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We theoretically examine the capacitive coupling between two quantum dot hybrid qubits, each
consisting of three electrons in a double quantum dot, as a function of the energy detuning of the
double dot potentials. We show that a shaped detuning pulse can produce a two-qubit maximally
entangling operation in ∼ 50ns without having to simultaneously change tunnel couplings. Sim-
ulations of the entangling operation in the presence of experimentally realistic charge noise yield
two-qubit fidelities over 90%.

I. INTRODUCTION

Spin qubits in semiconductor quantum dots are attrac-
tive building blocks for quantum computers due to their
small size and potential scalability. Single-spin qubits
are a simple design in which single-electron spin states
are used as the logical basis for computation1. These
spin qubits have been realized experimentally in both
one-qubit and two-qubit exchange-coupled settings2–4.
Singlet-triplet qubits are another common type of spin
qubit, where the logical basis is formed by singlet and
triplet spin states5,6. Capacitive coupling is an attractive
choice for two-qubit operations in singlet-triplet systems,
due to the relatively simple experimental implementa-
tion and lack of leakage. Two-qubit entangling gates in
these systems have been discussed theoretically7–10 and
recently demonstrated experimentally11,12. Typical gate
times for capacitively coupled singlet-triplet qubits are
on the order of hundreds of nanoseconds, making them
generally susceptible to low-frequency charge noise un-
less special measures are taken13. A more recent type
of spin qubit is the so-called hybrid qubit, which is en-
coded in the total spin state of three electrons in a double
quantum dot, which allows for fully electrical control14.
In that setting, capacitively coupled two-qubit gates are
predicted to be shorter than typical entangling gates for
singlet-triplet qubits15.

In this paper, we examine adiabatic gates between
strictly capacitively coupled hybrid qubits within the
two-qubit logical subspace. This is a different situation
than in Refs. 15 and 16, which permitted tunneling be-
tween qubits and considered diabatic gates. By setting
the exchange interactions between qubits to zero in our
case, the number of possible leakage states is reduced,
typically leading to leakage errors significantly smaller
than in Refs. 15 and 16. The charge-like character of
the hybrid qubit at small detunings gives rise to a large
coupling strength while the spin-like character at large
detunings effectively turns off the interaction between
qubits, and recently Ref. 17 has shown that adiabatic
pulses in the detuning can be used to perform entangling
gates. Our work differs from Ref. 17 in two ways: i)
Ref. 17 considers simple sinusoidal ramp shapes, whereas
we allow for shaped pulses of the detuning, and ii) Ref. 17
allows different detunings for each qubit and/or simul-

taneous control over the tunnel couplings, whereas we
restrict to only symmetric detuning control.

By choosing an optimal pulse shape for the detuning,
we show that two-qubit entangling operations can be per-
formed in under 50ns while maintaining adiabaticity. We
then show that these short gate times give rise to qubits
which are naturally robust against realistic charge noise,
giving fidelities over 90%. This performance is compara-
ble to the results obtained by Ref. 17 with an alternate
approach.

II. MODEL

A single hybrid qubit consists of three electrons in a
double quantum dot (DQD). For a system of two hybrid
qubits, each DQD confines the three electrons in the low-
est two valley-states of each dot. The first and second
qubits are respectively centered at a positions ±R with
respect to the origin, giving a total separation of 2R.
Each quantum well of a single DQD is centered at ±a
with respect to the center of the DQD.

We consider states with spin S = 1/2 and Sz = −1/2.
The possible spin states can be written as |·S〉 , |·T 〉 , |S·〉
and |T ·〉, where |·S〉 = |↓〉 |S〉 , |·T 〉 =

√
1
3 |↓〉 |T0〉 −√

2
3 |↑〉 |T−〉 , |S·〉 = |S〉 |↓〉 and |T ·〉 =

√
1
3 |T0〉 |↓〉 −√

2
3 |T−〉 |↑〉. The singlet, unpolarized triplet, and po-

larized triplet states are respectively represented by
|S〉 , |T0〉, and |T−〉. In this notation, |·S〉 and |·T 〉 lie
in a (1, 2) configuration, while |S·〉 and |T ·〉 lie in a (2, 1)
configuration. Depending on which direction the double
well is biased, either |·T 〉 or |T ·〉 is a high energy state and
can be neglected. In the basis of the remaining low en-
ergy states (either {|·S〉 , |·T 〉 , |S·〉} or {|S·〉 , |T ·〉 , |·S〉}),
the Hamiltonian for the ith qubit is given by18,

Hi =

− εi2 0 ∆
(i)
1

0 − εi2 + E
(i)
ST ∆

(i)
2

∆
(i)
1 ∆

(i)
2

εi
2

 , (1)

where εi is the detuning (i.e., the energy difference be-

tween the two wells) of the ith qubit, and E
(i)
ST is the
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singlet-triplet energy splitting of two-spin states in a sin-
gle well of the ith qubit. Given that typical fitted values
for EST are significantly smaller than the orbital splitting
in this reduced Hilbert space approximation19, we assume
that the singlet-triplet spin states of a single well occupy

different valleys, rather than different orbitals. ∆
(i)
1 rep-

resents the |·S〉 ↔ |S·〉 transition for the ith qubit and

∆
(i)
2 represents the |·T 〉 ↔ |S·〉 or |T ·〉 ↔ |·S〉 transition

for the ith qubit. A |·S〉 ↔ |·T 〉 or |S·〉 ↔ |T ·〉 transition
is not allowed, since these states occupy different valleys.

Assuming the confining potential is parabolic around
the minimum of each well, the lowest two electronic wave-
functions can then be approximated by the valley-state
wavefunctions given in Ref. 20. Essentially, the single-
particle basis orbitals have a harmonic ground state en-
velope with an additional phase factor that distinguishes
between valleys. We use the Hund-Mulliken approxima-
tion (or, equivalently, a heavily truncated configuration-
interaction approach), in which the Hamiltonian is ex-
panded using these non-interacting orbitals, keeping only
the lowest orbitals of each dot, which is a standard
method for quantum dot systems21–23. It is important
to note that the harmonic orbitals are simply the basis
we expand in, and are not the exact orbitals that in-
clude the effects of electron-electron interactions in their
shape. Rather, the electron-electron interactions are ac-
counted for through a set of two-electron Coulomb in-
tegrals included in the Hamiltonian. While we consider
only the lowest orbitals of each dot, there are also non-
vanishing matrix elements which couple ground harmonic
orbitals to excited harmonic orbitals. In Section III, we
show that, for experimentally realistic parameters, these
matrix elements are negligible on the energy scales we
consider, thereby allowing the Hund-Mulliken approxi-
mation to be valid.

Assuming the barrier between qubits is high enough
that interqubit tunneling is negligible and the interaction
between qubits is purely capacitive, we can incorporate
the two-qubit interaction through a set of two-electron
Coulomb integrals. There are three terms, correspond-
ing to the three possible types of overall charge config-
urations: (2, 1, 1, 2), (1, 2, 2, 1), or (1, 2, 1, 2)/(2, 1, 2, 1),
assuming identical double-wells, where (i, j, k, l) denotes
the charge configuration (i, j) of the first qubit and (k, l)
of the second qubit. In general, (1, 2, 1, 2) and (2, 1, 2, 1)
charge configurations may not be completely equivalent
due to asymmetry in the DQDs, but this will not quali-
tatively change the results. So, for the sake of simplicity,
we focus on the symmetric case. Then the spatial distri-
bution of the three charge configurations leads to three
unique Coulomb interactions, which provides a nonzero
energy difference between two-qubit states in separate
charge configurations. The charge configuration of a low-
energy eigenstate is a detuning-dependent mixture of the
three types of overall charge configurations, and hence
the detuning provides a means of controlling the inter-
qubit interaction energy.

Each well must contain at least one electron, i.e., four

of the six total electrons must be in a (1, 1, 1, 1) charge
configuration. The two “leftover” electrons can reside in
any two unique wells, giving total charge configurations
of (1, 2, 2, 1), (2, 1, 1, 2), or (2, 1, 2, 1)/(1, 2, 1, 2). Since it
is the two “leftover” electrons which allow the different
charge configurations to be distinguished, we can effec-
tively ignore the interaction due to the four electrons
in the (1, 1, 1, 1) configuration. Therefore, we need only
consider Coulomb integrals for electrons in the configura-
tions (1, 0, 0, 1), (0, 1, 1, 0), or (1, 0, 1, 0)/(0, 1, 0, 1), which
we denote respectively by Vf , Vn, Vm, i.e., far, near, and
medium interactions. Since the direct Coulomb integral
between valley state wavefunctions centered at positions
r1 and r2 simplifies to a direct Coulomb integral between
ground-state harmonic wavefunctions centered at r1 and
r2, the interaction terms are given by,

Vf = 〈φ−R−aφ+R+a|C|φ−R−aφ+R+a〉,
Vm = 〈φ−R−aφ+R−a|C|φ−R−aφ+R−a〉, (2)

Vn = 〈φ−R+aφ+R−a|C|φ−R+aφ+R−a〉,

where the general integral, 〈φRi
φRk
|C|φRj

φRl
〉, is pre-

sented in Appendix B.
Tuning the quantum dots so that the low energy ba-

sis states of the first and second qubits are respectively
given by {|·S〉 , |·T 〉 , |S·〉} and {|S·〉 , |T ·〉 , |·S〉} (i.e., rais-
ing the energy of the left well of the left qubit and the
right well of the right qubit), allows for a majority of
the first and second qubit’s states to lie respectively in
the (1, 2) and (2, 1) charge configurations. This gives
the largest number of near interactions, and hence the
strongest coupling between qubits. With this convention,
the detuning of both qubits is positive. A picture of the
potential is shown in Figure 1 for clarity. Summing the
single-qubit Hamiltonians and including an interaction
term, the two-qubit Hamiltonian is given as,

H = H1 ⊗ I + I ⊗H2 +Hint. (3)

Assuming the two-qubit basis is a Kronecker prod-
uct of the single-qubit basis, the interaction Hamil-
tonian from the direct Coulomb coupling is given by
Hint = diag(Vn, Vn, Vm, Vn, Vn, Vn, Vm, Vm, Vf ) (see Ap-
pendix A).

III. EFFECTIVE HAMILTONIAN

We form the effective Hamiltonian by restricting the
evolution to the four lowest energy states. The effec-
tive Hamiltonian in this subspace can be written in the
basis of detuning-dependent instantaneous eigenstates as
Heff = diag(E1, E2, E3, E4), where En is the nth smallest
eigenvalue of the full Hamiltonian. In terms of the SU(4)
generators, we can also write

Heff = JZIσZI + JZZσZZ + JIZσIZ , (4)
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FIG. 1. Schematic of two DQDs separated by a distance 2R,
each with interdot distance 2a. The potential of the first (sec-
ond) qubit is centered at −R (+R). The detuning parameter
εi is positive for both qubits and corresponds to a raising of
the left well of the first qubit by ε1 and a raising of the right
well of the second qubit by ε2.

up to a constant term, where σij ≡
σi ⊗ σj , JIZ = 1/4 (E1 − E2 + E3 − E4),
JZI = 1/4 (E1 + E2 − E3 − E4), and JZZ =
1/4 (E1 − E2 − E3 + E4). As long as the detuning
is changed adiabatically, no transitions between adia-
batic eigenstates are induced. Local rotations about the
Z-axis are induced by JZI and JIZ , while JZZ generates
entanglement. Analytical expressions in terms of the
Schrieffer-Wolff approximation are sometimes useful,
but we are interested in the small-detuning regime
where JZZ is large, and a perturbative form of Heff is
not valid; we therefore simply diagonalize the full 9 × 9
Hamiltonian numerically.

Matching typical silicon-based single-qubit experi-
ments for hybrid qubits, we take an effective electron
mass of 0.2m0 (m0 is the electron rest mass), a dielectric
constant of κ = 11.7ε0, a confinement energy of ~ω =
0.38meV (giving a Bohr radius of roughly 31nm), and an
interdot distance of 2a = 135nm 19. We choose energy

splittings and tunnel couplings of E
(1)
ST = 52µeV , E

(2)
ST =

47µeV , ∆
(i)
1 = 0.64 × E

(i)
ST , and ∆

(i)
2 = 0.58 × E

(i)
ST ,

which minimizes the effect of charge noise on the sin-
gle qubit terms, JIZ and JZI

17. The interqubit distance
is taken arbitrarily to be 2R = 8a ≈ 543nm, which is
similar in scale to non-capacitively coupled two-qubit sil-
icon devices3. The Coulomb interaction terms are then
Vf = 181µeV, Vm = 227µeV, and Vn = 303µeV.

It should be noted that the 9× 9 Hamiltonian implic-
itly assumes that only the lowest orbital can be popu-
lated. In general, there may be orbital excitations as
well. Matrix elements which couple the 9 × 9 Hamil-
tonian to these higher energy terms can be shifted into
the 9 × 9 Hamiltonian and treated perturbatively using
the Schreiffer-Wolff transformation14,24,25. The nth or-
der perturbation term will go like tn+1/(∆U)n, where t
is the transition rate to the higher-energy states and ∆U
is the energy gap between the high-energy states and low-
energy states. Since the transition rate is related to the
movement of an electron into an excited orbital within a

a

b

FIG. 2. Semi-log plot of the magnitude of the coupling term,
JZZ , with ε1 = ε2 = ε, as a function of detuning (a). The
spectrum of the Hamiltonian assuming ε1 = ε2 = ε (b). At
large detunings, the four lowest energy levels (the logical sub-
space) are approximately parallel, signifying a coupling close
to zero. As the detuning decreases, the logical subspace ap-
proaches the leakage space, causing an increased interaction.

single well, it is approximated by the Coulomb integral

〈φRi
φRj
|C|φRk

φ̃Rl
〉 ≈ 0.1µeV, where φ̃Rm

denotes an or-
bital excitation centered at Rm, and Ri, Rj , Rk and Rl
are assigned the same numeric value (see Appendix B).
Assuming ∆U ∼ ~ω = 0.38meV, the largest of the per-
turbative terms will be approximately 50 peV, which is
more than an order of magnitude smaller than the mini-
mum value of JZZ we consider (see Figure 2(a)). Under
these assumptions, the 9× 9 Hamiltonian accurately ap-
proximates the total Hilbert space.

Figure 2(b) shows the effect of the detuning on the
effective coupling strength, where we set ε1 = ε2 = ε
for simplicity. Note that it is not the Coulomb energy
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itself that is directly relevant, but the energy difference
between eigenstates. At large detunings, the four low-
energy eigenstates making up the effective Hamiltonian
are all roughly in (1, 2, 2, 1) charge configurations. The
energy difference between low-energy eigenstates due to
the Coulomb interaction will be 0 since all eigenstates
are in the same charge configuration, effectively giving
JZZ = 0. At small detunings, the low-energy eigenstates
will be mixtures of (1, 2, 2, 1), (2, 1, 1, 2), and (1, 2, 1, 2)
configurations. The low-energy eigenstates will then have
a nonzero energy difference due to the Coulomb interac-
tion. While the Coulomb interactions Vn, Vm, and Vf
are all on the same order of magnitude, it is the energy
differences between eigenstates which change by several
orders of magnitude.

The effect of any imperfections leading to nonidenti-
cal double-wells is a slight shift in the value of the cou-
pling, but the behavior is qualitatively unchanged. For
example, if the difference in Coulomb interaction between
electrons in a (2, 1, 2, 1) configuration and (1, 2, 1, 2) con-
figuration is equal to 4µeV, corresponding to, e.g., an
imperfection causing intradot distances to differ by 5nm,
then the shift in coupling, ∆JZZ , would be perturbed by
between 65neV around ε = 100µeV and 0.4neV around
ε = 200µeV.

IV. ADIABATIC RAMP

Both qubits are typically parked at an idle position at
large detuning where the interaction is negligible, which
we denote by εinit. The two logical states of each qubit
are defined as the lowest two eigenstates at that detun-
ing. In order to perform an entangling operation, we
adiabatically lower the detuning over a time tramp to a
strongly interacting detuning εwait where the qubits are
held for a time twait. The detuning is then adiabatically
returned back to εinit. Thus, at the end of the pulse,
minimal population has been transferred, and the qubits
have picked up a nonlocal state-dependent phase.

We set εinit = 200µeV, so that the coupling is approx-
imately 0 at the beginning and end of the ramp. As
seen in Figure III, an avoided crossing between the log-
ical subspace and leakage space occurs roughly around
ε = 130µeV. Choosing a value of εwait below this point
will require a long ramp time in order for the adiabatic
approximation to be satisfied. For this reason, we restrict
ourselves to εwait ≥ 130µeV.

Given that the coupling increases quickly as the detun-
ing approaches the avoided crossing, it is useful to choose
a pulse such that ε̇ decreases as ε → εwait. This ensures
that the detuning will vary quickly when the gap between
the logical and leakage space is large, and will vary slowly
as the gap shrinks, minimizing nonadiabatic population
loss into the leakage space. Such a pulse can be found as
the numerical solution to the differential equation,

ε̇(t) =
1

α
(∆E(ε))

2
, ε(0) = εinit, t ∈ [0, tramp] (5)

FIG. 3. An example of the total pulse. The detuning is
lowered from εinit to εwait over a time tramp. It is held at this
point for a time twait, before being raised back to εinit over a
time tramp. Here, α/~ = 79.0, tramp = 8.0ns, twait = 2.9ns,
εinit = 200µeV, and εwait = 145µeV.

where ∆E(ε) is the detuning-dependent energy difference
between the fourth and fifth adiabatic eigenstates, α is an
arbitrary scaling factor which allows for control over the
ramp time, and tramp is defined via ε(tramp) = εwait

26.
The detuning is swept back to its initial value via the
time-reversed ramp shape. An example pulse shape is
shown in Figure 3.

This pulse shape is motivated by the Landau-Zener for-
mula, which states that nonadiabatic transitions between
the highest-lying eigenstate in the logical basis, ψ4, and
the lowest-lying eigenstate in the leakage space, ψ5, are
suppressed to first order when27

P =

∫ tramp

0

ei∆EtV dt� 1, (6)

where V is the coupling between states given by i〈ψ4|ψ̇5〉,
which is equivalent to i 〈ψ4| Ḣ |ψ5〉 /∆E. Setting P � 1
is then loosely equivalent to setting |V | � |∆E|, which is

true when 〈ψ4| Ḣ |ψ5〉 � (∆E)2. This can also be writ-
ten as 〈ψ4| ∂εH |ψ5〉 /α� 1, where α is defined as in Eq.
5. We note that the factor 〈ψ4| ∂εH |ψ5〉 can be dropped,
since it is of order unity and does not significantly im-
pact the inequality. This is known as the local adiabatic
approach26,28,29.

In the noise-free, adiabatic approximation, the ideal
evolution operator is

Ũθ = exp

[
−i
∫ twait+2tramp

0

dtHeff/~
]
, (7)
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where, for a given ramp time, the wait time is chosen such
that the nonlocal phase acquired over the duration of the

pulse is the desired angle, θ =
∫ twait+2tramp

0
dtJZZ/~. For

a realistic simulation of the two-qubit operations, we can
also consider the effects of noise on the qubits. The ef-
fects of charge noise on the qubits are modeled by ran-
dom static perturbations in the detuning drawn from
a Gaussian distribution with an experimentally mea-
sured standard deviation of σ = 4.4µeV30, i.e., εi(t) →
ε(t) + δεi, with δεi independent of time and unique for
each qubit. In addition, finite ramp times contribute
nonadiabatic leakage. Thus, to obtain the actual evolu-
tion, when targeting a nonlocal phase θ, we numerically
solve Schrodinger’s equation for the full 9 × 9 Hamilto-
nian, using the “odeint” package available in SciPy31.
Note that we use the predetermined value of twait found
from Eq. 7. This gives the full evolution operator, which
includes the effects of charge noise as well as leakage. We
then project the full evolution operator onto the lowest
four eigenstates of the full Hamiltonian at ε = εinit (i.e.,
the logical basis) to get the effective (nonunitary) evolu-
tion operator, Uθ.

To target a maximally entangling operation, we choose
θ = π/4 so that the operation is locally equivalent to
exp [−iπσZZ/4]. Note that this is sufficient, along with
local rotations, to form a universal gate set. The fi-
delity between the noisy and noise-free evolution oper-

ators, F (Uπ/4, Ũπ/4), is calculated using the two-qubit
fidelity defined in Ref. 32,

F (U1, U2) =
1

16

4 +
1

5

∑
i,j∈{I,X,Y,Z}

tr
(
U1σijU

†
1U2σijU

†
2

) ,

(8)
averaged over 500 noise realizations.

The choice of α (thus, tramp) is arbitrary. Increasing
the value of α serves to increase the ramp time, thus
reducing errors due to leakage. Errors due to charge
noise can be suppressed by considering the Hamiltonian
in the adiabatic frame, Eq. 4. The effect of charge noise
on the terms in the Hamiltonian can be quantified by
∂JZZ/∂ε, ∂JIZ/∂ε, and ∂JZI/∂ε, which are all on the
same order of magnitude. Fluctuations in these terms
can be suppressed by interweaving applications of spe-
cific single-qubit operations in between applications of
the noisy two-qubit operation. Specifically, JIZ and JZI
fluctuations can be suppressed completely with the se-
quence,

Ucorrected(π/4) = Uπ/8σXXUπ/8σXX , (9)

where σXX is a local π rotation about σX on both qubits.
Note that while σXX is a two-qubit operation, it de-
scribes two single-qubit operations being performed si-
multaneously, and is non-entangling. Assuming essen-
tially instantaneous single-qubit operations relative to
the two-qubit gate times and negligible infidelities, we
again numerically characterize the full evolution opera-
tor as before, except that now the Schrodinger equation is

FIG. 4. Fidelity of the effective evolution operator versus
ramp time, for both the corrected and uncorrected sequences,
at εwait = 145µeV. twait is chosen at each point so that the
noisy and noise-free operations in the logical subspace are
locally equivalent to Utarget.

solved for a pulse which is raised and lowered twice, with
a nonlocal phase of π/8 accumulating over each pulse. It
should also be noted that the second application of σXX
is not necessary for error correction and does not affect
the entangling power of the final operation. It simply
adjusts the local part of the evolution to make the final
operation equal to Uπ/4. If local rotation errors are a
concern, one could leave out the second application of
σXX . Then, since the local operations have already been
realized with fidelities above 99%30, one might expect
the corrected two-qubit gate fidelities we report to be
lowered by at most 2% and even less if the local opera-
tions are improved. However, any more elaborate pulse
sequences that involve a larger number of local opera-
tions may introduce more error than they correct. The

fidelity F (Ucorrected, Ũπ/4) versus ramp time is shown in
Fig. 4.

Optimizing over εwait, we found that the largest fidelity
over all values of tramp was produced at approximately
εwait = 145µeV, which is the value we use in the plot. For
the simple uncorrected operation, we achieve a maximum
fidelity of approximately 87.8% at tramp = 5.3ns. For the
corrected operation, we achieve a maximum fidelity of
approximately 94.3% at tramp = 4.3ns.

Sub-ns ramp times have low fidelity, due to large adia-
batic errors close to 25% and 50% for the uncorrected and
corrected operations respectively. Increasing the ramp
time quickly lowers errors due to nonadiabaticity below
1%, which is negligible compared to the errors due to
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charge noise. After errors due to nonadiabaticity become
negligible, the fidelity remains roughly constant, rather
than quickly becoming suppressed as the ramp time in-
creases, as one would expect. The nonlocal phase, θ,
can be split into the phase acquired over the ramping
times when t ∈ [0, tramp] ∪ [tramp + twait, 2tramp + twait],
and the phase acquired over the waiting time when
t ∈ [tramp, tramp + twait], which we denote respectively
by θramp and θwait. As tramp increases, θramp also in-
creases. Since θramp + θwait = θ, θwait must decrease as
θramp grows, meaning that as the ramp time increases,
the wait time decreases. Thus, the total gate time is
roughly constant just beyond the first few points for both
lines.

For the uncorrected operation, a sharp drop in fidelity
is seen around 10ns. At this point, the nonlocal phase
acquired by ramping up and immediately down (i.e.,
twait = 0) is larger than π/4. Regardless of the choice
of twait, the nonlocal phase acquired by the evolution
operator will be larger than π/4. Since the evolution
operator is periodic in θ, we must then choose twait so
that θ = π/4 + 2π, leading to twait close to 80ns, which
is more than double the wait time required for smaller
ramp times. The overall longer gate times lead to lower
fidelities due to charge noise. A similar effect is also seen
in the fidelity of the corrected operation.

This is comparable to the performance of Ref. 17 which
uses a similar model, but a slightly different scheme.
Rather than choosing the form of the ramp function
to minimize nonadiabatic errors, Ref. 17 considers a
sine-squared ramp for experimental simplicity and nu-
merically optimizes simultaneous detuning and tunneling
pulses, leading to a maximum fidelity around 90%.

V. CONCLUSION

We have shown that the Coulomb interaction between
two hybrid qubits leads to a significant coupling strength
within the logical subspace. Adjustment of the individ-
ual detunings allows for control over the charge config-
urations of the individual qubits, and hence the overall
coupling strength. We have shown that this controllabil-
ity allows for fast entangling operations to be performed
in less than 50ns.

By carefully choosing the detuning pulse shape and
using known single-qubit error-correcting sequences, we
have shown that fidelities over 90% can be achieved in the
presence of realistic charge noise values, without chang-
ing tunnel couplings. Further increase in fidelity at the
same noise levels would require going through a nar-
row avoided crossing in the energy eigenstates to access
stronger couplings but while maintaining adiabaticity.
This suggests the necessity of some sort of shortcut-to-
adiabaticity driving protocol, with full optimization on
the detuning pulse shape simultaneous with tunnel cou-
pling control, similar to the analysis in Ref. 17 but with
less restriction on the allowed pulse shapes, in order to

further improve the fidelity.
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Appendix A: Two-Qubit Hamiltonian

For completeness, we present the two-qubit Hamilto-
nian given by Eq. 3 in the main text. The full matrix is
given by

H =



E0 0 ∆
(2)
1 0 0 0 ∆

(1)
1 0 0

0 E1 ∆
(2)
2 0 0 0 0 ∆

(1)
1 0

∆
(2)
1 ∆

(2)
2 E2 0 0 0 0 0 ∆

(1)
1

0 0 0 E3 0 ∆
(2)
1 ∆

(1)
2 0 0

0 0 0 0 E4 ∆
(2)
2 0 ∆

(1)
2 0

0 0 0 ∆
(2)
1 ∆

(2)
2 E5 0 0 ∆

(1)
2

∆
(1)
1 0 0 ∆

(1)
2 0 0 E6 0 ∆

(2)
1

0 ∆
(1)
1 0 0 ∆

(1)
2 0 0 E7 ∆

(2)
2

0 0 ∆
(1)
1 0 0 ∆

(1)
2 ∆

(2)
1 ∆

(2)
2 E8


,

(A1)
where

E0 = Vn −
ε1

2
− ε2

2
(A2)

E1 = E
(2)
ST + Vn −

ε1

2
− ε2

2
(A3)

E2 = Vm −
ε1

2
+
ε2

2
(A4)

E3 = E
(1)
ST + Vn −

ε1

2
− ε2

2
(A5)

E4 = E
(1)
ST + E

(2)
ST + Vn −

ε1

2
− ε2

2
(A6)

E5 = E
(1)
ST + Vm −

ε1

2
+
ε2

2
(A7)

E6 = Vm +
ε1

2
− ε2

2
(A8)

E7 = E
(2)
ST + Vm +

ε1

2
− ε2

2
(A9)

E8 = Vf +
ε1

2
+
ε2

2
(A10)

Appendix B: Two-Electron Coulomb Integrals

The general two-electron Coulomb integral between
harmonic ground-state harmonic wavefunctions is given
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in Ref. 33 as,

〈φRi
φRk
|C|φRj

φRl
〉 =

e2

4πκ

√
π

2

1

aB
exp

[
− 1

4a2
B

(
(Ri −Rj)2

+ (Rk −Rl)2
)]

× exp

[
− 1

16a2
B

(Ri +Rj −Rk −Rl)2

]
× I0

[
1

16a2
B

(Ri +Rj −Rk −Rl)2

]
, (B1)

where I0 is the zeroth-order modified Bessel function of
the first kind, aB is the effective Bohr radius, κ is the
effective dielectric constant, and Rm is the distance from
the center of the two DQDs to the center of the respective

electron’s wavefunction.
We are also interested in evaluating terms which in-

volve the interchange of electrons between different or-

bitals, such as 〈φRiφRk
|C|φRj φ̃Rl

〉, where φ̃Rm denotes
an orbital excitation centered at Rm. This integral can

be evaluated by noting that φ̃Rm =
√

2aB∂φRm/∂Rm.

Using this relationship in 〈φRiφRk
|C|φRj φ̃Rl

〉 and noting
that the integral is with respect to the spatial coordinates
of the wavefunctions, independent of Rm, the derivative
can be pulled out of the integral, giving,

〈φRiφRk
|C|φRj φ̃Rl

〉 =
√

2aB
∂

∂Rl
〈φRiφRk

|C|φRjφRl
〉,

(B2)
where the integral on the RHS is given by Eq. B1.

1 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120
(1998).

2 J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L.
Morton, D. N. Jamieson, A. S. Dzurak, and A. Morello,
Nature 489, 541 (2012).

3 M. Veldhorst, C. H. Yang, J. C. C. Hwand, W. Huang,
J. P. Dehollain, M. J. T., S. Simmons, A. Laucht, H. F. E.,
K. M. Itoh, A. Morello, and A. S. Dzurak, Nature 526,
541 (2015).

4 T. F. Watson, P. S. G. J., E. Kawakami, W. D. R., P. Scar-
lino, M. Veldhorst, D. E. Savage, M. G. Lagally, M. Friesen,
S. N. Coppersmith, M. A. Eriksson, and L. M. K. Van-
dersypen, Nature 555, 633 (2015).

5 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird,
A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson,
and A. C. Gossard, Science 309, 2180 (2005).

6 H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu,
V. Umansky, and A. Yacoby, Nature Physics 7, 109 (2011).

7 D. Stepanenko and G. Burkard, Phys. Rev. B 75, 085324
(2007).

8 G. Ramon and X. Hu, Phys. Rev. B 81, 045304 (2010).
9 G. Ramon, Phys. Rev. B 84, 155329 (2011).

10 F. A. Calderon-Vargas and J. P. Kestner, Phys. Rev. B 97,
125311 (2018).

11 J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C.
Gardner, M. J. Manfra, and A. Yacoby, npj Quantum
Information 3 (2017), 10.1038/s41534-016-0003-1.

12 M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm,
V. Umansky, and A. Yacoby, Science 336, 202 (2012).

13 R. K. L. Colmenar and J. P. Kestner, ArXiv e-prints
(2018), 1810.04208.

14 Z. Shi, C. B. Simmons, J. R. Prance, J. K. Gamble, T. S.
Koh, Y.-P. Shim, X. Hu, D. E. Savage, M. G. Lagally,
M. A. Eriksson, M. Friesen, and S. N. Coppersmith, Phys.
Rev. Lett. 108, 140503 (2012).

15 S. Mehl, ArXiv e-prints (2015), 1507.03425.
16 S. Mehl, Phys. Rev. B 91, 035430 (2015).

17 A. Frees, S. Mehl, J. K. Gamble, M. Friesen, and S. N.
Coppersmith, ArXiv e-prints (2018), 1812.03177.

18 T. S. Koh, J. K. Gamble, M. Friesen, M. A. Eriksson, and
S. N. Coppersmith, Phys. Rev. Lett. 109, 250503 (2012).

19 J. C. Abadillo-Uriel, B. Thorgrimsson, D. Kim, L. W.
Smith, C. B. Simmons, D. R. Ward, R. H. Foote, J. Cor-
rigan, D. E. Savage, M. G. Lagally, M. J. Calderón, S. N.
Coppersmith, M. A. Eriksson, and M. Friesen, ArXiv e-
prints (2018), 1805.10398.
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