process and the control
is much difficult. To this end, novel approaches for QD
engineering are expected. Due to the spin-momentum
locked nature of helical edge states in the QSH phase,
the planar magnetization opens a gap as large as the
exchange field in the energy band of edge states57–60.
And recently, the QSH effect under local planar magne-
tization has been studied in monolayer systems61,62. It
is found that the tunneling coupling between the sepa-
rated sides is exponentially weakened by increasing the
length of the magnetization area62. A natural question
is whether we can take such an advantage of planar mag-
netization in group-V monolayers, which have the large
topological bulk gap and highly tunable physical prop-



2

erties, to engineer topological QDs and manipulate their
transport properties.

In this paper, we propose a QD in bismuthene nanorib-
bon by introducing two depletion regions with planar
magnetization [as shown in Fig. 1(d)]. The coupling
between the QD and the leads on both sides can be con-
trolled by the magnetization. By varying the Fermi level,
a series of peaks emerge in zero-temperature differential
conductance, which comes from the discrete energy lev-
els of the QD. We find the discrete energy levels originate
from the quantum confinement of topological edge states
and can still be observed even in a QD with a quite large
size. Significantly, the angle between two planar magne-
tization orientations tunes the positions of discrete en-
ergy levels in the topological QD effectively. Through
both numerical simulations and theoretical analysis, the
unique confinement mechanism of the topological edge
states is revealed. The magnetization-controlled discrete
energy levels provide another way to manipulate the spin
transport properties of the topological QD. Finally, both
characteristics of electrical conductance and spin conduc-
tance of the QD device under finite bias are obtained.

The paper is organized as follows. Section II intro-
duces the model of the topological QD and the numeri-
cal method to calculate the electrical and spin differential
conductance. The key characteristics of the topological
QD and its related transport properties are given in Sec.
III. Then a brief conclusion is presented in Sec. IV.

II. MODEL AND METHODS

For convenience, we use zigzag bismuthene ribbons as
a platform to demonstrate our proposal in detail. The
topological QD device as illustrated in Fig. 1(d) is
considered. Two planar magnetization areas (dark re-
gions) separate the device into the QD and the contact-
ing leads. The device can be described by the following
Hamiltonian40:

H = H0 +H1 ,

H0 =
∑
i∈A,B

3∑
j=1

c+i Tδj ci+δj + h.c.

+
∑
i

c+i [λSO τz ⊗ σz]ci ,

H1 =
∑
i

c+i [MA/B τ0 ⊗ (cosθ σx + sinθ σy)]ci .(1)

Here, ci (c+i ) is the annihilation (creation) operators of
electrons at site i. τ and σ are the Pauli matrices acting
in orbital [ |φ+〉 = − 1√

2
(px+ipy) and |φ−〉 = 1√

2
(px−ipy)

] and spin space (↑ and ↓), respectively. The hopping

Tδj =

(
t1 z(3−j)t2
zjt2 t1

)
⊗ σ0 describes the nearest hop-

ping from site i to i + δj , where z = ei
2π
3 is a constant

and t1/2 is the hopping coefficient. λSO is the intrinsic

spin-orbit coupling strength. MA/MB refers to the pla-
nar exchange field in the A/B sublattice, which originates
from the adatoms XA/XB. MA/MB only acts on the pla-
nar magnetization regions and equals to zero in other re-
gions. θ defines the orientation of planar magnetization,
which can be controlled by the external magnetic field.
Although it has not been observed in experiment yet, the
proper adsorption (e.g., N or F ) can indeed induce large
planar magnetization through the first-principle calcula-
tions. Detailed results are provided in the Appendix63,64.

To characterize the properties of the topological QD,
the zero-temperature electrical differential conductance
G(E) at the Fermi energy E is calculated. Based on
nonequilibrium Green’s function method and Landauer-
Büttiker formula65, G(E) under a small bias can be ex-
pressed as:

G(E) =
e2

h
Tr[ΓL(E)Gr(E)ΓR(E)Ga(E)], (2)

where Γp(E) = i[Σrp(E)−Σap(E)] is the linewidth function

of the leads (p = L,R) and Gr(E) = [Ga(E)]† = 1/[(E−
Hcen) − ΣrL − ΣrR] is the retarded Green’s function65.
Hcen contains the Hamiltonian of the QD and two planar
magnetization areas. The self-energy Σrp of the semi-

infinite lead-p can be calculated numerically66–68.

Since spin is a good quantum number in both leads,
one can also calculate the spin differential conductances
G↑ and G↓. In analogy to Eq.(2), Gα(E) is obtained by

Gα(E) =
e2

h
Tr[ΓLα(E)Gr(E)ΓR(E)Ga(E)], (3)

where α =↑, ↓. Here, ΓLα(E) are the corresponding spin
part of ΓL(E).

III. RESULTS AND DISCUSSIONS

Before presenting our main results, the parameters
adopted in the following studies are given. The lattice
constant a = 5.53 Å is set as a size unit. The width and
length of the QD are

√
3aW and aL. Here, t1 = 1 eV,

t2 = −1 eV and λSO = 0.5 eV, which are comparable
to the fitting parameters of bismuthene from the first-
principles data. The magnitude MA/MB and the orien-
tation angle θ of the exchange fields can be engineered by
the atomic adsorption (e.g., concrete adatoms and their
concentration) and the external magnetic field, respec-
tively. For simplicity, we assume the atomic adsorptions
are the same in two magnetization areas. Thus, the mag-
nitude of exchange fields (MA and MB) are the same in
two areas. Then, topological helical edge states exist in
the low energy region E ∈ [−0.5, 0.5]. The exchange
fields in the planar magnetization areas open a gap in
the edge states [shown in the right panel of Fig. 1(b)],
while its orientation does not change the band structure.
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FIG. 1: (a) Schematic of bismuthene with a buckled honeycomb structure. The red and blue balls stand for Bi(A) and Bi(B)
atoms. The adatoms XA/XB are adsorbed on the bottom/top side of the Bi monolayer. For proper adatoms (e.g. F or N), a
planar magnetization with an exchange field MA/MB is induced. The orientations of the exchange field can be controlled by
the external magnetic field. (b) Two typical band structures of a bismuthene ribbon, which obtained from the tight-binding
model. It is gapless (gapped) without (with) the exchange field. The exchange field is set as MA = MB = M = 0.1 eV. (c)
Sketch of a typical QD device. A bias VL −VR is applied between the left and the right leads. The Fermi energy of the QD
can be tuned by the gate voltage. (d) The schematic diagram of a topological QD in a zigzag edged bismuthene ribbon. In the
two dark regions of the ribbon, the planar magnetization induces an exchange field M. The region has gapped band structures,
acting as a depleted region. The energy bands of the two lateral sides of the ribbon remain gapless and they serve as two leads.
In the central region, the topological edge states are confined to a series of discrete energy levels, working as a QD. The lattice
constant a = 5.53 Å is a size unit. Thus, the ribbon width is

√
3aW ≈ 2.9 nm with W = 3. The lengths of the magnetization

areas are al1 ≈ 1.1 nm and al2 ≈ 1.1 nm with l1 = l2 = 2. And the length of the QD is aL ≈ 2.75 nm with L = 5. δ1, δ2 and
δ3 are the three nearest-neighbor vectors.

A. A versatile platform for building topological
QD devices with tunable key parameters

We demonstrate our proposal through the simulations
of transport properties. Transport performance is not
only one of the most essential properties of QD devices,
but also an effective method to characterize them. For
example, for a non-interacting QD device, the tunnel-
ing coupling strength and the discrete energy levels are
the key parameters. These parameters can be extracted
from the zero-temperature two-terminal differential con-
ductance:

G(E) =
2e2

h

ΓLΓR

(E − εd)2 + 1
4 (ΓL + ΓR)2

, (4)

where E denotes the Fermi energy, εd denotes the discrete
energy, ΓL (ΓR) labels the tunneling coupling strength
between the QD and the left (right) leads69.

In Fig. 2(a) and 2(b), the linear differential conduc-
tance G versus the Fermi energy E under different ex-
change fields MA = MB = M and lengths of the magneti-
zation area l1 = l2 = l are plotted. In the absence of pla-
nar magnetization (M = 0), G ≡ 2e2/h indicates no QD

(a) (b)

(c) (d)

MA=MB=M

MB=0.1

l1=l2=l

l1=5

FIG. 2: G-E relations of the QD device for different exchange
fields of A/B sublattice MA/MB [(a) and (c)] and length of
the magnetization areas l1/l2 [(b) and (d)]. In (a) and (c),
l1 = l2 = l = 5, In (b) and (d), MA = MB = M = 0.1 eV.
Other parameters are W = 10, L = 50 and θ = 0.
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is found in the device [see the red line in Fig. 2(a)]. How-
ever, when M 6= 0 and l 6= 0, G oscillates from 0 to 2e2/h
in the energy region E ∈ [−0.03, 0.03], indicating the for-
mation of the QD by introducing the two magnetization
areas. The energies of peaks stand for the positions of the
discrete energy levels. The sharpness of peaks represents
the tunneling coupling strength between the QD and the
leads. The physical picture for the QD is very intuitive.
The planar magnetization can open a edge state gap by
adding two barriers that locate on corresponding mag-
netization regions [see dark regions in Fig. 1(d)]. The
electronic states inside the central region are confined to
the discrete energy levels of the QD sample. Due to the
finite width and height of the two barriers, the carriers
can pass through the device by quantum tunneling. If
the Fermi energy E equals the discrete energy level εd,
the resonance tunneling happens. Therefore, a proposal
for building a QD device from a bismuthene nanoribbon
is established.

The proposed QD device is a versatile platform. Its
key parameters can be easily tuned. First, we show the
feasibility to control the tunneling coupling strength and
the related transport properties. Physically, the tunnel-
ing coupling strengths between the QD and two leads
are determined by the probability of quantum tunnel-
ing across the planar magnetization regions. It can be
changed by the exchange fields (MA and MB) and the
lengths of the magnetization area (l1 and l2). In Fig.
2(a) and 2(b), one can find that the oscillations are weak
for small M and l [e.g., M = 0.05 eV in Fig. 2(a), l = 1 in
Fig. 2(b)]. By increasing M or l, the tunneling coupling
strength decays exponentially. G shows clear oscillations
from 0 to 2e2/h and their peaks become narrow. For
large M and l, the quantum tunneling from the leads to
the QD is difficult. Correspondingly, the peaks of G are
too sharp to be observed [e.g., M = 0.15 eV in Fig. 2(a),
l = 7 in Fig. 2(b)]. Besides, G versus E for MA 6= MB

and l1 6= l2 are also studied. In Fig. 2(c), by varying
MA, the sharpness of G is changed, while the maximum
of its peaks nearly remains 2e2/h. In contrast, when
l2 = 1, not only the sharpness of G is changed, but also
its peak maximums decreases from 2e2/h to 0.5e2/h [see
Fig. 2(d)]. The reason is intuitively simple. As stated in
Eq. (4), when l1 = l2, the tunneling coupling strength of
two peaks are equal, i.e., ΓL = ΓR. A peak of 2e2/h is
obtained. While l1 6= l2, one obtains a smaller resonant
peak due to ΓL 6= ΓR. For example, when l2 = 1 and ΓR
is nearly 14 times as ΓL, the resonant conductance gives
G ≈ 0.5e2/h.

The discrete energy level is another key parameter of
the QDs. In traditional QDs, the discrete energy levels
are sensitive to its size. An increasing size always gener-
ates more discrete energy levels. In our proposal, the QD
is built from a topological material. What are the differ-
ences between the traditional and our topological QD?
In the following, we study it in detail. For better obser-
vation of the discrete energy levels, we use a symmetric
model, ie., MA = MB, l1 = l2 and θ = 0.

(a) (b)

FIG. 3: G versus E for different width W (a) and length L (b)
of the bismuthene QD. The parameters are set as MA = MB =
0.1 eV, l1 = l2 = 5 and θ = 0. In (a), L = 50, and in (b),
W = 10.

The differential conductance G versus the Fermi en-
ergy E for different ribbon widths W and lengths L are
plotted Fig. 3. One can find that the conductance G is
not affected by W as the curves of W = 10, 50 and 100
coincide with each other. It manifests that the discrete
energy levels come from the quantum confinement of the
topological edge states and the number of the discrete
energy levels cannot be changed by the width of the QD.
In contrast, the length L can effectively manipulate the
peaks of the conductance, i.e., discrete energy levels of
the QD. As shown in Fig. 3(b), the increasing length L
induces more discrete energy levels. Further, the spacing
of discrete energy levels is equal and inversely propor-
tional to the length L. This phenomenon is also consis-
tent with the linear dispersion of topological edge states.
The behaviors of G versus both L and W not only prove
that the discrete energy levels stem from the confinement
of the topological edge states, but also demonstrate that
the discrete energy levels can also be controlled.

Next, we use another method to verify it by the the-
oretical analysis of edge states. In the present model,
the magnetic regions, which bear nonzero effective mass,
play the role of insulating barriers. They confine the elec-
tron states and form a quantum dot in the central region.
The proposed QD structure can be simplified as a one-
dimensional finite potential well with a length L and two
semi-infinite barriers with the mass term M. The upper
edge states inside the potential well can be described by
the Hamiltonian

HQD =

(
~vk 0

0 −~vk

)
. (5)

Here, the operator k = −i ∂∂x and v denotes the Fermi
velocity. The eigenfunction in the range x ∈ [0, L] can be
expressed as

ΦQD(x) =
A√
v

(
1

0

)
ei

E
~v x +

B√
v

(
0

1

)
e−i

E
~v x, (6)

with the bound energy E.
In the left side, the barrier is Mσx and the Hamiltonian
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HL can be written as

HL =

(
~vk M
M −~vk

)
. (7)

Here, an evanescent wave with vector k1 = − i
√
M2−E2

~v
(E < M) exists in the barrier. The corresponding eigen-
function in the range x ∈ (−∞, 0) is

ΦL(x) =
C√
v

(
M

E + i
√

M2 − E2

)
e

√
M2−E2

~v x. (8)

In the right side, the barrier is also Mσx and the Hamil-
tonian HR is

HR =

(
~vk M
M −~vk

)
. (9)

Here, the rightward evanescent wave vector is k2 =
i
√
M2−E2

~v and the corresponding eigenfunction in the
range x ∈ (L,∞) is

ΦR(x) =
D√
v

(
M

E − i
√

M2 − E2

)
e−
√

M2−E2

~v x. (10)

According to the continuity condition ΦQD(0) = ΦL(0),
ΦQD(L) = ΦR(L), we obtain the relationship for the
bound energy at the upper edge, that is,

e2i
E
~vL =

E + i
√

M2 − E2

E − i
√

M2 − E2
. (11)

The lower edge states inside the potential well can be
described by a Hamiltonian

HQD = −
(
~vk 0

0 −~vk

)
. (12)

The potential in the two sides are still Mσx. After some
algebra, one can obtain the corresponding relationship
for the bound energy at the lower edge:

e2i
E
~vL =

E + i
√

M2 − E2

E − i
√

M2 − E2
. (13)

The identical terms, contributed by the upper and lower
edge states (Eqs. (11) and (13)), combine to give a dou-
bled conductance of 2e2/h [see Fig. 2 and Fig. 3]. And
we find that the increasing length L will decrease the
spacing of discrete energy levels, which is proportional to
1/L and has nothing to do with the width W . This re-
sult verifies that the confinement of the edge states lead
to the special phenomenon in Fig. 3.

It is worth noting that, different from the traditional
QDs where discrete energy levels come from the confine-
ment of bulk states, the absence of bulk states makes
the spacing of discrete energy levels much larger in the
present topological QD. For example, one can estimate
from Fig. 3(b) that the level spacing is about 10 meV for
the topological QD with size L = 100 (≈ 55 nm). The
immunity of discrete energy levels to the width makes the
fabrication and the observation of the topological QDs in
experiments more easily.

(a) (b)

FIG. 4: G-E relations for different angles θ between two pla-
nar magnetization orientations. (a) θ = 0 and θ = π. (b)
θ changes from 0 to π/2 gradually. Other parameters are
MA = MB = 0.1 eV, l1 = l2 = 5, L = 50 and W = 10.

B. Manipulate the discrete energy levels by the
angle of planar magnetization orientations

In the subsection III A, we have proposed a topological
QD device in the bismuthene nanoribbon. We demon-
strate that its key parameters can be tuned by the barri-
ers and the sample size. These characteristics also exist
more or less in the traditional or other topological QD de-
vices. Does any unique topological property exist in our
topological QD? In this subsection, we show the discrete
energy levels can be adjusted by the angle θ between two
planar magnetization orientations.

In Fig. 4, we study the behaviors of the differential
conductance G under different θ. Although the orienta-
tion of the exchange fields cannot change the insulating
nature of the potential barriers, surprisingly, it can regu-
late the discrete energy levels of the QD. When two pla-
nar magnetization orientations change from being paral-
lel (θ = 0) to being antiparallel (θ = π), the conductance
peaks for θ = π appear in the middle of the neighbor
conductance peaks for θ = 0 [see Fig. 4(a)]. In other
words, the discrete energy levels shift a half period by
reversing a planar magnetization orientation. This prop-
erty may be used as a quantum bit with two states 0
and 1, in which the transition condition is just revers-
ing the magnetic field in one planar magnetization area.
When the angle θ doesn’t equal to 0 or π, the linear con-
ductance cannot reach 2e2/h. The peaks split and the
amplitudes decrease from 2e2/h to e2/h when the angle
θ increases from 0 to π/2. And the peaks will restore
to 2e2/h gradually when θ changes from π/2 to π. The
former variation process is given in Fig. 4(b). In order
to explain this phenomenon, we speculate that the factor
2 originates from two edge states. The discrete energy
levels, arising from the confinement of topological helical
states at the upper or lower edge of the QD, contribute a
conductance peak with an amplitude e2/h. And the an-
gle θ shifts discrete energy levels to the opposite energy
directions. In the following, two evidences are provided
to support the argument.

The first evidence is given by the conductance simu-
lation of two modified setups. As shown in Fig. 5, the
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FIG. 5: G-E relations under different angles θ when the ex-
change field M only exists at the upper edge (a) or the lower
edge (b) of the bismuthene ribbon. The parameters are the
same as those in Fig. 4.

exchange field is only introduced at one edge. When the
exchange fields exist at the upper edge, the helical edge
state at the lower edge are dissipationless and contributes
to a quantized conductance e2/h. The confined states at
the upper edge make the differential conductance G os-
cillate between e2/h and 2e2/h. And the peaks of G shift
periodically with the angle θ. We plot the results of G un-
der θ = 0, π/2, π, and find that the evenly spaced peaks
shift leftwards [see the bottom panel of Fig. 5(a)]. When
the exchange fields exist at the lower edge, the peaks of G
also oscillate from e2/h to 2e2/h. But the evenly spaced
peaks of G under θ = 0, π/2, π shift rightwards. For
θ = 0 and θ = π, the conductance peaks contributed by
the upper edge and lower edge meet at the same energy
positions. So G has a oscillation from 0 to 2e2/h if the
exchange fields exist at the both edges. When θ deviates
from those two specific angles, the degeneracy of discrete
energy levels at the two edges are broken and each peak
of G splits into two. Thus, the amplitude of G decreases
from 2e2/h to e2/h [see Fig. 4(b)]70.

The second evidence is given by the theoretical analysis
of the bound energies, i.e., discrete energy levels, at two
edges. When we consider the nonzero angle θ, the barrier
of the right side is changed as M cos θ σx+M sin θ σy and
the corresponding Hamiltonian HR at the upper edge is

HR =

(
~vk Me−iθ

Meiθ −~vk

)
. (14)

Then the eigenfunction is

ΦR(x) =
D√
v

(
Me−iθ

E − i
√

M2 − E2

)
e−
√

M2−E2

~v x. (15)

According to the continuity condition, we obtain the re-
lationship for the bound energy at the upper edge

ei(2
E
~vL+θ) =

E + i
√

M2 − E2

E − i
√

M2 − E2
. (16)

(a) (b)θ=0 θ= π/6

θ= π/2θ= π/3(c) (d)

FIG. 6: A comparison of discrete energy levels from the nu-
merical simulation and the theoretical analysis. The numer-
ical results are extracted from Fig. 4(b), and the analytical
results are the solutions of the transcendental Eqs. (16) and
(17).

For the lower edge states, the potential in the right side
is also changed as M cos θ σx + M sin θ σy. Interestingly,
considering the lower edge states’s Hamiltonian (12), the
corresponding relationship for the bound energy is:

ei(2
E
~vL−θ) =

E + i
√

M2 − E2

E − i
√

M2 − E2
. (17)

A comparison of the numerical simulation and the the-
oretical analysis is given in Fig. 6. The numerical results
are extracted from Fig. 4(b), and the analytical results
are the solutions to the Eqs. (16) and (17). The dis-
crete energy levels from the upper edge or the lower edge
contribute a quantized conductance e2/h. So we label
the solutions of the Eqs. (16) and (17) in the values of
G = e2/h. In Fig. 6, all the labels of the solutions locate
at the peaks of G. Further, when two kinds of labels, i.e.,
bound energies at the two edges, coincide with each other
[see Fig. 6(a)], peaks of G = 2e2/h emerge. If these two
kinds of labels separate with each other [see Fig. 6(b-
d)], the peaks of G reduce from 2e2/h to e2/h and every
solution is accompanied with a peak [see Fig. 6(b-d)].
Significantly, comparing four subplots with the increas-
ing angle θ, one finds that the discrete energy levels con-
tributed by the upper edge will move in a negative energy
direction, while the discrete energy levels contributed by
the lower edge will move in the positive energy direction.

The numerical simulation of differential conductance,
the theoretical analysis of bound energies and the prefect
coincidence of their results all confirm that the discrete
energy levels can be manipulated by the angle between
two planar magnetization orientations. From the theo-
retical analysis, such a manipulation requires: (1) the
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(a) (b)

(c) (d)

θ=0 θ= π/36

θ= π/6θ= π/12

FIG. 7: The spin conductance G↑, G↓ and G↑ − G↓ versus
the Fermi energy E for different angles θ = 0 (a), θ = π/36
(b), θ = π/12 (c) and θ = π/6 (d). Other parameters are the
same as those in Fig. 4.

band structure with helical edge states; (2) the opposite
propagation directions for spin carrier between the upper
and the lower edges; (3) the special boundary condition
induced by the exchange fields. All three characteristics
are the essential properties of the QSH phase. Therefore,
the manipulation by the angle θ is unique in the present
proposed topological QD.

C. Application of unique manipulation mechanism
by the angle of planar magnetization orientations

We have shown that the angle of the planar magnetiza-
tion orientations introduces a special confinement mecha-
nism to the topological edge states, leading to the unique
manipulation of the discrete energy levels in the proposed
QD. It is natural to ask whether we can utilize such mech-
anism for spintronics. As the bismuthene is a QSH ma-
terial, the spin-up carriers will flow along the upper edge
while the spin-down carriers flow along the lower edge
under a small bias. Since the discrete energy levels at
upper and lower edges move to different directions by
tuning θ. Thus, such a manipulation may have applica-
tions in spintronics. We test the application by studying
the spin differential conductance G↑, G↓ and G↑ −G↓.

Figure 7 plots the variation of spin differential conduc-
tance G↑, G↓ and G↑ − G↓ with the Fermi energy E.
Both G↑ and G↓ oscillate from 0 to e2/h in the proposed
QD device. The peaks of G↑ and G↓ correspond to the
discrete energy levels at the upper and lower edge, re-
spectively. When two planar magnetization orientations
are parallel (θ = 0), G↑ and G↓ are identical and their
variation G↑ −G↓ is zero [see the blue line in Fig. 7(a)].
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FIG. 8: The electrical and spin differential conductance dia-
grams under the combination of finite bias (VL −VR) and the
angle θ. (c) and (d) are the zooming in of the selected black
box region in (a) and (b). The Fermi energy is E = −0.01
eV. Other parameters are the same as those in Fig. 4.

There is no spin current in the QD device. In contrast,
by increasing θ, the peaks of G↑ and G↓ shift to the op-
posite energy directions, and consequently G↑ − G↓ be-
comes nonzero. The current in the QD device becomes
spin polarized. For a small θ [see Fig. 7(b) and 7(c)],
the separation of the discrete energy levels coming from
upper and lower edges is small, the peaks of G↑ − G↓
are smaller than e2/h. This means both the upper and
lower edges contribute a finite current, and the current is
partially spin polarized. For a large θ [see Fig. 7(d)], G↑
and G↓ are well separated in energy. Thus, a pure spin
current can be obtained in this case. Moreover, by tuning
the Fermi energy E, G↑−G↓ can be tuned from −e2/h to
e2/h. In other words, the current can be switched from
pure spin-up polarization to pure spin-down polarization.

Next, we give another method to manipulate the spin
polarized current other than by tuning the Fermi energy,
as shown in Fig. 8. In a traditional QD, the trans-
port properties are also tuned by a finite bias V . Here,
we set V = VL − VR. In this case, the differential con-
ductance and the spin differential conductance are mod-
ified to G(E, V ) = [G(E + eV/2) +G(E − eV/2)]/2 and
Gα(E, V ) = [Gα(E + eV/2) +Gα(E − eV/2)]/2, respec-
tively. Figure 8 is obtained from these two formulas. The
bias V plays the similar role as the Fermi energy E. By
tuning V , the resonant tunneling can also be observed in
G [see Fig. 8(a) and 8(c)]. G↑(E, V ) − G↓(E, V ) shows
a rapid oscillation by variation of both angle θ and fi-
nite bias V , except θ = 0 or θ = π [see Fig. 8(b) and
8(d)]. Therefore, the unique manipulation of spin trans-
port by the angle of planar magnetization orientations
always holds.

From above studies, one can conclude that the spin
transport properties of the proposed topological QD can
be controlled by a new parameter, the angle θ between
two planar magnetization orientations. Therefore, such
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FIG. 9: (a) Top and (b) side views of the structure of mono-
layer Bi2NF. The dashed line in (a) indicates the unit cell
of the system. (c) and (d) Energy bands for the monolayer
Bi2NF without and with SOC considered, respectively. The
red/black curve in (c) indicates the spin-up/spin-down state.

unique manipulation mechanism has promising applica-
tions in spintronics.

IV. CONCLUSION

In this paper, we select bismuthene as a candidate
for our proposal. The most important reason is that
bismthene is a QSH material with a large bulk gap and
has been realized in experiments25. More recently, the
QSH is also observed in Na3Bi with a bulk gap of 0.4
eV71. Besides, lots of materials, such as stanene72,73 and
MoSe2

74,75, are predicted to host large bulk gap QSH ef-
fects. In principle, our proposed topological QD model
can also be applied in these systems. To well observe the
QD phenomena in experiments, the spacing of the dis-
crete energy levels in QDs prefers one order smaller than
the bulk gap. Because of the limited energy resolution,
the distinction of discrete energy levels and the applica-
tion of the topological QD device in small bulk gap QSH
materials may be difficult.

In our topological quantum dot devices, two blue areas
act as the magnetic gates. Typically, an external mag-
netic field will affect the magnetization vectors in both
gates simultaneously. Two suggestions under the cur-
rent experimental framework are proposed to tunes the
relative orientation of the magnetization vectors in two
magnetic gates. (i) If a superconductor film, plus an in-
sulating film (keep the barrier insulating and avoid the
transmission via superconductor), covers the left mag-
netic gate, only a stronger magnetic field (B > BC , BC
is the critical magnetic field of superconductor) can en-
ter into the superconductor and change the orientation
of the magnetization76. So by applying a stronger mag-
netic field, two identical magnetizations are achieved. By

decreasing the magnetic field to B < BC , we can indi-
vidually change the magnetization direction in the right
magnetic gate continuously by rotating the external mag-
netic field. Meanwhile the left gate magnetization stays
unchanged. (ii) Tuning the magnetization direction by
a magnetic force microscope77. Since magnetic force mi-
croscopes can change the orientation of the magnetiza-
tion vectors by the magnetized probe at the atomic scale,
we can achieve this proposal by different (magnetization
angles) probes with proximity effect.

In summary, we find a new method to engineer the
topological QD system in bismuthene. The QD effect
arises from the quantum confinement of the topological
edge states by applying planar magnetizations. The cou-
pling strength, the discrete energy levels and other key
parameters of the QD can be controlled feasibly. Interest-
ingly, different from the conventional QD, we find that
the angle θ between two planar magnetization orienta-
tions can effectively tune the discrete energy levels of this
topological QD. The phenomenon originates from the
unique confinement mechanism of the topological edge
states under different boundary conditions, caused by the
variation of angle θ. Finally, we find the spin transport
properties of the topological QD can also be manipulated
by such a mechanism.
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VI. APPENDIX

To observe the interesting phenomena in our proposal,
we need a real material system described by the Hamil-
tonian Eq. (1). Based on first-principles calculations,
we found the nitrogenated bismuth fluoride monolayer
Bi2NF [shown in Fig. 9(a) and (b)] is a good material
candidate for our proposal. The Bi2NF has a similar
structure to the bismuth fluoride21 but with one side of
the F atoms replaced by the N atoms. The N atom
induces a net magnetic moment of 2 µB in the unit
cell of Bi2NF, making the system ferromagnetic. Cal-
culated band structure of Bi2NF without spin-orbit cou-
pling shows an obvious splitting of the spin-up and spin-
down bands [see Fig. 9(c)]78. When SOC is taken into
account, magnetic anisotropy energy calculations show
that the easy magnetization axis lies in-plane with about
20 meV lower in energy than the out-plane magnetiza-
tion. The calculated bands with SOC show that Bi2NF
is a ferromagnetic insulator with a gap of 0.8 eV [see Fig.
9(d)], supporting our proposed Hamiltonian Eq. (1). In
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our model, the comparable fitting parameters are set as t1 = 1 eV, t2 = −1 eV, λSO = 0.5 eV.
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