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The non-local van der Waals density functional (vdW-DF) has had tremendous success since its
inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body
starting point. However, while vdW-DF can describe binding energies and structures for van der
Waals complexes and mixed systems with good accuracy, one long-standing criticism—also since its
inception—has been that the Cg coefficients that derive from the vdW-DF framework are largely
inaccurate and can be wrong by more than a factor of two. It has long been thought that this failure
to describe the Cg coefficients is a conceptual flaw of the underlying plasmon framework used to
derive vdW-DF. We prove here that this is not the case and that accurate Cg coefficient can be
obtained without sacrificing the accuracy at binding separations from a modified framework that
is fully consistent with the constraints and design philosophy of the original vdW-DF formulation.
Our design exploits a degree of freedom in the plasmon-dispersion model wq, modifying the strength
of the long-range van der Waals interaction and the cross-over from long to short separations, with
additional parameters tuned to reference systems. Testing the new formulation for a range of
different systems, we not only confirm the greatly improved description of Cs coefficients, but we
also find excellent performance for molecular dimers and other systems. The importance of this
development is not necessarily that particular aspects such as Cg coefficients or binding energies
are improved, but rather that our finding opens the door for further conceptual developments of
an entirely unexplored direction within the exact same constrained-based non-local framework that

made vdW-DF so successful in the first place.

PACS numbers: 71.15.Mb, 31.15.ae, 33.15.Dj

I. INTRODUCTION

Materials in which van der Waals interactions, i.e. Lon-
don dispersion forces, play a crucial role for cohesion and
binding properties now stand at the forefront of a num-
ber of major scientific and technological advances. Ex-
amples include gas storage and filtering in supermolecu-
lar complexes and porous materials,! 3 organic electronic
and optoelectronic applications,*® and pharmaceutical,®
ferroelectric,”® and photovoltaic molecular crystals.? 10
Common to several of these developments is the increas-
ing role of first-principle electronic-structure calculations
at the density functional theory (DFT) level—serving not
only to gain insight into their functionality, but also to
predict new materials and functionality prior to experi-
mental synthetization.? As the ability to design and an-
alyze materials often hinges on the ability to accurately
predict energetic and structural properties, over the years
great effort has been made to improve DFT. In this re-
gard, a major development was the inclusion of van der
Waals interactions by various means during the previous
decade.''2* However, unfortunately, current methods to
treat van der Waals interactions still have not achieved
the same level of accuracy and reliability for such non-
covalently bonded systems as what is now typical for
covalently-bonded ones.

Amongst the various methods to capture van der Waals
interactions within DFT, the vdW-DF method developed
by Langreth, Lundqvist, and coworkers'416:25-29 gtands

out in that it is a true density functional, i.e. it can be
evaluated from knowledge of the density alone, and em-
ploys a non-local correlation functional E*![n] to account
for dispersion forces. The tremendous success of vdW-
DF is rooted in its plasmon dispersion formalism that is
rigorously derived from a many-body starting point and
adheres to a number of exact physical constraints.!30
This non-local correlation functional has since become
the cornerstone of several higher-level improvements that
e.g. adjust the exchange functional that is being used in
conjunction with E2![n].31 34 However, despite its success
and widespread use, further conceptual development of
vdW-DF has come to a halt—although around the turn
of the last decade vdW-DF inspired the related and well-
crafted functionals by Vydrov and Voorhis (VV),21724 its
fundamental framework has not changed since 2004. Fur-
thermore, one common criticism has also plagued vdW-
DF for almost the same time span, i.e. the often poor Cg
coefficients that derive from it,23:27:3536 which has been
thought to be a conceptual flaw in the underlying frame-
work. The poor Cg coeflicients in vdW-DF themselves
bare little to no effect on the vdW-DF performance for
binding energies and structures, but they are a formal
shortcoming nonetheless. We prove here that this is not
a conceptual flaw of the framework and that a modifica-
tion of the underlying plasmon dispersion model corrects
the Cg coefficients and opens the door for utilizing an
entirely unexplored degree of freedom that may be used
for further improvements—all while adhering to the same



physical constrains that made the original vdW-DF for-
malism so transferable and successful.

To understand which changes are necessary inside
vdW-DF, we review in the next section the underlying
framework but defer the reader to in-depth discussions
elsewhere.1416:26-28 The non-local correlation functional
E™[n] in vdW-DF can be derived as a systematic expan-
sion of the adiabatic connection formula (ACF)3739 in
terms of an effective plasmon propagator S, which has
poles for real frequencies at the effective plasmon fre-
quency wq, where q is the momentum of the plasmon. A
number of exact physical constraints on .S and wq explain
the transferability and success of vdW-DF in describing
diverse classes of materials.'®16:2749 However, the Cg co-
efficients in vdW-DF arise exclusively from the q — 0
limit of the plasmon dispersion wq, which is not con-
strained in vdW-DF and arises merely as a byproduct of
the particular parametrization of wq. As a result, vdW-
DF typically exhibits inferior Cg coefficients compared to
other methods.

Here, we modify the vdW-DF framework, fully consis-
tent with the original constraints and design philosophy,
but with a new and more flexible parameterization of the
plasmon dispersion wq. This flexibility is exploited to
provide accurate Cg values resulting in a mean absolute
relative deviation (MARD) of the Cg coefficients of 11%
compared to 20% for the original formulation, which we
refer to here as vdW-DF1,'* and 56% for vdW-DF2.2°
In addition—although not the primary purpose of this
paper—the form of wq is also tuned to provide notice-
able improvements for binding energies of several molec-
ular dimer systems, making the functional a contender
for applications to this class of systems. Finally, the new
formulation is also trivial to implement in compute codes
with existing vdW-DF implementations.

II. THEORY

The non-local correlation in vdW-DF is given by the
second-order expansion of the ACF in terms of a plasmon
propagator S, describing virtual charge-density fluctua-
tions of the electron gas, as follows
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Here, w = iu is the imaginary frequency, n(r) is the

electron density, and 47n(r) is the square of the plas-
mon frequency. This particular form of S as been cho-
sen because it fulfills four exact physical constraints,'*

making vdW-DF such a powerful and transferable tool.
In our modification of the method, we retain the same
model of S as in earlier versions, but update the plas-
mon dispersion wq(r) = q2/[2 h(q/qo (r))] by modifying
the dimensionless switching function h(q/go(r)) which
controls the relative strength of the density response at
different length scales. The function go(r) parameter-
izes the local response of the electron gas and is deter-
mined by the requirement that the first-order term in
S in the ACF expansion reproduces a GGA-type XC
functional.!6:27:39 This XC functional, which is generally
not the same as in the total energy functional, is named
the internal functional €t 141641 ¢)(r) is related to the
exchange-correlation per partlcle through this first-order
expression in S as follows

0= [ i [ 7

If we constrain the remaining integral to be

o0 3
/0 dy[1 = h(y)] = 7, (5)

then ¢o(r) can conveniently be expressed as a modu-
lated Fermi wave vector k3 (r) = 3w2n(r), i.e. qo(r) =

—(4r/3) it (x) = (e (r) /eLDA (1)) o (1),

The vdW-DF framework dictates three constraints on
h(y), but also leaves considerable freedom. First, the
integral over h(y) should be constrained by Eq. (5). Sec-
ond, a quadratic small-y limit in h(y) = yy%+... (where
v is a constant) ensures the appropriate 06/7“6 long-
range limit. In fact, Hyldgaard et al.3 pointed out that
h(0) = 0 corresponds to charge conservation of the spher-
ical XC hole model of the internal functional, which is
given by a Fourier transformation of h(g/qo(r)). Third,
h(y) is required to increase monotonically to a large-y
limit of lim,, h(y) = 1, corresponding to wq — ¢*/2
in the limit of large ¢. This allows S to cancel the self-
interaction divergence, i.e. the 2/¢? term in Eq. (4), in
the ACF formula.'#4% The standard switching function
in vdW-DF1 and vdW-DF2 was chosen within these con-
straints as

hsta(y) = 1 — exp(—yy?) (6)

where the value of v = ~gq = 47/9 &~ 1.3963 is deter-
mined by Eq. (5). Note that hgta(y) includes only one
parameter, which is fully constrained.

Dispersion forces in vdW-DF can be viewed as aris-
ing from a coupling of semi-local XC holes of separated
bodies.?? For two such bodies A and B far apart, the Cg
coefficient is given by

Ce = 3 -/000 du a4 (iu) ap(iv) , (7)
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with the far-field polarizability of body A (and likewise
for B) given by

N 3, n(r)
aa(iu) 7/Ad wi(r) +u?’

where wy(r) = limg—0 wq(r) = qo(r)?/27 for any h func-
tion with the required small-y limit from the second con-
straint. It is very interesting to see that the first con-
straint is a condition for the integral over all values of
y, but the asymptotic limit that determines the Cg coef-
ficients is determined exclusively by the small-y limit in
the second constraint. Crucially, there is significant resid-
ual freedom in the form of possible h(y) functions that
still fulfill all three constraints. Specifically, from the sec-
ond constraint it follows that v = lim,_oh(y)/y?, which
could take almost any number. Moreover, as Cg o 7>,
controlling the value of « is paramount to securing accu-
rate Cg values.

At the heart of our modification is a new switching
function that still fulfills all three constraints, but that is
also crafted to improve the description of Cg coefficients.
In particular, we propose

(®)
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where A(a,7,) = (8 + a(a/2 = 7))/ (1 +7 — a). This
three-parameter function hnew(y) provides significantly
more freedom than hgq(y). We get the required small-y
limit of Apew(y) = 7y2 — By* + ..., or equivalently
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which shows that—while + controls the magnitude of
the asymptote and Cg coefficients—3/92 is the lead-
ing order term determining how van der Waals interac-
tions are reduced at shorter separations. We found the
optimal values to be o = 2.01059, § = 8.17471, and
Y = Tnew = 1.84981, as described below. The functions
hnew(y) and hgiq(y) are plotted in Fig. 1 for comparison.
The non-local correlation energy in Eq. (1) can also be
written as E'[n] = 1 [ d®rd®r’ n(r) ¢(r,r’) n(r') where
the kernel ¢(r,r’) is fully determined through Eq. (1)-
(3); the two switching functions hpew(y) and hga(y) re-
sult in two different kernels ¢pew (r, ') and ¢gq(r, r'), the
difference of which is plotted in Fig. S1.

The value of Yyew = 1.84981 was determined by mini-
mizing the MARD of a set of 34 closed-shell atoms and
small molecules compiled by Vydrov and Voorhis;?* com-
putational details are provided in Appendix A. For a
given internal functional, tuning the y parameter cor-
responds to scaling the Cg coefficients by 72. Note
that vdW-DF1 and vdW-DF2 use different internal func-
tionals, as described in Appendix B. If we use the
internal functional of vdW-DF2, the optimal scaling
(’ynew/vstd)3 = 2.32529, resulting in a MARD for the Cg
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FIG. 1. Comparison of the standard switching function

hsta(y) used in vdW-DF1 and vdW-DF2 and the new switch-
ing function Anew(y). The upper panel shows h(y), while the
lower panel shows 32 /h(y) which is proportional to the plas-
mon pole wq. Somewhat surprisingly, the overall shape of
both functions is strikingly similar, which is related to the
fact that they obey the same underlying constraints. How-
ever, in the y < 0.4 region there are significant differences,
most visible in the bottom panel.

coefficients of 11.13%. If one instead tried to optimize
Cg coefficients with the vdW-DF1 internal functional,
the lowest achievable MARD would be 18.56%—hence,
our modified version of vdW-DF utilizes the vdW-DF2
internal functional. The value of f = 8.17471, with a
corresponding a = 2.01059, was determined by minimiz-
ing the MARD of the binding energies of the S22 data
set with separations optimized along the center-of-mass
coordinates, which results in a MARD value of 5.72%. In
the optimization, for each value of 8, a was adjusted to
fulfill Eq. (5).

Finally, the non-local correlation energy from Eq. (1)
has to be combined with a (semi)local functional to give
the entire exchange-correlation energy Ey.[n],

Byo[n] = Eg[n] + E'[n] . (11)
Only LDA correlation is included in E5.[n] as in all stan-
dard vdW-DF variants, whereas for the exchange con-
tribution of E5L[n] we employ the B86R functional of
Hamada.?* Note that our choice for the 8 parameter is
dependent on the exchange functional employed. Since
is optimized for a reference set of systems, the binding en-
ergies are less sensitive to the exchange functional choice
than in standard vdW-DF. Nonetheless, the exchange
has a strong impact on binding separations.%42-44 ydW-
DF variants based on soft exchange functionals, such
as C09,! optB86b,?* and cx13*' have generally been
found to be more versatile than those based on the
harder revPBE*® and PW861%6 originally employed in
vdW-DF1™ and vdW-DF2.25 The B86R3* functional of
Hamada was chosen because it was constructed for vdW-
DF2 and we retain the same internal functional as vdW-
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FIG. 2. Relative deviations of Cs coefficients of vdW-DF1 (filled squares), vdW-DF2 (triangles), and our new framework
(circles) for a set of 34 systems compiled by Vydrov and Voorhis, with reference data from a variety of sources.?® The Cs

coefficients are calculated from Egs. (7) and (8).

Selected systems are labeled along the upper z-axis. The corresponding
MARD values are: 19.97% (vdW-DF1), 55.64% (vdW-DF2), and 11.13% (new),

showing the drastic improvement of Cg

values. Explicit values for all Cs coefficients—also including other functionals for comparison—can be found in Table I in

Appendix C.

DF2. vdW-DF2-B86R provides accurate binding sep-
arations for layered and adsorption systems, molecular
dimers, and lattice constants of solids. Moreover, the
B86R exchange functional goes as s2/® in the large-s
limit, where s is the reduced gradient, which Murray et
al.*6 argued to be a suitable choice as it avoids spuri-
ous long-range binding effects in the exchange channel.
The cx13 exchange functional used in vdW-DF1-cx was
not employed because this functional was originally con-
structed for consistency with the internal exchange func-
tional of vdW-DF1.

III. RESULTS

The parameters in our new switching function have
been chosen to provide accurate Cg coefficients and a
low MARD for the S22 set. We first present here val-
ues for the Cg coeflicients of our new framework, fol-
lowed by a systematic test of the performance of our
new modification to ensure that the improved Cyg coeffi-
cients do not come to the detriment of worse performance
in other areas. As such, we consider a range of stan-
dard test systems—specifically, the S66 set of molecular
dimers relevant for biomolecular systems, the X40 set of

halogenated molecules, and 23 solids. However, more in
depth testing, also considering challenging extended sys-
tems such as molecular crystals and surface adsorption
would be necessary if we were to release our new formula-
tion as a general purpose functional-—but that is not the
intent and we merely want to show that the improved Cg
coeflicients come with reasonable performance in other
areas. To assess strengths and weaknesses of our mod-
ifications, we also applied a number of other commonly
employed van der Waals functionals to the same systems.
Details on our computational approach can be found in
Appendix A. See also Supplementary Information (SI) at
[URL will be inserted by publisher] for detailed results for
all the individual systems presented in this paper.*”

A. (s Coefficients

The improvement in Cg values are illustrated in Fig. 2,
with numerical data provided in Table I in Appendix C,
for a set of 34 systems compiled by Vydrov and Voorhis.??
Figure 2 shows that—while vdW-DF2 consistently un-
derestimates Cy coefficients by a factor of approximately
2—their trends are far more accurately described than
in vdW-DF1, which overestimates the Cg coefficients of
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FIG. 3. MARD of the binding energy for the S22 data set,
split into the characteristic hydrogen- and dispersion-bonded
systems and mixtures of these bonding types.

small molecules. This behavior is the reason for the
choice of the internal functional of vdW-DF2 for our
new formulation, allowing for a smaller MARD with a
common scaling factor (Ynew/Ysta)® that corrects the Cg
coefficients for a wide range. Overall, we find the ex-
pected improvement of the MARD value for Cy coeffi-
cients, which now drops to 11.13% for our new formula-
tion compared to 19.97% for vdW-DF1 and 55.64% for
vdW-DF2. This value is on par with the very best of
all functionals tested, i.e. 10.73% for rVV10 in Table I,
albeit the VV formalism has been derived either by relax-
ing some of the original constraints of vdW-DF or, in the
case of the widely employed VV10 functional,?* through
heuristic rationalization.

B. Molecular Dimers
1. The S22 Set

Figure 3 shows the MARD of the binding energies of
the S22 set of molecular dimers. More detailed data is
available in the Appendix in Table II. The fact that
vdW-DF1-0ptB88, rVV10, and our new development has
a MARD smaller than ~7% is a result of optimizing ei-
ther the exchange (in vdW-DF1-optB88) or correlation
(in r'VV10 and our new development) to this data set.
Because of this bias, we will not further analyze the re-
sults for the S22 data set.

2. The S66 Set

The S66 set of molecular dimers is larger and more
diverse than the S22, featuring several dimers in-
volving non-aromatic molecules and double-hydrogen
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FIG. 4. MARD of the binding energy for the S66 data set,
split into the characteristic hydrogen- and dispersion-bonded
systems and mixtures of these bonding types.

bonds. Moreover, reference binding separations are more
accurate.*®

Figure 4 shows the MARD of the binding energies of
the S66 set and Table III provides details on their statis-
tical properties. In addition, Fig. 5 depicts a violin plot
overlaid a box plot showing the distribution of deviations
in separation (upper panel) and energy (lower panel).
Overall, we find acceptable performance for binding en-
ergies for all functionals and one can see that all succes-
sor functionals indeed improve on the original vdW-DF'1
functional to varying degrees. The good performance of
our new formulation does carry over from the S22 data
set and we find a median and mean deviation very close
to zero. We note that all functionals have outliers, with
the binding energy of the neopentane dimer being over-
estimated for all but the vdW-DF2-B86R, which on the
other hand, tends to underestimate binding energies of
systems involving aromatic dimers. We also note that
the MARD of the S66 set is smaller than that of S22 for
all non-reference system optimized methods, i.e. vdW-
DF1, vdW-DF1-cx, vdW-DF2, and vdW-DF2-B86R, as
well as for our new modification, with a MARD of 4.62%
compared to 5.72% for S22. For the case of vdW-DF1-
optB8&8, the increased MARD for the S66 set compared
to S22 is due to a reduced accuracy for dispersion-bonded
systems; in particular the binding energies of dimers in-
volving pentane and neopentane, which are not in the S22
set, are significantly overestimated. The binding energies
of these dimers are also overestimated to a smaller extent
with rVV10, but the reduced accuracy is also due to over-
estimated binding energies of double-hydrogen bonded
dimers.

Looking at the upper panel of Fig. 5, we find that vdW-
DF1-0ptB88 and rVV10 have the most accurate binding
separations; however, in essence all but vdW-DF1 and
vdW-DF1-cx show good separations, both of which also
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FIG. 5. Visualization (violin plot overlaid a box plot) of the
deviations from reference data of the different functionals for
the S66 data set. The upper panel gives deviations in separa-
tions and the lower panel shows the relative deviation of the
binding energy. The violin plots (transparent color) repre-
sent the data distribution and are based on a Gaussian kernel
density estimation using the Scott’s rule?® as implemented
in MATPLOTLIB. In the box plot, the boxes hold 50% of the
data, with equal number of data points above and below the
median deviation (full black line). The whiskers indicate the
range of data falling within 1.5xbox-length beyond the upper
and lower limits of the box. Outliers beyond this range are
indicated with circular makers and are identified in the SI.47
The diamonds mark the mean deviation.

show a significant spread. Overestimated separations are
a well-known shortcoming of vdW-DF1. The overesti-
mation of vdW-DF1-cx stems from dimers where at least
one molecule is an alkane. This result can be related to
the fact that this functional was not constructed to pro-
vide accurate performance for systems with large reduced
gradients s.4!

3. The X40 set

The X40 set is a set of noncovalently-bonded dimers
involving halogenated molecules. They span a wide vari-
ety of different bond characteristics, such as dispersion-
dominated Fy-methane binding, dipole-dipole bonds, and
hydrogen and halide bonds.*® Figure 6 shows a violin/box
plot for the X40 set, with statistical data for binding en-
ergies summarized in Table IV. The binding separations
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FIG. 6. Violin/box plots for deviations in separation and
binding energy for the X40 set, see caption of Fig. 5 for further
details.

exhibit similar trends as for S66, but with decreased de-
viations due to the generally shorter dimer separations.
Overall, we find that the binding energies of vdW-DF1-
optB88 and our new formulation have the best agreement
with the reference data. Like for the S66 data set, our
new method follows the same trends as vd W-DF2-B86R
but avoids the net underestimation of binding energies
exhibited by vdW-DF2-B86R. In general, the binding
energy MARD is larger for the X40 set than the S66.
The rVV10 functional has the largest increase in MARD
when going from the S66 to X40, from 6.19% to 15.0%.
In contrast, our new modification merely increases from
4.62% to 7.06%.

C. Solids

The original vdW-DF1 and its successor vdW-DF2
both overestimated lattice constants of solids. How-
ever, combining vdW-DF correlation with soft exchange
functionals with a small “PBEsol”’-type enhancement
factor,*0°! ie. with a Taylor expansion of the form
F.(s) = UPBEsolS® + ... , significantly improves solid
lattice constants2?:33:40:41,62:53 and in fact, can also im-
prove atomization energies compared to the generalized-
gradient approximation.?9:33

Figure 7 shows results of our performance testing for
the same set of 23 solids as considered by Klimes et al.,?3
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FIG. 7. Violin/box plots for deviations in lattice constants a
and atomization energies of a set of 23 solids, see Table S7
and S8 for further numerical details and see caption of Fig. 5
for a description of violin and box plots.

with further numerical data provided in Table V and
Tables S7 and S8 in the SI.*7 The reference data are
based on zero-point corrected experimental lattice con-
stants and atomization energies, as detailed in Ref. [33]
and references therein. All the functionals with soft ex-
change, i.e vdW-DF1-cx, vdW-DF2-B86R, and our new
modifications, give a mean absolute deviation (MAD) for
the separations of less than 0.06 A, whereas vdW-DF2
is the least accurate. All functionals, except vdW-DF1
and vdW-DF2, also have an atomization energy MARD
smaller than 5% and our new modification and rVV10
have mean and median deviations close to zero. Fur-
thermore, as expected, our modification gives lattice con-
stants that are similar to those of vd W-DF2-B86R, which
employs the same exchange functional; atomization en-
ergies are also similar but our new formulation shows
slightly improved values on average.

IV. DISCUSSION

Our study highlights the importance of the specific
form of the wave-vector dependence in wq through its
switching function h(y). In doing so we open the door
for developments around this so far unexplored degree of
freedom within powerful physical constraints. Exploiting
this freedom trough a judicious choice of the switching

function h(y), we have demonstrated how accurate Cg
coefficients are fully compatible with the constraints of
the original van der Waals density functional, which has
been a major criticism of vdW-DF in general and vdW-
DF2 in particular. At the same time, we exploited the
fact that vdW-DF?2 predicts trends in the Cg coefficients
more accurately than vdW-DF1.

We do not expect the improvement of Cy coefficients
to carry over to large nanostructures where local-field
effects can be important, such as fullerenes,* 5% which
would require higher-order terms in S within vdW-DF.
However, at binding separations such higher-order terms
are generally less crucial, at least within vdW-DF,30:57
as multipole effects are described to second order in S.
Moreover, vdW-DF' includes non-additive effects origi-
nating from changes in the electronic density.®®

Drawing attention to the possibility of adjusting h(y)
within vdW-DF introduces a measure of flexibility that
so far has been missing in standard vdW-DF. In fact,
since the release of vdW-DF1 in 2004,'* a number of
exchange functionals have been proposed that aim both
to improve binding energies and remedy the notorious
overestimation of binding separations present in vdW-
DF1 and to some extent in vdW-DF2. This practice has
recently been criticized®® as the large exchange term is
fitted to match the smaller non-local correlation term;
colloquially, the “tail wags the dog”. Two extreme
cases of such a practice are: (i) the Bayesian-error-
estimation-vdW functional (BEEF-vdW),% in which ma-
chine learning was used to determine a semi-local ex-
change functional for the vdW-DF2 non-local correlation
employing diverse training sets and (ii) the vdW-DF1-
cx functional,*! in which the exchange was designed to
be formally as consistent with the vdW-DF1 non-local
correlation as feasible. Because of its flexibility, VV10
(or r'VV10) has seen many adaptions both to different
semi-local XC functionals and to different benchmark
sets.59:61°64 The vdW-DF flexibility is more limited than
that of VV10 both because of the constraints inherit to
the method and the fact that the exchange functional
must still be a good match with the semi-local correlation
description of vdW-DF, which gives a strong preference
for “soft” exchange functionals.*0:5!

In our new formulation we optimized the parameters
of the proposed hpew(y) not only to improve the Cg co-
efficients but also to improve the binding energies of the
S22 set of molecular dimers. This improvement carries
over to accurate molecular binding properties of the S66
set and the X40 set. With the choice of B86R, our new
formulation also provides accurate lattice constants for
solids. While the performance on molecular dimers is en-
couraging, we emphasize that our new proposed switch-
ing function is not necessarily the very best choice for a
versatile performance for different classes of systems as
our focus was on improving Cg coefficients and the S22
set of molecular dimers was used to adjust the plasmon
model. As a simple test on different classes of systems,
we also studied adsorption of small molecules in metal



organic frameworks and on surfaces. In particular, for
CO4 adsorption in MOF-74 our binding energy shows a
20% overestimation of experiment compared to DF1: 8%,
DF1-0ptB88: 26%, DF1-cx: 14%, DF2: 6%, DF2-B86R:
4%, and rVV10: 16%. For the case of benzene on the
Au(111) surface, we also find a significant overestima-
tion of binding energy of 22%, compared to DF1: —20%,
DF1-optb88: 10%, DF1-cx: 9%, DF2: —23%, DF2-b86R:
—7%, and rVV10: 15%. Although these are challenging
systems, these tests indicate that there is still room for
improvement of our new formulation. We thus fully ex-
pect that new and potentially better forms of h(y) with
significant performance increase over a wide array of sys-
tems will be developed by us or others in the near future
and enjoy widespread usage. For this reason, we do not
give our modified formulation a new name or number
within the lineup of vdW-DF1 and vdW-DF2 function-
als.

V. SUMMARY

We present a reformulation of the plasmon model that
underpins the popular vdW-DF exchange-correlation
functional. Our reformulation is entirely within the
constraint-based framework of the original vdW-DF and
thus inherits its good transferability. Our formulation
takes advantage of some freedom concerning the choice
of a switching function that connects two constrained
limits. We use this additional freedom to correct a long-
standing criticism of vdW-DF, i.e. the often wrong Cg
coefficients that derive from it. Our work thus proves
that this formal shortcoming is not an inherent flaw of
the vdW-DF formalism, but merely the byproduct of a
particular choice in its parameterization. We test our up-
dated formalism and find the expected improvement in
the Cg coefficients, but we also find good overall perfor-
mance with regards to binding energies and separations
for a range of systems. While we have used this previ-
ously unexplored degree of freedom to improve the Cg
coefficients, we see the main importance of our work in
that this freedom may also be used for further concep-
tual developments of vdW-DF and improvements of other
properties.
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Appendix A: Computational Details

Our new vdW-DF formulation has been implemented
in—and all our calculations have been performed with—
the QUANTUM ESPRESSO package.®® The Cg coefficients
were calculated directly from Egs. (7) and (8). For all
our calculations, we have used the PBE GBRYV ultrasoft
pseudo potentials due to their excellent transferability.%6
However, that database did not include potentials for
He, Ne, Ar, and Kr; for those elements we used the stan-
dard PBE RRKJ ultrasoft potentials provided by QUAN-
TUM ESPRESSO. In all calculations the wave function and
density cutoff were ~ 680 eV (50 Ryd) and ~ 8200 eV
(600 Ryd), respectively. We used an energy convergence
criterion of ~ 1.36 x 107° eV (1 x 107% Ryd) for molec-
ular systems and ~ 1.36 x 1077 eV (1 x 10~% Ryd)
for solids. For metals and semiconductors a Gaus-
sian smearing was used with a broadening of ~ 0.1 eV
(0.00735 Ryd). Lattice parameters and cohesive ener-
gies of solids were determined from the Birch-Murnaghan
equation of state.5”:%% For comparison and to assess the
performance of our new formulation, we performed cal-
culations with the following exchange-correlation func-
tionals: vdW-DF (also called vdW-DF1 here),'* vdW-
DF1-optB88,3? vdW-DF1-cx,*t vdW-DF2,2° vdW-DF2-
B86R,3* and rVV10.2459 The corresponding short names
we may use in tables and figures are DF1, DF1-optB8S,
DF1-cx, DF2, DF2-B86R, and rVV10, respectively.

For the various molecular dimer data sets (S22,
S66,8 X40°%) calculations were performed at the I'-point
with molecules in a box surrounded by at least 15 A
of vacuum to minimize spurious interactions with peri-
odic replica. To test the performance of a given func-
tional on a given data set, we followed commonly ac-
cepted procedures for those data sets. In particular, the
monomers were considered frozen and a fixed number
of geometries—representing different separations—were
generated by moving one monomer along an axis speci-
fied through the optimal structure provided by that data
set. For the S22 data set, a center-of-mass axis was used
as suggested by Molner et al.;"! for the S66 and X40 data
sets an “interaction coordinate” was used as suggested in
the corresponding original works.*8-°0 Single point calcu-
lations were then performed on those geometries to gen-
erate binding energy curves, from which we extracted the
binding energy minima and binding separations through
fitting to a Lagrange polynomial near the minimum.

We have considered 23 solids, semiconductors, and
ionic salts as listed in Klimes et al.3? Periodic solids have
been calculated with a k-point mesh of 15 x 15 x 15 for
cubic systems and 10 x 10 x 10 for hexagonal/tetragonal
systems. To calculate the atomization energies, individ-
ual atoms have been calculated in a box with at least
15 A of vacuum.
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Appendix B: The Internal Functional e,

In vdW-DF1'4 the internal functional is given by the
LDA XC energy with Langreth-Vosko exchange gradient
corrections for a slowly varying electron gas,”? whereas in
vdW-DF2% gradient corrections are given by the large-
N asymptote of neutral atoms.”™ In both cases, it takes

the form
em(r) = P () + PA () [1 = (Zan/9)s(x)?],  (B1)

with Zg, = —0.8491 in vdW-DF1 and —1.8867 in vdW-
DF2. For our modification, we employ the same large-N
limit for the internal functional as vdW-DF2 because in
our construction it results in more accurate Cg coeffi-
cients than the internal functional of vdW-DF1.
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TABLE 1. Cs coefficients [Hartree atomic units] for a set of 34 closed-shell atoms and small molecules compiled by Vydrov
and Voorhis.?® The Cs coefficients are calculated from Egs. (7) and (8). For each data set we give the mean deviation (MD),
mean absolute deviation (MAD), mean relative deviation (MRD), and mean absolute relative deviation (MARD). The first
three data sets (vdW-DF1, vdW-DF1-optb88, vdW-DF1-cx) all share the same non-local vdW-DF1 kernel and only differ in
their choice of exchange—thus their results are very close to each other and the small differences are a measure of the effect
of exchange on the Cs coefficients. Similarly, the next two data sets (vdW-DF2 and vdW-DF2-B86R) both use the vdW-DF2

kernel (with different exchange) and produce very comparable results.

vdW-DF1  vdW-DF1-optB88  vdW-DFl-cx vdW-DF2 vdW-DF2-B86R  rVV10 new Ref.
He 2.98 2.94 3.09 0.76 0.78 1.45 1.82 1.46
Ne 10.96 10.35 10.85 3.92 3.50 8.44 8.13 6.35
Ar 77.63 74.94 75.99 30.38 29.16 70.08 67.81  64.42
Kr 132.9 128.1 128.7 54.97 51.92 131.2 120.8  130.1
Be 304.6 296.7 310.3 106.4 108.9 186.0 253.1 214
Mg 723.0 671.5 727.6 246.9 243.9 425.0 568.0 627
Zn 271.6 244.3 256.3 79.23 78.66 163.0 183.3 284
Ho 19.07 18.87 20.07 5.59 5.81 10.28 13.49  12.09
N, 91.92 89.32 91.02 37.48 36.16 88.70 84.07  73.43
Cly 335.9 325.8 325.1 154.1 146.6 366.7 341.0 389.2
HF 27.99 27.00 27.80 9.59 9.28 21.13 21.59  19.00
HCI 133.6 129.8 131.4 54.88 53.19 124.6 123.7  130.4
HBr 218.4 209.9 212.5 91.89 85.78 200.2 199.6  216.6
CO 100.3 97.71 99.69 40.24 39.32 93.51 91.42  81.40
CO2 143.1 139.6 141.0 62.52 60.39 159.4 140.4  158.7
CS2 661.8 643.7 645.0 310.9 299.7 739.4 697.1  871.1
0CSs 356.0 346.6 348.2 163.0 157.2 395.6 365.5  402.2
N20 155.7 151.4 153.1 66.93 64.86 172.4 150.8  184.9
CH,4 138.5 136.5 141.1 56.11 56.98 129.6 132.4  129.6
CCly 1644 1600 1592 828.7 792.8 2044 1844 2024
NH; 107.6 103.8 108.1 39.99 39.22 82.78 91.19  89.03
H>0O 59.24 57.08 58.94 21.21 20.52 44.95 47.72  45.29
SiHy4 379.2 374.6 388.5 162.2 165.7 344.6 385.0 343.9
SiF4 416.2 404.7 408.1 187.0 182.1 455.8 423.5  330.2
H»S 217.7 211.9 215.8 90.59 89.21 200.3 2074  216.8
SO, 274.8 266.5 268.5 123.5 118.5 305.2 275.6  294.0
SF¢ 655.3 634.9 635.3 319.5 307.9 869.9 716.3  585.8
CoHo 224.6 218.5 223.3 94.02 92.22 210.3 2144 204.1
CoHy 297.4 291.0 298.1 127.4 127.0 297.3 295.1  300.2
C2Hs 367.4 362.3 372.0 162.1 163.9 396.6 380.9  381.8
CH3OH 225.5 220.7 226.3 94.96 94.50 226.1 219.7  222.0
CH30OCH3 513.3 505.1 518.4 228.5 229.6 567.9 533.7  534.0
CsHg 534.9 527.6 538.6 250.6 251.6 632.6 584.8  630.8
CeHs 1411 1385 1403 701.5 694.0 1838 1614 1723
MD —20.23 —29.80 —24.05 —203.3 —206.5 2.42  —15.41 —
MAD 51.06 52.87 53.92 203.3 206.5 36.20 38.11 —
MRD [%)] 11.36 8.02 10.91 —55.64 —56.58 1.24 0.97 —
MARD [%)] 19.97 19.10 20.72 55.64 56.58 10.73 11.13 —
36 Private communications. 39 D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884
7 0. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1977).
(1976). 40 K. Berland, C. A. Arter, V. R. Cooper, K. Lee,
38 D. C. Langreth and J. P. Perdew, Solid State Commun. B. I. Lundqvist, E. Schréoder, T. Thonhauser, and

17, 1425 (1975). P. Hyldgaard, J. Chem. Phys. 140, 18A539 (2014).
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TABLE II. Statistical analysis of the performance of various van der Waals functionals for the binding energies of the S22 set,
see Table S1 and S2 for details.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVV10 new

Hydrogen-bonded

MD [meV] 103 14.7 34.9 58.0 25.1 —214 14.9
MAD [meV] 103 15.7 34.9 58.0 25.1 21.4 15.9
MRD [%] —-17.2 —-3.75 —7.67 —8.50 —4.72 4.50 —-3.30
MARD [%)] 17.2 3.88 7.67 8.50 4.72 4.50 3.43
Dispersion-bonded
MD [meV] 3.98 —20.4 3.95 8.17 20.5 2.98 —9.76
MAD [meV] 15.8 224 10.9 13.0 20.5 7.28 12.7
MRD [%] 9.26 9.95 3.82 2.88 —-11.9 —1.54 3.43
MARD [%)] 13.5 13.0 9.66 8.26 11.9 4.73 7.98
Mized
MD [meV] 22.2 4.74 16.4 21.1 23.3 6.53 10.4
MAD [meV] 23.0 6.70 16.5 21.9 23.3 8.29 10.4
MRD [%] —10.2 —1.88 —8.16 —-10.4 —13.2 —2.63 —5.40
MARD [%)] 11.4 3.89 8.24 11.7 13.2 5.31 5.42
Full set
MD [meV] 414 —-1.24 17.8 28.2 22.9 —3.64 4.49
MAD [meV] 46.0 15.3 20.3 30.2 22.9 12.1 13.0
MRD [%] —5.35 1.83 —3.65 —4.97 —10.0 0.04 —1.52
MARD [%)] 14.0 7.19 8.58 9.42 10.0 4.84 5.72

TABLE III. Statistical analysis of the performance of various van der Waals functionals for the binding energies of the S66 set,
see Table S3 and S4 for details.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rvVV10 new

Hydrogen-bonded

MD [meV] 51.4 —1.47 14.6 19.9 6.92 —25.0 —0.45

MAD [meV] 51.4 8.50 17.4 20.6 13.1 25.0 9.11

MRD [%] —12.4 0.39 —4.34 —3.81 —2.00 7.06 0.10

MARD [%)] 12.4 2.58 5.22 4.25 3.85 7.06 2.69
Dispersion-bonded

MD [meV] —6.46 —20.9 2.02 —1.38 19.0 —2.50 —7.66

MAD [meV] 13.0 20.9 7.71 10.6 19.0 7.84 8.06

MRD [%] 8.11 15.6 0.77 4.22 —11.7 4.08 6.13

MARD [%)] 10.4 15.6 5.12 7.82 11.7 6.21 6.39
Mized

MD [meV] 13.7 —0.83 13.1 11.8 19.3 0.98 6.08

MAD [meV] 16.3 6.24 13.5 14.0 19.3 7.87 7.54

MRD [%] —7.70 0.63 —8.10 —6.70 —-12.3 —0.46 —-3.79

MARD [%)] 9.83 4.15 8.49 8.60 12.3 5.15 4.80
Full set

MD [meV] 19.8 —8.05 9.75 10.0 14.9 -9.29 —0.99

MAD [meV] 27.4 12.1 12.9 15.1 17.0 13.8 8.27

MRD [%] —-3.83 5.78 —3.71 —1.90 —8.51 3.74 1.02

MARD [%)] 10.9 7.61 6.18 6.81 9.16 6.19 4.62
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TABLE IV. Statistical analysis of the performance of various van der Waals functionals for the binding energies of the X40 set,
see Table S5 and S6 for details.

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rVVi1o new
MD [meV] 13.5 —6.74 2.41 2.47 3.99 —-18.1 —4.53
MAD [meV] 19.9 10.4 14.1 9.86 11.9 19.2 9.46
MRD [%] —0.12 3.93 —0.95 5.11 —5.93 13.4 1.86
MARD [%)] 15.6 7.79 12.4 10.2 9.90 15.0 7.06

TABLE V. Statistical analysis of the performance of various van der Waals functionals for the lattice constants and atomization
energies of a set of 23 solids assembled by Klimes et al.33

vdW-DF1 vdW-DF1-optB88 vdW-DF1-cx vdW-DF2 vdW-DF2-B86R rvVv10 new

Lattice constants

MD [A] 0.09 0.01 0.01 0.09 0.01 0.02 0.002

MAD [A] 0.10 0.07 0.06 0.12 0.06 0.09 0.06

MRD [%] 2.01 0.29 0.35 1.99 0.28 0.49 0.12

MARD [%)] 2.12 1.43 1.13 2.71 1.14 1.77 1.15
Atomization energies

MD [eV] —0.32 —0.04 0.12 —0.45 —0.01 0.02 0.04

MAD [eV] 0.32 0.10 0.16 0.47 0.10 0.08 0.11

MRD [%] —10.3 —2.81 2.82 —15.8 —2.33 0.93 —0.52

MARD [%)] 10.3 4.31 4.87 16.2 4.35 2.99 4.08
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