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We study tunable polaritons in monolayers of silicene, germanene, and stanene (Xenes) via an
external electric field in an open optical microcavity whose length can be adjusted. An external
electric field applied perpendicular to the plane of the Xene monolayer simultaneously changes the
band gap and the exciton binding energy, while the variable length of the open microcavity allows
one to keep the exciton and cavity photon modes in resonance. First, the Schrödinger equation for
an electron and hole in an Xene monolayer is solved, yielding the eigenergies and eigenfunctions of
the exciton as a function of the external electric field. The dependence of the polaritonic properties,
such as the Rabi splitting, on the external electric field and on the cavity length, is analyzed.
The Berezinskii-Kosterlitz-Thouless (BKT) transition temperature of polaritons is calculated as a
function of the external electric field. We analyze and present the conditions for a room-temperature
superfluid of lower polaritons by simultaneously maximizing the Rabi splitting and BKT transition
temperature.

I. INTRODUCTION

Due to their dual nature as both matter and light, exciton-polaritons (hereafter: polaritons) exhibit a fascinating
combination of light and matter properties, and they are therefore the ideal medium for studying a wide variety
of quantum phenomena. For example, polaritons inherit their extremely small effective mass, ≈ 104 m0, from the
effective mass of spatially confined photons1, which significantly increases the superfluid critical temperature. It is
also straightforward to experimentally detect and characterize polaritons since they couple directly to out-of-cavity
photons with the same energy and in-plane wavevector1. Meanwhile, the excitonic character of polaritons leads to
polariton-polariton interactions which allows polaritons to thermalize, enabling the formation of quantum degenerate
phases such as Bose-Einstein condensates (BEC)2. In addition, the photonic component enhances the phase-coherence
of the spatial wavefunction of the polariton, which makes it robust against crystal defects which are usually fatal
to the formation of a BEC of, for example, excitons3. In order to leverage these unique properties, polaritonic
devices have been proposed for a wide variety of applications, from vertical-cavity surface-emitting lasers4–7, to
optical circuits8–11 and spin optical memory devices12–17. It can be seen, then, that polaritons are not just a
physical curiosity but represent a very real path towards the development of next-generation optoelectronic devices.
Comprehensive reviews of recent progress in polaritonic devices can be found in Refs. 18,19.

Amongst the most-sought-after phenomena in polaritonic devices is room-temperature superfluidity via the forma-
tion of a Bose-Einstein condensate of polaritons. In two-dimensional systems, the transition to the superfluid phase
is characterized by the formation of bound vortex-anti vortex pairs, first described in the early 1970s by Berezin-
skii20,21 and Kosterlitz and Thouless22,23. The Berezinskii-Kosterlitz-Thouless (BKT) phase transition model has
been successfully used to describe the superfluid behavior of dilute, weakly interacting 2D Bose gases of excitons
in semiconductor quantum wells (QWs)24–30, gapped graphene31, transition metal dichalcogenides (TMDCs)32–35,
and phosphorene36, as well as polaritons in QWs30,37–41 and gapped graphene42–44. The first experimental evi-
dence of a non-equilibrium polariton condensate was reported in Ref. 45, where the authors indirectly observed
evidence of polariton condensation in GaAs/GaAlAs QWs at T = 4 K; subsequent claims of polariton condensates
followed46,47. Around the same time, theoretical works predicted that the BEC transition temperature was well
above room-temperature for GaN5- and ZnO48-based microcavities. The first conclusive observation of polaritonic
BEC was given in Ref. 49 in a CdTe multiple QW structure in an optical microcavity at T = 19 K. Following this
result, room-temperature condensation of polaritons was observed in the case of polariton lasing in bulk GaN in a
microcavity6. Superfluidity of polaritons was observed in Ref. 50, albeit at T = 5 K and with a Rabi splitting of only
5.1 meV. Reviews of theoretical and experimental results on polariton condensation can be found in Refs. 1–3,51,52.

Since the advent of graphene, the atomically flat allotrope of carbon, in 200453, polaritonic research has begun to
shift towards 2D materials. Atomically thin semiconductors such as TMDCs have several clear advantages over quasi-
2D semiconductor QWs, namely their significantly enhanced exciton binding energies and extremely strong optical
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absorption by excitons when compared to semiconductor QWs54–58 (see e.g. Refs. 59–62 for reviews of the electronic
and optical properties of TMDCs). Indeed, TMDCs have already been shown to exhibit the strong-coupling regime at
room-temperature63,64, and have been identified as candidates for room-temperature polaritonic devices65 and room-
temperature superfluidity66. TMDC bilayers and heterostructures consisting of TMDC monolayers sandwiching
few-layer hexagonal boron nitride (h-BN) have also been identified as excellent candidates for high-temperature
superfluidity of indirect (spatially separated) excitons32,34,35

Another category of 2D semiconductors are the buckled 2D allotropes of silicon (Si), germanium (Ge), and tin
(Sn), known as silicene, germanene, and stanene, and collectively referred to as Xenes67 (for reviews of the properties
of buckled 2D materials, see Refs. 68–72). Like TMDCs, Xenes exhibit very large exciton binding energies, but Xenes
are unique amongst even the 2D materials because their buckled structure allows one to change the band gap using
an external electric field aligned perpendicular to the Xene monolayer73. By changing the band gap one also changes
the effective mass of electrons and holes74–76, and therefore one can tune the binding energy and optical properties
of excitons in Xenes using an electric field77.

In this paper, we study and examine the behavior and properties of polaritons in the freestanding (FS) Xenes,
that is, an Xene monolayer suspended in vacuum, as well as in silicene encapsulated by h-BN, embedded in an open,
variable-length microcavity. In particular, we consider two sets of parameters describing silicene encapsulated by
h-BN, based on an ab-initio study of silicene on an h-BN substrate78. In that study, it was found that the slight
mismatch in lattice parameters between h-BN and silicene leads to the formation of a variety of possible superlattices
depending on the relative angle between the two materials. Each superlattice pattern is characterized by slightly
different electronic properties in the supported silicene, primarily distinguished by the intrinsic band gap and the
Fermi velocity. Of the many superlattice arrangements studied in Ref. 78, we chose the combinations with the smallest
and largest Fermi velocities and intrinsic gaps, and refer to them as Type I and Type II silicene, respectively.

It is shown that Xenes are excellent candidates for extremely strong exciton-photon coupling and room-temperature
superfluidity. In addition, we demonstrate that the exceptional tunability of Xenes via an external electric field,
combined with the tunable nature of the open microcavity design, offers unprecedented control over the strength
of the exciton-photon coupling, Rabi splitting, and BKT superfluid critical temperature. First, we determine the
ground state properties of direct excitons formed in an Xene monolayer, namely the direct exciton binding energy, Eb,
and excitonic Bohr radius, aB , by solving the Schrödinger equation for an interacting electron and hole constrained
in the Xene monolayer plane, for which the interaction potential is the Rytova-Keldysh (RK) potential79,80. We
then obtain the properties of polaritons for an Xene monolayer embedded in a tunable-length open microcavity, in
particular, the dependence of the Rabi splitting on the external electric field when the cavity length is changed in
coincidence with the electric field so that the exciton and photon modes are kept in resonance. The theory of BEC
and superfluidity in a 2D Bose gas of polaritons is then presented, and we examine the dependence of the BKT
critical temperature on the external electric field for some fixed polariton concentration which is representative of a
typical experimental setup.

This paper is organized as follows. In Sec. II, we describe how an external electric field affects the band gap and
binding energy of direct excitons in Xene monolayers. In Sec. III, the properties of photons confined in an optical
microcavity are presented. The Rabi splitting of polaritons in an open optical microcavity is calculated in Sec. IV.
In Sec. V, the superfluid critical temperature of polaritons in an optical microcavity is calculated. The optimization
problem of simulatenously maximizing the Rabi splitting and BKT critical temperature is analyzed in detail in
Sec. VI. We analyze our results and discuss their implications towards ongoing research in polaritons in 2D crystals
and open microcavities in Sec. VII. Our conclusions follow in Sec. VIII.

II. 2D DIRECT EXCITONS IN AN XENE MONOLAYER IN AN EXTERNAL ELECTRIC FIELD

Xene monolayers have a hexagonal lattice structure where the two triangular sublattices are vertically offset with
respect to each other by a distance d0, known as the buckling constant74,75. If an electric field is applied perpendicular
to the plane of the monolayer, a potential difference between the offset sublattices is created76, which changes the
band gap, and therefore the effective charge carrier masses, in the Xene monolayer. In the absence of an external
electric field, the Xenes exhibit a prominent Dirac cone, though the Xenes have a small intrinsic gap (≈ 1.9 meV in
FS Si)81. The Hamiltonian of the band structure includes an additional term describing the dependence of the band
gap on the external electric field76,82–84. The Fermi energy is set to the midway point between the valence band
maximum (VBM) and the conduction band minimum (CBM), and the difference in energy between either the VBM
or CBM and the Fermi energy is given by73:

∆ξσ = |ξσ∆SO − ed0E⊥|, (1)
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where E⊥ is the perpendicular electric field, ξ = ±1 and σ = ±1 are the valley and spin indices, respectively, ∆SO

is half of the intrinsic band gap when E⊥ = 0, and e is the electron charge. Eq. (1) shows that the spin-up and
spin-down valence and conduction bands are degenerate when E⊥ = 0. In other words, spin-orbit splitting only
manifests itself at non-zero external electric fields. At non-zero electric fields, both the valence and conduction bands
split, into “upper” bands with a large gap, (when ξσ = −1), and “lower” bands with a small gap (when ξσ = 1). We
refer specifically to the large band gap as ∆−1 and to the small band gap as ∆1. When the external field reaches a
critical value Ec = ∆SO/(ed0), the “lower” bands form a Dirac cone at the K/K ′ points. For E⊥ ≥ Ec, both the
“upper” and “lower” bands move away from the Fermi energy, and the difference in energy between the upper and
lower conduction or valence bands is given by 2∆SO. This spin-orbit coupling gives rise to two types of excitons with
different effective masses – we refer to excitons formed from the “large” gap (ξσ = −1) as A excitons, and excitons
formed from the “small” gap (ξσ = 1) as B excitons.

In the vicinity of the K/K’ points, the conduction and valence bands are parabolic. Writing the dispersion relation

as E(k) =
√

∆2
ξσ + ~2v2

Fk
273, where vF is the Fermi velocity, and performing a Taylor expansion for small k, we can

identify the effective mass of charge carriers as m = ∆ξσ/v
2
F . Due to the symmetry of the conduction and valence

bands, the effective masses of electrons and holes are the same, mh = me = m, and can be written as:

m =
|ξσ∆SO − ed0E⊥|

v2
F

. (2)

Therefore, both the band gap (1) and effective carrier mass (2) depend the external electric field, demonstrating
that it is imperative that one also obtains accurate values for the quantities ∆SO, d0, and vF .

The eigenenergies and eigenfunctions of the exciton can be obtained by solving the 2D Schrödinger equation. We
treat the electron-hole interaction using the Rytova-Keldysh (RK) potential79,80, which has been widely used to
describe the screened electron-hole interaction in different 2D materials77,85,86. The RK potential is given by

VRK(r) =
πke2

2κρ0

[
H0

(
r

ρ0

)
− Y0

(
r

ρ0

)]
. (3)

In Eq. (3), r = re − rh is the electron-hole separation, k = 1/(4πε0), where ε0 = 8.85 × 10−12 C2/N·m2 is the
permittivity of free space, ρ0 = (lε) / (2κ) is the screening length, l is the thickness of the Xene monolayer, ε is the
static dielectric constant of the Xene monolayer, κ = (ε1 + ε2)/2, with ε1 and ε2 denoting the dielectric constants of
the materials above and below the Xene monolayer, and H0 and Y0 are the Struve and Bessel functions of the second
kind, respectively.

After separation of the center-of-mass and relative motion, the Schrödinger equation for the exciton reads:

[
−~2

2µ
∇2 + VRK (r)

]
ψ (r) = Eψ (r) , (4)

where µ = (memh)/(me +mh) = m/2 is the reduced mass of the exciton.
A detailed study of the field-dependent excitonic properties in Xene monolayers and Xene/h-BN heterostructures

based on the solution of Eq. (4) was performed in Ref. 77. Notably, these calculations demonstrated that the
freestanding Xenes exhibit a phase transition from the excitonic insulator phase to the semiconductor phase as the
electric field is increased beyond some critical value E⊥,c, which was addressed in more detail in Ref. 87. Therefore,
we will only consider the formation of polaritons in the freestanding Xenes for E⊥ > E⊥,c. Let us also mention here
that while both ∆ξσ and m depend linearly on the electric field, this should not be taken to imply that the external
electric field can be increased without limit while the aforementioned quantities behave as described in Eqs. (1)
and (2). On the other hand, the upper limit of E⊥ = 2.7 V/Å considered in this work is based on an ab-initio
study76 which found that the crystal structure of silicene began to dissociate for electric fields greater than the upper
limit we consider here. Therefore, in the FS Xenes, we consider the electric field in the range E⊥ ∈ [E⊥,c, 2.7 V/Å],

while for silicene encapsulated by h-BN we consider E⊥ ∈ [0, 2.7] V/Å.

III. MICROCAVITY PROPERTIES AND PARAMETERS

We consider a microcavity containing an Xene monolayer placed on top of a DBR mirror. The opposite end of
the cavity comprises a movable stage which enables adjustment of the cavity length, Lc. Throughout the following
calculations we consider that the cavity length is changed in coincidence with the electric field E⊥ such that the
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excitonic and photonic modes remain in resonance. The cavity length determines the allowed resonant photon modes,
Eph, and the energy of these modes is related to Lc as:

Eph =
~πc

Lc
√
εcav

. (5)

The mirror placed on the movable stage can be either another DBR63,88,89, or a metallic mirror64. A crucial
difference between the choice of a DBR or metallic mirror is that a DBR introduces additional photonic path length
since reflection from a DBR involves the photon penetrating some distance into the DBR. For each DBR, the
additional photonic path length is given by88,90–92:

LDBR =
λc

2
√
εcav

n1n2

(n2 − n1)
=

hc

2Eph
√
εcav

n1n2

(n2 − n1)
, (6)

where n1 and n2 are the refractive indices of the dielectrics composing the DBR, and λc is the central wavelength
of the DBR, at which the mirror is maximally reflective. Therefore, the effective photonic path length of the
microcavity can be written Leff = Lc + LDBR for the case of a microcavity with one DBR and one silver mirror,
and Leff = Lc + 2LDBR if the microcavity consists of 2 identical DBR mirrors. Assuming a typical DBR consisting
of alternating layers of SiO2 (n1 = 1.45) and TiO2 (n2 = 2.05)64, where λc corresponds to the Eph given by a
particular Lc, we find that LDBR is greater than Lc by nearly a factor of 4, so the choice between a 2 DBR and 1
DBR microcavity configuration significantly changes the value of Leff .

In an optical microcavity, the rate of photon leakage from the microcavity can be considered a type of damping
in the system, and the contribution to the photonic damping due to the leakage from a single mirror, γ

′

ph, is given

by64:

γ
′

ph =
1−
√
R√

R

c
√
εcav(2Leff )

, (7)

where R is the reflectivity of the mirror, and the second fraction represents the time it takes for the photon to travel
back and forth across the cavity once. Therefore, the decay rate of photons from the cavity is given by the sum of
the photonic decay rate from each mirror:

γ
(2 DBR)
ph =

1−
√
R1√

R1

c
√
εcavLeff

, (8)

γ
(1 DBR)
ph =

[
1

2

(
1−
√
R1√

R1

+
1−
√
R2√

R2

)]
c

√
εcavLeff

=
1−

√
Reff√

Reff

c
√
εcavLeff

, (9)

for each microcavity configuration considered in this work. In Eq. (9), R1 is the reflectivity of the DBR, R2 is the
reflectivity of the metallic mirror, and Reff = (4R1R2)/(

√
R1 +

√
R2)2 is the effective reflectivity of a microcavity

with two non-identical mirrors.
In this work we consider two open (εcav = 1) microcavity configurations, one consisting of two DBRs and one with

one DBR and one silver mirror. The microcavity is characterized by the following parameters: a DBR consisting of
SiO2/TiO2

64 with refractive indices n1 = 1.45 and n2 = 2.05, respectively, and reflectivity R1 = 0.98590,93; the silver
mirror has a reflectivity R2 = 0.9564.

We calculated the dependence of the A exciton transition energy, Eex,A, on the external electric field E⊥, for each
of the 5 materials under consideration, and present our results in Fig. 1. Also shown along the right side of the frame
is the cavity length Lc which yields a photon energy in resonance with the excitonic transition energy, Eph = Eex.
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FIG. 1: Spectrum of A exciton transition energy, Eex,A = (2∆−1 −Eb,A), at k = 0 as a function of the electric field E⊥. The
right hand side of the frame shows the correspondence between the exciton energy Eex and the cavity length Lc necessary to
keep Eph = Eex.

IV. POLARITONS IN AN OPTICAL MICROCAVITY

The Hamiltonian of the exciton-photon interaction is given by94:

Ĥ0 =
∑
k

Eex(k)b̂†kb̂k +
∑
k

Eph(k)â†kâk + ~V
∑
k

(
â†kb̂k + b̂†kâk

)
+

1

2A

∑
k,k′,q

Uqb̂
†
k′+qb̂

†
k−qb̂kb̂k′ , (10)

where âk (â†k) and b̂k (b̂†k) are the photonic and excitonic Bose annihilation (creation) operators, respectively.
The first term in Eq. (10) is the Hamiltonian of non-interacting excitons, where

Eex(k) = Eex +
~2k2

2Mex
(11)

is the dispersion relation of a single exciton in the Xene monolayer with in-plane momentum k, and Mex = 2m is
the total mass of the exciton.

The second term in Eq. (10) is the Hamiltonian of non-interacting photons confined in a semiconductor microcav-
ity95, where

Eph(k) =
~c
√
εcav

√
π2

L2
c

+ k2 (12)

is the dispersion relation of the photon44. Assuming k is small, Eq. (12) can be expanded to obtain3

Eph (k) ≈ Eph +
~2k2

2mph
, (13)

where mph = (Ephεcav) /
(
c2
)

is the effective mass of the photon due to confinement within the cavity.

The third term in Eq. (10) is the Hamiltonian of harmonic exciton-photon coupling96, where V is the exciton-photon
coupling constant. The functional form of V depends on the system in question, but following Refs. 63,66,90,97, the
exciton-photon coupling constant in this system can be written as:

V =

[
NX

1 +
√
R√

R

4πke2v2
F

EexLeff
√
εcavκ

|ψ(0)|2
]1/2

, (14)

where NX is the number of Xene monolayers in the microcavity, R is the reflectivity of the mirrors, Leff is the
effective cavity length, ψ(0) is the value of the exciton relative motion wavefunction evaluated at r = 0, and the
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expressions for R and Leff are determined by the choice of either the 1 DBR or 2 DBR microcavity setup. A brief
summary of how Eq. (14) is obtained is given in Appendix B.

The fourth term in Eq. (10) describes the repulsive exciton-exciton interaction potential. As a first step, we neglect
this term while considering the formation of polaritons in the microcavity.

The eigenenergies of Eq. (10) can be obtained by diagonalizing the Hamiltonian using a well-established procedure98

(see Appendix A). To properly account for excitonic and photonic damping, which originate from the finite linewidth
of the excitonic transition and the leakage rate of photons from the mirrors, we write Eex and Eph as explicity
complex, that is, Eex → Eex − i~γex and Eph → Eph − i~γph. Then the complex upper/lower polariton eigenergies
are given by3,12

EUP/LP(k) =
Eph(k) + Eex(k)− i~ (γex + γph)

2
±
√

~2V 2 +
1

4
[∆E (k) + i~ (γex − γph)]

2
, (15)

where ∆E(k) = Eph (k)−Eex (k) is the so-called detuning between the bare exciton and photon modes. The real and
imaginary parts of the complex eigenenergies of Eq. (15) correspond to the eigenenergies, EUP and ELP, and decay
rates, γUP and γLP, of upper and lower polaritons, respectively. The polariton decay rates can also be calculated
directly as3,

γLP(k) = |Xk|2γex + |Ck|2γph
γUP(k) = |Ck|2γex + |Xk|2γph, (16)

where |Xk| and |Ck| are the Hopfield coefficients of Eq. (A2), but it turns out that calculating γUP/LP (k) using
Eq. (16) yields exactly the same result as taking the imaginary part of Eq. (15). Interestingly enough, one can obtain
the eigenmodes of the upper and lower polariton branches while explicitly accounting for excitonic and photonic
damping by writing the coupled damped oscillator equation12,

~2V 2 = (Eex − E − i~γex) (Eph − E − i~γph) , (17)

where the two solutions of E correspond exactly to the expressions given in Eq. (15).
According to Eq. (15), the observable difference between the upper and lower polariton eigenergies at k = 0, known

as the Rabi splitting, is given by:

~ΩR = EUP − ELP = 2

√
~2V 2 +

1

4
[∆E + i~ (γex − γph)]

2
. (18)

Let us focus on the case of zero detuning, ∆E = 0. Then Eq. (18) reduces to:

~ΩR = 2~

√
V 2 −

(
γex − γph

2

)2

. (19)

Now, if the exciton-photon coupling constant V > |γex − γph|/2, the system is said to be in the strong-coupling
regime, where the UP/LP eigenenergies differ from the bare exciton and photon energies, and therefore the Rabi
splitting, ~ΩR, is positive and real. If instead V < |γex − γph|/2, the system is in the weak-coupling regime, where
EUP and ELP correspond to the exciton and photon energies, and the quantity ~ΩR is imaginary. If γex and γph
are much smaller than V , the Rabi splitting can be approximated by ~ΩR ≈ 2~V . By calcuating ~Ω0

R ≡ 2~V and
comparing it to ~ΩR, we can compare the strength of the exciton-photon interaction to the splitting between the
upper and lower polariton eigenmodes, and in the process gain insight into the effect of the excitonic and photonic
damping on the formation and properties of polaritons.

Before presenting calculations of ~Ω0
R and ~ΩR, let us discuss the choice of γex to be used in our calculations.

Experimental studies of the excitonic properties in the FS Xenes are non-existent, and the sensitivity of the material
parameters of silicene to the choice of substrate further complicates the generalization of experimental data for
Silicene between substrates. On the other hand, the excitonic and optical properties of the TMDCs have been
extensively studied for nearly a decade54, and TMDCs have been studied experimentally in optical microcavities for
the past 5 years63,88,99,100. The linewidth of the excitonic transition in the TMDCs has been observed to be roughly
11 meV at cryogenic temperatures63 and appoximately 30 meV at room-temperature64,65,89,99. Since we consider
the polaritonic properties at room-temperature in this work, we assume γex = (30 meV)/~ ≈ 5 × 1013 s−1 as an
upper limit of γex to be used in calculations for both the FS Xenes and Type I/II Si. However, it is well documented
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FIG. 2: Dependence of the exciton-photon coupling constant, ~Ω0
R, on the external electric field, E⊥, in each of the five

materials, for A excitons, in (a) a 2 DBR microcavity, and (b) a 1 DBR microcavity. Dependence of the Rabi splitting with
excitonic and photonic damping, ~ΩR, for A excitons, in (c) a 2 DBR microcavity, and (d) a 1 DBR microcavity.

that encapsulating TMDCs with h-BN strongly suppresses the excitonic linewidth, such that cryogenic linewidths
are observed even at room temperature101–103. Therefore, we also consider a lower limit of γex = 1013 s−1 for Type
I/II Si.

Comparisons of ~Ω0
R and ~ΩR across all five materials in both 2 DBR and 1 DBR microcavity designs are presented

in Fig. 2. Fig. 2(a) shows the quantity ~Ω0
R for A excitons in each of the five materials in a 2 DBR microcavity, while

Fig. 2(b) shows the same quantity for a 1 DBR setup. Analysis of these results shows that the choice of microcavity
configuration has a significant effect on the strength of the exciton-photon coupling constant V . Since LDBR ≈ 4Lc,

the extra factor of LDBR added to Leff in the 2 DBR configuration nearly doubles Leff , and since V ∝ L
−1/2
eff , we

find that V (1 DBR) ≈ 1.35× V (2 DBR) for all materials and at all electric fields. The factor of
√
κ in the denominator

of V also significantly reduces V in encapsulated Si (κ = εh-BN = 4.89), compared to the FS Xenes (κ = 1).
The large excitonic line broadening γex = 5× 1013 s−1 and choice of Leff significantly affects the Rabi splitting,

as presented in Figs. 2(c) and (d). In the 2 DBR configuration shown in Fig. 2(c), the FS Xenes do not enter the
strong coupling regime until E⊥ ≈ 1.0 V/Å, while encapsulated Si is in the weak coupling regime until the electric
field becomes extremely strong, E⊥ ≈ 2.5 V/Å. The 1 DBR configuration shown in Fig. 2(d) demonstrates that the
dependence of Leff on the cavity configuration has a significant effect on the onset of the strong coupling regime. In

this microcavity setup, the FS Xenes enter the strong coupling regime around E⊥ ≈ 0.6 V/Å, while the transition
to the strong coupling regime in encapsulated Si occurs around E⊥ ≈ 1.6 V/Å. In addition, the maximal value of
~ΩR for each material is nearly twice as large in the 1 DBR case compared to the 2 DBR case.

Next, we analyze the dependence of the Rabi splitting on the external electric field for different numbers of
encapsulated Type II Si monolayers, NX , stacked on top of each other, and on different values of the excitonic
damping, γex, shown in Fig. 3. In Fig. 3(a) we vary the number of Si monolayers in the microcavity, keeping
γex = 5× 1013 s−1. For NX > 1, we consider a stack of Si monolayers, each separated by few-layer h-BN such that
the Si monolayers do not interact with each other, while the height of the stack of NX Si monolayers with h-BN
spacers remains negligible compared to Lc, so that Lc and Leff do not need to be modified. We find that increasing

NX to 3 brings the onset of the strong coupling regime in Type II Si to E⊥ = 0.7 V/Å, and increases the maximum
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FIG. 3: (a): Dependence of ~ΩR on the electric field E⊥ in Type II Si for different numbers of Si monolayers NX stacked on
top of each other. (b): Dependence of ~ΩR on the electric field E⊥ in Type II Si for different values of the exciton damping
γex.

~ΩR at large electric fields to about 70 meV, which is quantitatively similar to ~ΩR in the FS Xenes.
In Fig. 3(b) we vary the exciton linewidth γex while keeping NX = 1. We find that reducing γex reduces the value

of E⊥ at which the strong coupling regime is reached, but the maximal value of ~ΩR at large electric fields is not
increased as it is when NX is increased. This is because increasing NX increases V itself, while reducing γex only
causes ~ΩR to converge towards V .

Finally, let us comment on the relationship between the upper and lower polariton eigenenergies, the Rabi splitting,
and the binding energy of polaritons, by which we mean the stability of polaritons against dissociation. At ∆E = 0
and k = 0, the lower (upper) polariton may dissociate into its constituent exciton and photon states if it gains
(loses) an amount of energy equal to the difference between the lower (upper) polariton eigenenergy and the bare
exciton/photon energy. Since the splitting of the upper/lower polariton eigenenergies is symmetric with respect to
the (equal) bare exciton and photon energies, the binding energy of polaritons at ∆E = k = 0 is straightforwardly
given by Eb,UP/LP ≡ |EUP/LP − Eex/ph| = (~ΩR)/2.

Since the splitting between the upper and lower polariton branches is symmetric with respect to the average of
Eex and Eph, in the case of either non-zero detuning or non-zero in-plane momentum, the polariton binding energy
cannot be straightforwardly calculated as (~ΩR/2). Restricting this example to the case where EUP(k) > Eph(k) >
Eex(k) > ELP(k), we can see that upper polaritons would dissociate into photons if they lost energy equal to
EUP −Eph, and lower polaritons would dissociate into excitons if they gained energy equal to Eex −ELP. Thus, the
binding energy of polaritons can be given generally as

Eb,UP (∆E,k) = |EUP −Max [Eex, Eph]|
Eb,LP (∆E,k) = |ELP −Min [Eex, Eph]|. (20)

V. TUNABLE SUPERFLUIDITY OF POLARITONS IN AN XENE MONOLAYER IN AN OPEN
MICROCAVITY

In the previous section we considered a very dilute system of noninteracting polaritons when the exciton-exciton
interaction term in the Hamiltonian (10) is neglected. Now let us consider a weakly interacting Bose gas of polaritons,
taking into account the exciton-exciton interaction. In this low-density limit, a system of excitons can be treated
purely as bosons if one includes an interaction potential that accounts for the fermionic nature of the constituent
electrons and holes24,91. For small wave vectors satisfying q � a−1

2D, where a2D is the 2D exciton Bohr radius, the
exciton-exciton repulsion can be approximated by a contact potential, Uq ≈ U0 ≡ 6Eba

2
2D

66,104,105.
Diagonalizing Eq. (10) using the same procedure as before without discarding the exciton-exciton interaction term,

we obtain the Hamiltonian for a system of interacting lower polaritons:

ĤLP =
∑
k

ELP(k)p̂†Pp̂P +
1

2A

∑
k,k′,q

Uk,k′,qp̂
†
k+qp̂

†
k′−qp̂kp̂k′ , (21)

where the second term now describes the repulsive polariton-polariton interaction potential, corresponding to the
fourth term in Eq. (10). Eq. (21) therefore corresponds to a dilute, weakly interacting Bose gas of lower polaritons.
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Since polaritons interact entirely via their excitonic component, the polariton-polariton interaction potential must
be proportional to the exciton-exciton interaction, Uk,k′,q ∝ Uq, and is given by66,104,105:

Uk,k′,q = 6Eba
2
2DXk+qXk′Xk′−qXk. (22)

In the Bogoliubov approximation, the sound spectrum of collective excitations at low momenta in a dilute, weakly
interacting Bose gas is given by ε(k) = csk, where cs is the sound velocity106,107:

cs =

√
UeffnLP

MLP
. (23)

In Eq. (23), Ueff ≡ U(k,k′,q)≈0 = 6Eba
2
2D|X|4 is the effective polariton-polariton interaction potential in the limit of

small momenta, nLP is the 2D concentration of lower polaritons, and MLP is the effective mass of lower polaritons,
given by:

M−1
LP (k) = |X|2M−1

ex + |C|2m−1
ph . (24)

The Hopfield coefficients |X| and |C| in both Eq. (24) and in Ueff are evaluated in the limit k → 0, but we note
that their values here still depend on the detuning ∆E between the exciton and photon eigenenergies.

A dilute 2D gas of weakly interacting bosons experiences a BKT transition to the superfluid phase at a critical
temperature20–23,108:

Tc =
π~2ns(Tc)

2kBMLP
. (25)

In Eq. (25), kB is the Boltzmann constant and ns(T ) = nLP − nn(T ) is the superfluid concentration at temperature
T , where nn is the 2D concentration of the normal component of the polariton Bose fluid, given by106:

ns(T ) = nLP −
3ζ(3)

2π~2

sk3
BT

3

c4sMLP
, (26)

where the spin degeneracy factor s = 1. Setting ns(T ) = 0 one obtains the critical temperature in the mean-field
approximation, or in other words, the temperature at which the local concentration of the superfluid component,
ns(T ), vanishes:

T 0
c =

[
2π~2U2

eff

3ζ(3)MLP

]1/3
nLP

kB
. (27)

Solving Eq. (27) for nLP, one effectively obtains the maximum 2D concentration of the normal component of the 2D
Bose gas of LP at a given temperature T :

n0
c =

[
3ζ(3)MLP

2π~2U2
eff

]1/3

kBT
0
c . (28)

Therefore, n0
c is the critical LP concentration in the mean-field approximation, for a given T . In other words, a 2D

weakly interacting Bose gas of LP can only sustain a finite LP concentration in the normal phase; as more LP are
added they occupy the degenerate superfluid state.

Let us mention that Eqs. (26), (27), and (28) are obtained in the low-temperature limit, by assuming that only the
linear part of the Bogoliubox spectrum is populated. In general, while the Bogoliubov spectrum is linear at small k,
it does not remain linear for larger momentum, where it eventually recovers a modified form of the lower polariton
dispersion. Therefore, Eqs. (26), (27), and (28) fall within the mean-field approximation (MFA), which assumes a
nearly ideal Bose gas, that is, that the gas of bosons is both dilute and weakly interacting. Under these conditions,
the nearly ideal Bose gas can be described by the Bose-Einstein distribution function, in which the excitations
comprising the normal component do not interact106. That is, the MFA is most accurate at very low temperature,
when ns � nn, and the approximation tends to break down as T → Tc, since the increase in temperature means that
a greater proportion of the LP Bose gas consists of the interacting excitations, therefore weakening the assumption
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that the LP Bose gas is weakly-interacting. However, this weakening of the MFA is somewhat mitigated since the
LP Bose gas is overall very dilute, that is, the diluteness condition nLP · (πa2

B) � 1 is satisfied within the range
of E⊥ considered here, regardless of the relative magnitudes of nn and ns. Substituting n0

c , given by Eq. (28), for
nLP at T = 300 K and recalculating the diluteness condition as a function of electric field, we actually find that
as the electric field is increased, the Bose gas becomes relatively more dilute. Therefore, while the approximation
underpinning our analytical results becomes less accurate as T is increased, the fact that the diluteness condition of
the LP Bose gas overall remains strongly satisfied for all nLP, T , and E⊥ considered here indicates that the MFA
approximation is nonetheless applied appropriately. Of course, a more detailed study of the applicability of the MFA
in this context, and a comparison between these analytical results to numerical results obtained without the MFA,
is always warranted and would certainly be instructive.

Secondly, we recognize another important limitation, that the present approach is valid for non-decaying particles.
This is an ideal limit which real systems may or may not approach depending on the specifics of the system109. Our
consideration of the LP concentration is given in the thermodynamic limit, that is valid if we consider timescales
much smaller than the LP lifetime. In particular, the expression for nn was derived in Ref. 106 by considering the
flow of the momentum per unit area of the polariton system. If the LP decays quickly, that reduces the ability of the
polariton system to transfer momentum via the flow of the normal component, which in turn would affect the BKT
critical temperature. Since in an optical microcavity the photon lifetime is generally much shorter than the exciton
lifetime3, and the photon broadening in a 1 DBR microcavity, given by Eq. (9), ranges from γph ≈ 1010 s−1−1012 s−1

from low to high electric fields, respectively. Therefore, the LP lifetime can be estimated as τLP ≈ 1−100 ps94,106,110.
Accounting for the finite LP lifetime, as in Ref. 109, would, indeed, improve the accuracy of our calculations, but
such an approach is beyond the scope of this work. Nevertheless, our analytical results provide an ideal limit against
which experimental results or more detailed numerical analyses can be compared.

Substituting Eq. (26) into Eq. (25), one obtains a cubic equation for the BKT transition temperature, which has
the following solution:

Tc =


1 +

√
32

27

(
MLPkBT 0

c

π~2nLP

)3

+ 1

1/3

+

1−

√
32

27

(
MLPkBT 0

c

π~2nLP

)3

+ 1

1/3
 T 0

c

21/3
. (29)

Analysis of Eqs. (1), (2), (24), and (29) shows that the BKT transition temperature Tc depends on the polariton
concentration, nLP, the applied external electric field, E⊥, and on the properties of the microcavity. The results of
calculations of the dependence of the BKT transition temperature and the critical LP concentration in the mean-field
approximation on the external electric field are presented in Fig. 4.

Using Eq. (29), we calculated the dependence of the BKT critical temperature Tc on the external electric field,
E⊥, for each Xene at nLP = 1015 m−2, shown in Fig. 4(a). Analysis of the figure indicates that Tc decreases as the
external electric field, E⊥, is increased, and that FS Si has by far the largest Tc at all values of E⊥, while Type I and
Type II encapsulated Si have the smallest Tc. Also shown in Fig. 4(a) are vertical dashed lines which denote the E⊥
at which the strong coupling regime is reached for the corresponding material in a 1 DBR microcavity configuration.
While the FS Xenes are in the strong coupling regime when the corresponding Tc > 300 K, Type I/II encapsulated
Si are not in the strong coupling regime when Tc > 300 K.

Calculations of the critical LP concentration, nLP, for the BKT transition to the superfluid phase for fixed critical
temperature Tc = 300 K as a function of E⊥ are presented in Fig. 4(b). One can recover the superfluid phase in
encapsulated Si at high E⊥ (when encapsulated Si is in the strong coupling regime) by increasing the LP concentration
to about nLP = 2 × 1015 m−2, an increase of only a factor of two compared to the concentration used to calculate
the results in Fig. 4(a), nLP = 1015 m−2. Therefore, the nearly linear relationship between nc and E⊥ at fixed T
means that increasing nLP by a factor of two in turn increases Tc by a factor of two at a given E⊥.

Another interesting aspect of the BKT phase transition in polaritons is the relationship between Tc and the
detuning, ∆E. Since both the effective polariton-polariton interaction potential, Ueff , and the LP mass, MLP,
depend on the Hopfield coefficients |X|2 and |C|2, which in turn depend on the detuning, ∆E, the BKT critical
temperature therefore depends non-monotonically on the detuning. For positive ∆E, the LP becomes more exciton-
like, increasing the strength of the effective interaction potential, which increases Tc, but at the same time, MLP

also increases, which decreases Tc. Since Ueff can only increase by a factor of four, while MLP can vary by several
orders of magnitude between mph and Mex, we find that a local maximum in Tc is reached for small positive values
of ∆E. Specifically, in FS Si, for small E⊥, the value of ∆E which maximizes Tc corresponds to Eph ≈ 1.07Eex, and
as E⊥ increases, the maximizing value of ∆E approaches Eph ≈ 1.03Eex, or in other words, the percent-detuning
which maximizes Tc in FS Si lies between 4-7%, depending on E⊥. Interestingly, in all materials except FS Si, the
percent-detuning which maximizes Tc lies between approximately 1-4%. Furthermore, the difference in Tc between
the maximal detuning and zero detuning is about 35% for all values of E⊥ in all materials, quite a significant increase.
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FIG. 4: (a): Dependence of Tc on E⊥. The vertical dashed lines denote the minimum E⊥ in which the corresponding material
is in the strong coupling regime in a 1 DBR configuration based on Fig. 2. (b): Dependence of the critical LP concentration
nc on the external electric field, for A polaritons, at Tc = 300 K.

However, in Sec. IV it was mentioned that any non-zero detuning reduces the LP binding energy by reducing the
energy difference between ELP and the lesser of Eex or Eph. Our calculations show that as the detuning ∆E > 0 is
increased, the LP binding energy decreases faster than Tc increases, making detuning an ineffective mechanism for
maximizing Tc and Eb,LP simultaneously. On the other hand, for NX > 1 in encapsulated Si, varying the detuning
may be an effective way to increase Tc, since the enhanced Rabi splitting compared to NX = 1 can allow for LP which
are still stable at Tc despite the reduction in Eb,LP for non-zero detunings. At temperatures T where Eb,LP � kBT ,
changing the detuning can still be used to tune Tc, but examination of Fig. 4 indicates that one should encounter
few difficulties achieving a stable superfluid of LP at relatively low temperatures in any case.

In essence, simulatenously maximizing Eb,LP and Tc subject to a variety of constraints on material and environ-
mental parameters such as nLP, ∆E, NX , and γex is a classic example of an optimization problem, which we analyze
in detail in the next Section.

VI. ANALYSIS OF THE RABI SPLITTING AND SUPERFLUID CRITICAL TEMPERATURE

Earlier, we calculated the dependence of the Rabi splitting on E⊥, γex, and NX , and found that polaritons in the
Xenes should be stable at room-temperature for some combination of large E⊥ and small γex, and that increasing NX
is a straightforward way of significantly increasing ~ΩR in encapsulated Si. Then, calculations of Eq. (29) revealed
that Tc in all materials is extremely high at small E⊥, and even for E⊥ > 2.0 V/Å, Tc exceeds 100 K. Let us now
analyze the intersection of the “high Rabi splitting” and “high Tc” regimes and the dependence of these regimes on
experimental parameters such as nLP, ∆E, γex, and NX . We primarily focus on encapsulated (Type II) Si since such
a setup is already very similar to previous experimental work on polaritons in TMDCs encapsulated by h-BN64,66,99.
Instead of addressing each of the FS Xenes individually, we focus on FS Si because it shows by far the largest Tc of
the FS Xenes, while the FS Xenes all have similar ~ΩR.

At a minimum, three conditions must be met in order to obtain a stable LP superfluid at room temperature: (i)
the exciton binding energy must exceed 26 meV, (ii) the LP binding energy, given by ~ΩR/2 at ∆E = 0 and by
Eex−ELP at ∆E > 0, must exceed 26 meV, and (iii) the critical temperature for the BKT superfluid phase transition
must be at least 300 K. Since the exciton binding energy in all materials exceeds 100 meV for E⊥ > 0.5 V/Å, the
excitons are certainly stable in the range of E⊥ considered77. The conditions therefore reduce to: Eb,LP > kBT and
Tc > T .

Figs. 5 and 6 depict regions where both Tc and Eb,LP/kB exceed T (along the vertical axis) for the range of

1.0 < E⊥ < 2.7 V/Å in FS Si or Type II encapsulated Si. Each region therefore represents the range of external
electric field, E⊥, and ambient temperature, T , for which a stable LP superfluid could form, based on the choice
of material parameters denoted by the lower case roman numeral in each region. The left-hand boundary of each
region is formed by the curve Eb,LP(E⊥) = kBT , while the right-hand boundary of each region is formed by the
curve Tc(E⊥) = T .

Fig. 5 shows that FS Si should support a stable LP superfluid at T = 300 K under the following conditions:
(i) E⊥ ∈ [1.8, 2.2] V/Å; (ii) E⊥ > 1.8 V/Å; (iii) E⊥ ∈ [1.3, 2.2] V/Å. In other words, for γex = 5 × 1013 s−1 and
nLP = 1015 m−2, a stable LP superfluid should form at T = 300 K for 1.8 V/Å < E⊥ < 2.2 V/Å; if nLP ≥ 1.25×1015
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FIG. 5: Shaded regions show where Tc and Eb,LP both exceed T (along vertical axis) in FS Si. The labeled regions denote
the following combinations of parameters: (i) nLP = 1015 m−2; (ii) nLP = 1.25 × 1015 m−2; (iii) nLP = 1015 m−2; for (i) and
(ii), γex = 5× 1013 s−1, in (iii), γex = 1013 s−1. Regions (i) and (ii) share the same left-hand-side boundary (same γex), while
regions (i) and (iii) share the same right-hand-side-boundary (same nLP).

m−2, a stable superfluid should form for all E⊥ > 1.8 V/Å.
Fig. 6(a) shows the same information as in Fig. 5 but for Type II Si with γex = 5× 1013 s−1. The different regions

correspond to the overlap of Tc > T and Eb,LP/kB > T for different combinations of NX and nLP. As was shown in
Fig. 4, Tc < 300 K in Type II Si for nLP = 1015 m−2, so that the prospect of room-temperature superfluidity is only
feasible for nLP > 2× 1015 m−2 and NX > 4 when E⊥ ∈ [1.5, 1.8] V/Å. If instead nLP = 3× 1015 m−2, by following
the curves of the region boundaries we find that a stable room-temperature superfluid could be achieved for NX = 3
for E⊥ ' 2.0 V/Å. At nLP = 3× 1015 m−2 and NX = 4, a stable room-temperature superfluid could be expected to
form for E⊥ ' 1.5 V/Å.

In Fig. 6(b) we consider the conditions for a stable LP superfluid in Type II Si with γex = 1013 s−1, while the
labeled regions correspond to the same combinations of material parameters as in Fig. 6. The benefits of the possible
reduction in γex due to h-BN encapsulation are clearly displayed here – the increase in Eb,LP means that at T = 300

K a stable LP superfluid could form at nLP = 2 × 1015 m−2 for 1.2 V/Å < E⊥ < 1.8 V/Å with NX = 4, while for
NX = 3 the corresponding range of E⊥ is roughly 1.4 - 1.8 V/Å. These ranges of E⊥ are notably smaller than the
corresponding range of E⊥ shown in Fig. 5 for FS Si, but the values of E⊥ are themselves also smaller than in FS Si.

Finally, let us address the effect that non-zero detuning has on the existence of a stable LP superfluid. As
mentioned in Sec. V, Tc increases if the photon energy is slightly blueshifted from the exciton energy, and Tc reaches
a maximum when the photon energy exceeds the exciton energy by approximately 1-2% (the precise value of the
percentage-detuning which maximizes Tc depends on E⊥ but does not depend on nLP – the maximal value of the
percent-detuning decreases as E⊥ increases). When the detuning is increased from zero, two qualitative changes to
the region of stability adversely affect the feasibility of high-temperature superfluidity. First, the temperature at
which the curves Eb,LP(E⊥) and Tc(E⊥) intersect decreases. The intersection of these curves can be identified as the
pointed apex of the regions in Figs. 5 and 6. Second, the range of E⊥ which fall within a particular region widens,
but the value of E⊥ at the beginning and end of the range increases, or in other words, the region of E⊥ widens
but shifts towards greater E⊥ overall. In general, we consider it advantageous to minimize the E⊥ required to reach
the SF regime since applying and maintaining a strong static electric field imposes additional challenges on device
design and fabrication.
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FIG. 6: (a): Shaded regions denote ranges of E⊥ and T where a stable LP superfluid is expected to form for the combination
of material parameters specified by the region labels. (i),(ii),(iii): nLP = 1015 m−2 and NX = 1, 2, 3, respectively; (iv),(v):
nLP = 2 × 1015 m−2 and NX = 2, 4, respectively; (vi): nLP = 3 × 1015 m−2 and NX = 5. (b): Shaded regions correspond to
the same parameters as in (a), but with γex = 1013 s−1.

VII. DISCUSSION

We began by briefly reviewing the theoretical description of the electronic properties of Xenes in an external electric
field and calculated the excitonic transition energy, Eex = 2∆SO −Eb. The material with the smallest Eex is FS Si,
which increases roughly linearly from Eex ≈ 200 meV at E⊥ = 1.0 V/Å, to Eex ≈ 1.6 eV at E⊥ = 2.7 V/Å. Despite
the enhanced dielectric screening of encapsulated Si (κ = 4.89) compared to FS Si (κ = 1), the modified material
parameters of encapsulated Si, which are more similar to FS Ge than to FS Si, result in a maximal Eex ≈ 2.2 eV at
E⊥ = 2.7 V/Å. The maximum values for FS Ge and FS Sn are Eex ≈ 3, 4.2 eV, respectively.

It was shown that the exciton-photon coupling strength, ~Ω0
R, can, at high electric fields, reach about 55 meV

in the FS Xenes and about 35 meV in encapsulated Si for a 2 DBR microcavity configuration, while for a 1 DBR
microcavity, the corresponding maximal values of ~Ω0

R for the FS Xenes and encapsulated Si are about 80 meV and
45 meV, respectively. However, the large value of γex used here strongly suppresses the Rabi splitting ~ΩR, such that
the polariton system is in the weak coupling regime until about E⊥ = 1.0 V/Å (0.5 V/Å) in the FS Xenes and until
about E⊥ = 2.5 V/Å (1.5 V/Å) in encapsulated Si for 2 DBR (1 DBR) microcavity configurations. The significant
reduction in ~ΩR means that lower polaritons are never stable at room-temperature in a 2 DBR microcavity, while
for a 1 DBR cavity, LP are only stable at room-temperature in the FS Xenes beyond about E⊥ = 2.2 V/Å. Since
γex = 5 × 1013 s−1 is borrowed from experimental determinations of the excitonic broadening in TMDCs at room
temperature, it is possible that γex in the Xenes may be smaller, in which case we find that the strong coupling
regime is reached at much lower E⊥, though the maximal value of ~ΩR at high E⊥ does not change much. On the
other hand, increasing NX appears to be a promising way to significantly increase the Rabi splitting at all values of
E⊥, since increasing V depends directly on NX .

We then considered the conditions under which a weakly interacting Bose gas of lower polaritons would undergo a
BKT phase transition to the superfluid phase. At typical LP concentrations nLP = 1015 m−2, Tc in FS Si is almost
always greater than T = 300 K, with Tc in FS Ge exceeding 300 K until roughly E⊥ = 1.5 V/Å. However, FS Sn and
encapsulated Si have by far the smallest Tc at a given E⊥, and we find that beyond about E⊥ = 0.9 V/Å, Tc < 300
K. Analysis of the dependence of Tc on nLP revealed that Tc depends nearly linearly on nLP, so that the critical
concentration of LP to induce a BKT phase transition at Tc = 300 K does not exceed about nLP = 3.5× 1015 m−2,
even in encapsulated Si at high E⊥.

Finally, we examined in detail the optimization problem of trying to simultaneously maximize ~ΩR and Tc, and
presented the sets of conditions which could lead to a stable LP superfluid at T = 300 K, namely that the LP
binding energy exceeds the thermal energy at temperature T , Eb,LP > kBT , and that the BKT critical temperature
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Tc exceeds the ambient temperature, Tc > T . Simultaneously satisfying these conditions yields a range of E⊥ where
a stable LP superfluid could form, with quantities such as nLP, NX , and γex acting as parameters. Since increasing
nLP increases Tc, while increasing E⊥ decreases Tc, it was found that increasing nLP would increase the maximum
E⊥ which could support an LP superfluid. Meanwhile, by increasing Eb,LP, the lower limit of E⊥ is decreased, which
can be achieved by either increasing NX or reducing γex.

It was determined that FS Si could support a stable LP superfluid at T ≥ 300 K, intermediate E⊥ ∈ [1.7, 2.2]
V/Å, and relatively low LP concentrations, nLP = 1015 m−2. The upper limit of E⊥ = 2.2 V/Å can be increased by
increasing nLP, but there is no convenient mechanism for decreasing the lower limit of E⊥ = 1.7 V/Å, since γex is
effectively fixed and increasing NX by stacking multiple FS Si monolayers on top of each other (in a sort of stacked
bridge configuration) seems impractical. On the other hand, Type II Si is a more promising candidate for room-
temperature superfluidity of LP, though it requires much higher LP concentration than FS Si. With γex = 5× 1013

s−1, we find that the LP superfluid regime can be achieved for nLP ≥ 2 × 1015 m−2 and NX ≥ 4 in the range
E⊥ ∈ [1.5 V/Å, 1.8 V/Å]. As mentioned in Sec. IV, based on experiments in TMDCs, we consider the possibility
that γex in encapsulated Si could be much lower than in the FS Xenes. Taking γex = 1013 s−1, we then predict that
the superfluid phase can be achieved for T > 300 K in the range E⊥ ∈ [1.2 V/Å, 1.8 V/Å], for nLP = 2× 1015 m−2

and NX ≥ 4. By increasing the concentration to nLP = 3× 1015 m−2, we predict the existence of the superfluid LP
phase at T > 300 K for NX ≥ 5 in the range E⊥ ∈ [1.0 V/Å, 2.4 V/Å].

Let us now mention two important caveats to the three conditions for a stable LP superfluid, given in the previous
section: the effect of temperature on LP concentration and lifetime, and the superfluid concentration at temperatures
very slightly less than Tc. Since a significant fraction of particles in a gas at an average temperature T would have
kinetic energies that exceed kBT , the LP binding energy should comfortably exceed 26 meV so that the population
of LP is not significantly decreased due to thermal dissociation. To put it another way, in the low-temperature
limit, it is often possible to experimentally correlate pump intensity and LP concentration – the effect of increasing
temperature would be to decrease the LP concentration for a given pump intensity. Furthermore, from Eq. (26),
the concentration of the superfluid component of the weakly interacting Bose gas of LP is given by the difference
between the total concentration nLP and the critical concentration of the normal component, nc. Therefore, the
total LP concentration should exceed nc by an appreciable amount in order to obtain a non-negligible superfluid
concentration.

VIII. CONCLUSIONS

In this paper we demonstrated that the combination of tunable excitons (via a perpendicular electric field) in a
tunable optical microcavity (via the cavity length) has the potential to give researchers unprecedented control over
the Rabi splitting of polaritons as well as their collective properties such as the critical temperature of the BKT
superfluid phase transition. Our results show that the properties of polaritons, especially the Rabi splitting, are
highly sensitive to the cavity configuration (1 or 2 DBR) and the electric field. Indeed, we found that the significant
increase in the effective cavity length in the 2 DBR configuration compared to the 1 DBR case strongly suppresses
the Rabi splitting, to the point that the strong-coupling regime is only barely achieved in encapsulated Si at very
high electric fields. However, for the 1 DBR configuration, the strong coupling regime can be achieved at small
electric fields for the FS Xenes and moderate electric fields in encapsulated Si. We also considered stacking multiple
Si monolayers on top of each other in the case of encapsulated Si – for NX ≥ 2, the enhancement of the exciton-
photon coupling constant V is significant enough to drastically reduce the threshold E⊥ for the onset of the strong
coupling regime in encapsulated Si. Based on previous experiments on polaritons in TMDCs embedded in an optical
microcavity, the excitonic inhomogeneous line broadening, γex = 5×1013 s−1, which we use as a baseline value in our
calculations, also significantly reduces the Rabi splitting. It was shown in TMDCs that encapsulating the TMDC
monolayer with h-BN very strongly suppresses the excitonic broadening – by considering a similar reduction in γex
in encapsulated Si compared to the FS Xenes, we find that the strong coupling regime in encapsulated Si could be
achieved at quite low electric fields.

Next, we closely analyzed the conditions for the formation of a superfluid of lower polaritons in the Xenes embedded
in a microcavity. As was the case for the Rabi splitting, our results showed that Tc is largest for the FS Xenes, but
unlike the Rabi splitting, Tc is inversely proportional to E⊥. By analyzing the critical concentration for the onset of
the BKT phase transition at fixed temperature, it was shown that an LP concentration of at most nLP = 3 × 1015

m−2 is required for even encapsulated Si to exhibit an LP superfluid at T = 300 K at very large E⊥. The nearly linear
relationship between Tc and nLP for fixed E⊥ is beneficial in terms of pushing for larger nLP in order to increase Tc.

Finally, we considered in detail the feasibility of room-temperature superfluidity in FS Si and encapsulated Si in
particular. It was established that a stable LP superfluid simultaneously requires (i) a large exciton binding energy,
(ii) a large Rabi splitting (so that the LP do not dissociate due to thermal interactions), and (iii) a BKT critical
temperature greater than or equal to room temperature at experimentally obtainable LP concentrations, for which
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we specify the condition Tc ≥ 300 K. We note that because the exciton binding energy always exceeds the Rabi
splitting at a given E⊥, we focus our attention on the range of E⊥ which satisfies conditions (ii) and (iii). It was
found that a stable LP superfluid should be possible in FS Si for E⊥ ∈ [1.7, 2.2] V/Å. Increasing nLP would increase
the maximum E⊥ in that range, but since NX = 1 and γex = 5× 1013 s−1 are effectively fixed for FS Si, there is no
way to decrease the minimum E⊥.

On the other hand, in encapsulated Si we considered the conditions for room-temperature superfluidity of LP
subject to the variation in three parameters: nLP, γex, and NX . The additional adjustable parameters were shown
to afford experimentalists much more freedom in constructing a device which could exhibit room-temperature su-
perfluidity of LP in a wide range of E⊥ based on the choice of NX and the value of γex in encapsulated Si. If, in
encapsulated Si, the excitonic line broadening γex = 5× 1013 s−1, we predict the existence of a stable LP superfluid
at T = 300 K between E⊥ ∈ [1.5, 1.8] V/Å, for NX ≥ 3 and nLP ≥ 2× 1015 m−2. For γex = 1013 s−1, we find that
the range of E⊥ increases to E⊥ ∈ [1.2, 1.8] for NX = 3 and nLP = 2× 1015 m−2.

Our results indicate that the Xenes warrant intensive study alongside more well-studied 2D materials such as
graphene and the TMDCs. Their tunable nature via and external electric field allows for highly flexible manipulations
of excitons, which can be naturally extended to polaritons in an open microcavity. The prospect of room-temperature
superfluidity of LP in encapsulated Si is especially noteworthy because of how closely such a set-up would resemble
current experimental work in the TMDCs. Therefore, much more work remains to be done in studying polaritons in
the Xenes in optical microcavities.

Appendix A: Hopfield Coefficients

The exciton-photon Hamiltonian of Eq. (10) can be diagonalized by means of a linear unitary transformation3,

p̂k = Xkb̂k + Ckâk

ûk = −Ckb̂k +Xkâk, (A1)

where p̂k (p̂†k) and ûk (û†k) are the Bose annihilation (creation) operators of lower and upper polaritons, respectively,
and the coefficients Xk and Ck are known as the Hopfield coefficients98, and are given by3:

|Xk|2 =
1

2

1 +
∆E(k)√

(∆E(k))
2

+ (4~V )
2


|Ck|2 =

1

2

1− ∆E(k)√
(∆E(k))

2
+ (4~V )

2

 , (A2)

where ∆E(k) = Eph(k)−Eex(k). Let us further note that |Xk|2 and |Ck|2 give the excitonic and photonic fractions
of lower polaritons, respectively, and |Xk|2 + |Ck|2 = 1.

Appendix B:

In Ref. 90, the authors considered polaritons in semiconductor quantum wells in an optical microcavity, and
obtained the following expression for V in an optical microcavity with one active layer,

V =

[
1 +
√
R√

R

cΓ0√
εcavLeff

]1/2

. (B1)

In Eq. (B1), Γ0 is the decay rate of the exciton amplitude, given by63:

Γ0 =

(
πke2

m0c
√
κ

)(
2|Pcv|2

m0Eex

)
|ψ(ρ = 0)|2, (B2)



16

where m0 is the electron rest mass, Pcv is the dipole transition matrix element given in terms of the momentum
operator of the exciton-forming optical transition associated with the transition energy Eex, and ψ(ρ = 0) is the
value of the direct exciton relative motion eigenfunction at ρ = 0.

In Ref. 66, the authors approximated the momentum dipole matrix element as |Pcv|2 ≈ 2m2
0v

2
F . This approximation

only applies in the immediate vicinity of the parabolic band extrema, q ≈ 0, so it is possible that the Fermi velocity
is changed for non-zero q which falls outside of the regime considered here. Despite the fact that an applied electric
field obviously has a profound effect on the band structure and, more generally, the properties of charge carriers in
the Xenes, the question of how, if at all, the Fermi velocity vF changes in response to an electric field apparently

remains unaddressed in the literature. In Ref. 66, the effective charge carrier mass is m = ~2∆SO

a2t2 , where a and t are
the lattice constant and hopping parameter, respectively, and in turn vF = at/~. Of course, a and t are sensitive to
the environment, as seen in Ref. 78 which found that vF depends on the lattice mismatch between silicene and an
h-BN substrate. In our calculations, we assume vF is constant, because the electric field dependence of t is never
addressed in ab-initio studies of electric field effects in the Xenes. However, it remains possible that t does indeed
depend on the electric field and that future studies would benefit from examining this dependence in particular.

We also note that it is well known that V ∝
√
N , where N is the number of quantum wells97 or TMDC monolay-

ers63, therefore we add a factor
√
NX to our expression for V , where NX is the number of stacked Xene monolayers.

Finally, combining Eqs. (B1), (B2), the approximate expression for |Pcv|2, and the proportionality V ∝
√
NX , we

obtain Eq. (14).
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47 M. Richard, J. Kasprzak, R. André, R. Romestain, L. S. Dang, G. Malpuech, and A. Kavokin, Phys. Rev. B 72, 201301(R)

(2005).
48 M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, Phys. Rev. B 65, 161205(R) (2002).
49 J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. Keeling, F. M. Marchetti, M. H. Szymánska,
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