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Renewed interest in the homogeneous electron gas (HEG) has been stimulated by recent accurate
simulations of it over a wide range of densities and temperatures. Those data, combined with known
theoretical limits, have led to analytical representations of the free energy. Such a representation is,
at least in principle, the complete HEG equation of state. The initial objective here is to establish
that the two best representations [“corrKSDT”, Phys. Rev. Lett. 112, 076403 (2014), Phys. Rev.
Lett. 120, 07640 (2018), and “GDB” Phys. Rev. Lett. 119, 135001 (2017)] of the simulation data
and constraints are effectively the same in both functional form and accuracy of representation. The
second objective is to disclose and delineate a significant difficulty. Despite their expected accuracy
for the free energy, the underlying functional form is not adequate for derived thermodynamic
properties. As an example, the specific heats obtained from the representations exhibit anomalies
suggesting the need first for additional simulation data in critical regimes, then for refined fitting
functions. The existing representations are, however, almost certainly adequate for applications
based on the free energy alone (e.g., density functional theory for warm dense matter). The third
objective is to show that, despite their inability to provide a complete thermodynamic description
of the HEG, the best analytical representations do provide a fully adequate exchange-correlation
local density approximation for free energy density functional calculations.

I. INTRODUCTION

The homogeneous electron gas (HEG) is a well-studied
system at zero temperature as a model for electrons
in solids, and as a model for fully ionized plasmas at
temperatures T well above the Fermi temperature TF .
At intermediate temperatures and densities, for a long
while far less information was available from either the-
ory or simulation, in large part due to lack of motivation.
That has changed recently with growing experimental
access to observations on states of matter in this do-
main. Such access is driving growth in the fields of warm
dense matter (WDM) and high energy density physics
(HEDP). Accordingly, the first quantum Monte Carlo
(QMC) simulations for the HEG in this domain were re-
ported only six years ago1. Subsequently Dornheim et

al.2 produced improved QMC results for temperatures
0.5 ≤ t = T/TF ≤ 8 (over a wide density range (Wigner-
Seitz radii 0.1 ≤ rs ≤ 10). They also developed and used
significantly improved finite-size corrections. Those data
currently seem to be the most accurate finite-T HEG re-
sults available.

For practical purposes a representation interpolating
such QMC data and extrapolating it via known theoreti-
cal limits is needed. The target is an equation of state for
the complete thermodynamics of the HEG, provided by
the free energy as a function of rs and t. A rather com-
plete review of the recent simulations and their represen-
tations is given in Ref. 3. As noted there, the program
for constructing a free energy from theoretical limits and
simulation data originally was presented and used in Ref.
4. That reference presented a representation, “KSDT”,
based on the original data of Ref. 1 and the T = 0 data

of Ref. 5. Subsequently Groth et al.6 used the KSDT
approach and protocol to reparametrize the exchange-
correlation (XC) contribution to the free-energy against
the finite-size-corrected QMC results of Ref. 2 along with
the Singwi-Tosi-Land-Sjölander (STLS) approximation7

for low-t (t < 0.5) behavior and for connection with the
T = 0 data of Ref. 5. The resulting representation is
denoted as “GDB” (as in Ref. 3). Essentially simultane-
ously, a small error in the use of zero-temperature data
for KSDT was detected and repaired to yield the cor-
rected KSDT representation “corrKSDT” (see Supple-
mental Material for Ref. 8).

That is the context. The objectives here are three-
fold. First is to show that the representations, corrKSDT
and GDB, give essentially indistinguishable free energies
over the entire rs, t plane of interest. That statement is
only very slightly modified for KSDT compared to GDB.
An even stronger equivalence of corrKSDT and GDB is
observed for the XC contribution alone to the free energy.

The second objective is to point out that those two in-
terchangeable representations do not seem to give accu-
rate descriptions of derived HEG thermodynamic prop-
erties and discuss implications. Specifically, the T -
dependence reflected in the specific heat exhibits anoma-
lies. Other possible peculiarities are associated with the
extreme low-T specific heat (an effective mass enhance-
ment) and odd oscillations in the difference between fully
polarized and unpolarized exchange free energies. We
conclude that the present representations are incomplete
for a full understanding and prediction of HEG thermo-
dynamics. Consideration of the KSDT protocol that the
representations share leads to some specific conclusions.
Without additional, very accurate QMC data (and/or
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FIG. 1: The lower bound of relative magnitude of fxc with re-
spect to the total free-energy per particle, ftot, for the HEG
calculated as log10(|fxc(rs, t)|/[|fs(rs, t)| + |fxc(rs, t)|]). The
denominator is defined as the sum of absolute values of two
free-energy components to avoid meaningless values at condi-
tions for which cancellation between fs and fxc occurs. Valid-
ity domains for PB-PIMC and DMQMC are in the directions
away from the two curves indicated by the arrows. See text
for notation.

new formal constraints) for t ≤ 0.5 and small rs as
well as dense sampling of the large-rs (rs > 8) region,
a parametrization that gives accurate HEG temperature
derivatives over a larger rs, t domain seems unachievable.

Figure 1 illustrates the point. It shows the ratio of the
XC free energy per particle fxc to the upper bound of
the total free energy per particle |fs(rs, t)| + |fxc(rs, t)|
where fs is the non-interacting free-energy per particle
as a function of rs and t. Superimposed are two curves
that delineate the parameter combinations (from Ref. 9:
the PB-PIMC curve is extrapolated to the large-rs val-
ues and the DMQMC one is extrapolated to the high-T
and low-T limits) for which two methods, permutation-
blocking path integral Monte Carlo (PB-PIMC)10 and
density matrix QMC (DMQMC)11, can be used to obtain
accurate finite-T reference data for the HEG. The arrows
with each curve point to the valid region. Evidently, the
domain in which neither of the accurate methods is appli-
cable coincides with much of the region in which the XC
free energy per particle has the same order of magnitude
as the upper bound of the total free-energy per particle.

The third objective is to demonstrate that despite
those notable limitations of the current best represen-
tations of the HEG XC free energy, the most important
application of those representations is unscathed. Specif-
ically, those representations provide a thoroughly ade-
quate local density approximation (LDA) to the XC free
energy for density functional theory (DFT) for calcula-

tion of properties for real systems of electrons and ions
under the extreme conditions of WDM. We confirm that
for use as the LDA, corrKSDT and GDB are interchange-
able and KSDT itself is essentially as good. Not only is
this important in its own right, it is also critical for more
sophisticated XC free-energy approximations based on
exact limits and constraints. They must have the HEG as
a limit. An example is the first finite-T generalized gra-
dient approximation (GGA) XC free-energy functional8.
It uses corrKSDT as its LDA ingredient, hence its HEG
limit.

II. EQUIVALENCE OF REPRESENTATIONS

There are many representations for the HEG free en-
ergy based on approximate theories and various simula-
tions (see Ref. 3 for a thorough description). Here and
below attention is primarily on corrKSDT and GDB as
the most controlled and accurate incorporation of the
latest QMC and theoretical constraints. KSDT enters
because, as mentioned already and discussed where ger-
mane below, it differs only slightly from corrKSDT.
The universal part (i.e. that which is independent of

any external potential) of the free energy per particle of
a many-electron system conventionally is decomposed as
a contribution from the non-interacting system, fs, the
Hartree contribution, fH , and that from XC, fxc

f = fs + fH + fxc . (1)

For the HEG, fs is a function of rs and t which is known
exactly and fH = 0 because of the neutralizing back-
ground. Thus the difficult many-body challenge is de-
termination of fxc. Note that only the total free energy
matters for observable physical quantities.
In this section, it is shown that the corrKSDT, KSDT,

and GDB representations are all equivalent with respect
to the total free energy f (rs, t) per particle. The stronger
requirement of equivalence for fxc (rs, t) also holds for
corrKSDT and GDB. The former equivalence is impor-
tant for DFT applications to, e.g., WDM; see below. The
latter is of more consequence for understanding the origin
of many-body XC effects in the HEG. Those are discussed
in the next section.
Consider first the accuracy of KSDT as a representa-

tion of the best QMC data from Ref. 2. Figure 2 shows
the comparison of f (rs, t) as a function of t for several
values of rs. The agreement clearly is excellent. Quanti-
tatively, the relative differences

∆ftot
|ftot|

:=
|ffit

tot − fQMC
tot |

|ftot|
(2)

for t = 2, 4, and 8 are 0.22% or below. For t = 1 the
maximum relative difference is 0.35%. For t = 0.5 the
relative difference has similar values for all rs except rs =
0.5, 0.4 and 0.3. At those values there is a cancellation
between the fs and fxc terms, the denominator in Eq. (2)
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FIG. 2: Comparison between the total free energy per particle
from the KSDT parametrization and data from Ref. 2 for
the unpolarized HEG at rs = 4, 2, 1, 0.5 (calculated using
data from the last column in Table II in the Supplemental
Material), and at rs = 0.25 data from the GDB fit6.

thus becomes small, and the relative difference increases
to 0.87%, 1.14% and 6.89% respectively.

What is not evident from Fig. 2 is the fact that
|fs (rs, t) | >> |fxc (rs, t) | for the domain of high den-
sity, rs < 1, and comparatively high-temperature, t ≥
2. Regarding that regime, Ref. 12 compared various
parametrizations of fxc alone against the QMC data and
remarked about supposedly significant errors in ∆fxc/fxc
at rs =1, t = 8 and rs =0.1, t =4. But the relevant point
is that the relative total free-energy error ∆ftot/|ftot| at
those points is 0.017% and 0.0045% respectively. See
Supplemental Material to Ref. 8 for detail. Figure 1
shows that in this high-density regime and especially if
temperature is high, the XC term is few order of mag-
nitude smaller as compared to the upper bound of the
total free-energy, therefore the exchange-correlation does
not play any role.

Since the HEG per se is the system of interest, one
must compare corrKSDT and GDB for fxc alone (recall
that the non-interacting contribution is known exactly
in this case). A successful representation requires two
ingredients, QMC data accurate over the (rs, t) plane and
an analytical fitting procedure constrained by existing
theories, thermodynamic consistency, and exact limits.
Refs. 5 and 2 provided accurate QMC data for the HEG
over a wide density range at t = 0 and 0.5 ≤ t ≤ 8
respectively. The required sophisticated fitting procedure
was developed in Ref. 4. The two most accurate fits to
the HEG XC free-energy, corrKSDT8 and GDB6 both
use that analytical fitting procedure and QMC data sets.

In the case of GDB, the lack of low-t QMC data
(t < 0.5) was addressed by approximate theoretical STLS
results7. For the same purpose, in the present work we
used the original KSDT fit to generate data for t < 0.5
(those data are accurate for this temperature range as

FIG. 3: Comparison between fxc values from the corrKSDT
and GDB parametrizations and QMC data from Ref. 13 for
the unpolarized HEG at rs = 0.25, 0.5, 1, 2 and 4. The
ground-state limit (t = 0, Ref. 5) QMC values also are shown.

confirmed in Refs. 2 and 13) to complement the QMC
data (at t ≥ 0.5) for the corrKSDT parametrization.

As an aside, the reasons for KSDT accuracy in that
regime deserve comment. The key point is that the
KSDT representation is not simply a fit to the Ref. 1
QMC data. Rather, the KSDT parametrization also was
constrained by existing theories, thermodynamic consis-
tency, and exact limits. Deficiencies in the QMC data or
finite size corrections therefore did not necessarily prop-
agate directly to KSDT. This is confirmed by a result
from Ref. 13. Those authors showed that the Brown et
al. QMC data1 are somewhat inaccurate at rs = 1.0, 0.1,
and 0.25. To the resolution shown in Fig. 5 of Ref. 13,
the KSDT parametrization does not reproduce the incor-
rect Brown et al. data for rs = 1.0 but instead matches
the subsequent data of Ref. 13 almost perfectly. This is a
consequence of the KSDT construction, as confirmed by
the fact that the same figure in Ref. 13 shows that KSDT
results lie very close to the second-order analytical results
known as the “e4” approximation14.

The outcome is that, despite some differences in low-
t treatment, the two fits, corrKSDT and GDB, become
practically identical. The mean absolute relative devia-
tion for fxc calculated over the 72 (rs, t)-data points used
for the corrKSDT representation is only 0.1%. The max-
imum relative deviation is 0.3% (see details in Supple-
mental Material of Ref.8 ). Figure 3 demonstrates that
the two fits match the available QMC data indistinguish-
ably for t ≥ 0.5 and are in virtually perfect agreement
for t < 0.5.
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III. THERMODYNAMIC DERIVATIVES

A. Unpolarized HEG

The total free energy is the state function whose deriva-
tives with respect to density and temperature provide
other thermodynamic quantities of interest. Consider
first the entropy per particle, σ(rs, t)

σ(rs, t) = −
1

TF

∂f(rs, t)

∂t

∣∣∣
rs
. (3)

Burke et al.15 found that the KSDT representation
for f(rs, t) leads to an HEG total entropy per particle
that goes negative over a remote region of state space,
roughly rs ≥ 10 and t ≤ 0.1. Immediately, the neg-
ligible impact of that anomaly for WDM calculations
was confirmed16, though it is a flaw in the KSDT rep-
resentation. As part of the corrKSDT reparametriza-
tion (to correct the T = 0 data error in KSDT), en-
tropy positivity was enforced up through rs = 75. This
is between the first HEG phase transition (polarized
liquid) and Wigner crystallization17. The rationale is
that those phase boundaries should delineate the limit-
ing range of the fit. (See further discussion below.) The
perhaps expectable result (given the equivalence of the
two parametrizations) is that negative entropies still are
obtained using the corrKSDT and GDB representations,
but the onset of negative entropy is at very high-rs values
(near 80 and higher). In summary, there is no fundamen-
tal concern about these representations for the entropy
per particle so long as HEG phase transitions are not an
issue.
Next, consider the electron specific heat, cV(rs, t)

cV(rs, t) = −
t

TF

∂2f(rs, t)

∂t2

∣∣∣
rs

=
1

TF

∂ε(rs, t)

∂t

∣∣∣
rs

(4)

It is well-known that small errors in a fitted function may
produce large errors in high-order derivatives. The spe-
cific heat thus is a challenging property because of its
dependence upon the second temperature derivative of
f(rs, t) or upon the first derivative of the internal en-
ergy ε(rs, t) = τs(rs, t)+εxc(rs, t) represented as a sum of
the non-interacting kinetic and XC internal energy terms.
Figure 4 shows cV calculated for the non-interacting and
interacting HEG from the corrKSDT and GDB represen-
tations. As anticipated, the specific heat curves from the
two parametrizations are practically identical, a conse-
quence of the small procedural differences of parameter
fitting in the two. However, in both cases an unexpected
oscillatory behavior for t between 0.1 and 1 for rs ≥ 10 is
seen, increasing in amplitude with increasing rs. Though
that oscillatory behavior might be an indication of some
kind of critical point, it is far more plausible that it is an
artifact introduced by the QMC data of Ref. 2 and the
way that corrKSDT and GDB represent those data.

Pursuing that point, further analysis shows that the
representations for the X and C contributions to the in-
ternal energy, εx and εc, have opposite slopes for t be-
tween 0.1 and 4 and both slopes change sign at t ≈ 0.2
(see rs = 10 curve in Fig. 5(a)). A small dip on the εx
curve and a bump on the εc curve produce oscillations
in the dεx/dt and dεc/dt derivatives. For cV the oscil-
lations are amplified by a 1/TF pre-factor which is large
for large-rs. The two lower panels in Fig. 5 show the
X and C contributions to the internal energy derivative.
Observe that there are significant cancellations between
those contributions. The cancellation is almost total for
rs ≥ 10. That leads to a drastic decrease of accuracy for
cV . A small relative error in the dεc/dt derivative may,
after cancellation between the large magnitude X and
C contributions followed by multiplication by the large
pre-factor 1/TF, yield a large error in cV. Denser QMC
sampling in rs at large-rs and low-t should improve the
fit accuracy (there is nothing else available to constrain
or shape the fit for rs > 10) and reduce errors in temper-
ature derivatives.
Whether the cancellation-induced oscillations in cV

would occur in LDA calculations on realistic physical sys-
tems is an open question that at this point is obscured by
computational technique. In the usual technique, cV is
obtained from differentiating a convenient analytical rep-
resentation of the total internal energy. That analytical
expression is fitted to internal energy calculations at var-
ious T for a fixed volume V . The approach is motivated
by the fact that separate analytical temperature deriva-
tives of the exchange and correlation free energies are not
implemented in any code of which we are aware. In or-
dinary calculations there simply is no interest in those
individual contributions. Expenditure of effort on such
implementation therefore is unlikely to be a priority un-
til an explicit focus of research is to resolve the peculiar
cV behavior we have identified here in the HEG. That is
substantially beyond the scope of the present work.
One aspect of the foregoing analysis deserves mention,

namely the partitioning into X and C contributions. For
fxc = fx + fc, we have

fx(rs, t) = −
1

2π3β2

∫ η

−∞

[I−1/2(η)]
2dη ≡ Ãx(t)ex(rs)

fc(rs, t) = fxc(rs, t)− fx(rs, t) . (5)

Here η := βµ, β := (kBT )
−1, Iα is the Fermi-Dirac inte-

gral, µ is the chemical potential defined by the average

density n, ex = − 3
4

(
3
π

)1/3

n1/3 is the zero-T LDA X en-

ergy per particle and Ãx is given by the very accurate
analytical fit given by Eq. (39) in Ref. 18. Internal XC,
X and C energy contributions are calculated with use of
Eq. (5) and the standard thermodynamic relation

εx/c(rs, t) = fx/c(rs, t)− t
∂fx/c(rs, t)

∂t

∣∣∣
rs
. (6)

The point of the preceding summary is that the XC
decomposition used here is not the same as the implicit
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decomposition used to construct corrKSDT, KSDT, and
GDB. In them, the first function in the numerator of the
KSDT Padé approximant (called a(t), Eq. (10) in Ref.
4) in t is, in fact the Perrot-Dharma-wardana approxi-
mation for fx

19,20. Crucially, however, we never use that
a(t) to extract fx. Rather, a(t) appears in KSDT (hence
also in corrKSDT and GDB) only as a reasonably good
fx approximation which then is corrected by the other
functions and fitting parameters in the remainder of the
KSDT form for the combined X and C representation
fxc. As a result, only in the high-density (low rs) limit
does fxc → fx ≈ a(t) which is Perrot-Dharma-wardana
exchange.

In constructing the KSDT representation, four for-
mally equivalent thermodynamic routes (Maxwell rela-
tions) were tested, after which the so-called route A was
selected; see Ref. 4 for details. corrKSDT in contrast
used route B which is based on use of the QMC potential
energy data only. GDB also had to use route B (see Ref.
3, section 8.2.5). As already noted, the two yield very
similar HEG cV behavior. We suspect that use of routes
C or D might give different cV results for large rs than the
values from using route A or B. We do not, however, have
all the QMC data (and finite-size corrections) required
to use routes C and D to obtain alternative parametriza-
tions to corrKSDT and test this speculation.

The limiting behavior of the electron specific heat at
low-T defines the Fermi-liquid effective mass m∗

m∗

m
= lim

t→0

cV(rs, t)

cV,s(t)
, (7)

where cV,s(t) is the non-interacting system specific heat.
For corrKSDT, KSDT, and hence for GDB, the small-t
series expansion of the XC internal energy εxc by con-
struction has quadratic and higher order terms but no
linear-t term. Therefore the specific heat exhibits physi-
cally correct linear low-t behavior21, cV ∼ t.

On fundamental grounds, both cV(rs, t) and cV,s(t) are
linear in t for small t, so the effective mass should ap-
proach a limit dependent only on rs. The functional rep-
resentations of corrKSDT and GDB therefore preserve
this behavior, despite the fact that they are not based on
any data below t < 0.0625.

A recently discovered oddity22 is that m∗/m obtained
from the KSDT representation has a larger amplitude
variation on 0 ≤ rs ≤ 1 than generally has been
expected23. Prior calculations have that amplitude range
as roughly 0.95 ≤ m∗/m < 1 whereas KSDT gives about
0.98 ≤ m∗/m ≤ 1.2. The prior calculations involve as-
sumptions and techniques the consequences of which are
difficult to assess. Hence it is not clear that the KSDT re-
sult is wrong, only that it is unexpected. Since no QMC
data were or are available for t < 0.0625 and rs ≤ 1,
KSDT was forced to be an extrapolation to the T = 0
data of Ref. 5 as well as an extrapolation from rs = 1
downward. The more recent QMC data2 do not resolve
that issue, as they are limited to t ≥ 0.5. The unusual

enhancement occurs as well for the improved representa-
tions corrKSDT and GDB, as shown in Fig. 6

B. Spin polarization anomaly

All of the discussion above refers to the unpolarized
HEG. More generally, however, the representations de-
pend on the degree of polarization. The difference in
fully spin-polarized and unpolarized XC free energies

∆fxc,pol(rs, t) := fxc;ζ=0(rs, t)− fxc,ζ=1(rs, t) (8)

is related to the spin stiffness. At T = 0 it is defined as
∂2ǫxc/∂ζ

2|ζ=0
24,25. Values of |∆fxc,pol| calculated from

GDB are plotted in Fig. 7 as a function of t. One sees
that the high-temperature behavior is very different for
rs = 1, 2 and rs ≥ 5 (remark: data between rs = 2 and
5 were not checked): ∆fxc,pol for rs = 1, 2 is positive for
all values of t, but this difference develops a sign change
at larger rs values. For example ∆fxc,pol becomes nega-
tive at t ≈ 70 and t ≈ 20 for rs = 5 and 10 respectively.
The equivalence of corrKSDT and GDB representations
once again is relevant. Recall that the parametrization
of corrKSDT was constrained explicitly to avoid nega-
tive entropies through the HEG zero-temperature spin-
polarization transition rs ≈ 70 (Ref. 17) but below the
Wigner crystal transition. The rationale for the latter
choice is that extrapolation by a continuous function in
rs across a symmetry breaking phase transition is inde-
fensible. The former choice is rationalized by the no-
tion that the zero-temperature spin-polarization rs is far
above the largest value for which finite-T QMC data are
available, so the zero-T polarization rs is best used to
provide a limit on the range of constraint enforcement
(e.g. entropy positivity) and not as a constraint in and
of itself. This logic applies for GDB as well. Therefore
it is questionable as to whether the GDB sign changes
∆fxc,pol are meaningful. Also perceptible oscillations de-
velop for large rs that do not seem physical26. While the
oscillations are large percentage-wise, they are with re-
spect to a very small magnitude. Absent any knowledge
of error bars on ∆fxc,pol therefore, the oscillations seem
largely immaterial: it makes little difference whether the
value at rs = 50 is 0.0002 or 0.0003. Note again that rs
= 50, is outside the range of state conditions for which
there was parametrization data.
The consistent theme thus uncovered is that a

parametrization for fxc which provides accurate high-
order temperature derivatives will require very accurate
QMC data for t < 0.5 and appropriate sampling of the
large-rs region.

IV. DATA ACCURACY VERSUS FITTING

ACCURACY

In the main, the accuracy of an fxc fit relies on the
accuracy of the reference QMC data and the extent to
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FIG. 4: Electron specific heat cV for the non-interacting and interacting HEG calculated with GDB (a) and corrKSDT (b)
parametrizations.

FIG. 5: Upper panels: (a) εxc, εx and εc energy per particle as
a function of temperature for rs = 10 and (b) dεxc/dt deriva-
tive (b). Lower panels: (c) dεx/dt and (d) dεc/dt derivatives.
All quantities calculated with GDB; corrKSDT gives virtually
identical results.

which exact constraints, limits, and thermodynamic con-
sistency are implemented in the underlying fitting proce-
dure. The other accuracy issue to be taken into account
is error introduced by the fitting procedure itself. Proce-
dures used in Ref. 2 provide a way to assess that. Those
authors used one of the thermodynamic routes defined in
Ref. 4 to obtain ffit

xc from their accurate reference QMC
potential energy data V QMC (combined with the STLS

FIG. 6: Effective mass enhancement calculated from the
KSDT, corrKSDT, GDB, and STLS (taken from Ref. 22)
parametrizations at t = 0.001. Overview left, expanded view
right.

FIG. 7: |∆fxc,pol| Eq. (8) from GDB.



7

data at t < 0.5): V QMC → ffit
xc . To estimate the accuracy

of that fit, we used a thermodynamic consistency test
from Ref. 4, namely regeneration of the potential energy
from the fitted XC free-energy: ffit

xc → V fit. Comparison
between the original QMC values V QMC and data ob-
tained from the fit, V fit, gives an error estimate for ffit

xc ,
as

∆ffit
xc ≈ ∆V = (V QMC − V fit) . (9)

We obtain ∆V = −0.0011 Hartree for t = 0.5 and rs = 4,
and relative errors, ∆ffit

xc /|f
fit
xc | = 0.7%, ∆V/|V QMC| =

0.8%. Both are significantly larger than the relative error
of 0.1% for the QMC V data reported in Ref. 2.
We note that Ref. 2 did something different from the

KSDT protocols that were used to determine GDB. In-
stead, they used a set of fixed-temperature fits of smooth
rs-dependent functions, not a fit of a two-variable func-
tion to the entire set of accurate QMC data. Error con-
trol in such fixed-t fits is easier than for the two variables
because the rs- dependence of fxc at fixed t is rather
featureless compared to its t-dependence at fixed rs. A
challenge to full two-variable parametrization therefore is
to avoid introducing much larger fitting errors than those
in the underlying QMC data when a full rs, t represen-
tation is built.

V. EXCHANGE-CORRELATION

APPROXIMATIONS

In the context of free energy DFT, inhomogeneous sys-
tems and not the HEG per se are the focus. What then
is critical is whether the analytical representation errors
for corrKSDT and GDB are acceptable, on the energy
scale of their intended application, for using those repre-
sentations as the LDA for DFT.
There are two types of application. One is as the fxc

approximation itself. The other is as a key ingredient
in more sophisticated XC approximations. Long expe-
rience with applications of ground-state DFT confirms
that such more advanced XC approximations (than the
LDA) are required to get the physics of many systems
right. The first step of refinement beyond the LDA is to
incorporate density-gradient dependence in the form of
GGAs27. They utilize gradient-driven local modulation
of the LDA, so a very high-quality LDA is an essential
ingredient. A highly pertinent example is our recently
presented KDT16 XC free energy approximation for fi-
nite T 8. The first non-empirical GGA fxc, it has the
corrKSDT representation as a key ingredient.
Systematic address of the issue of the legitimacy of

an fxc HEG representation as an LDA is helped by de-
lineation of the WDM regime. (By construction, the
T = 0 behavior of corrKSDT, KSDT, and GDB is guar-
anteed to be the correct LDA.) The low-density end of
the WDM density regime, hence the largest relevant rs
value, is arguably about 10. H, for example, at bulk den-
sity ρH = 0.005 g/cm3 is about a factor of 17 below the

liquid H density, yet has rs = 8.1. Similarly rs = 7.8
for Aluminum at ρAl = 0.05 g/cm3. That is a factor
of 50 smaller than ambient bulk solid Al density. Con-
versely, even rather modest rs values correspond to ex-
traordinarily highly compressed systems. As an example
rs = 0.25 corresponds to roughly 2000-fold compressed
Hydrogen (ρH = 180 g/cm3). For 0.25 ≤ rs ≤ 10 the
relevant reduced temperature range, 0.5 eV≤ kBT ≤10
eV is roughly 0 ≤ t ≤ 20. Figure 1 shows that a sig-
nificant part of these physically relevant ranges (rs >∼ 4,
t < 0.5 belongs to the critical density-temperature region
wherein no accurate reference QMC data for the HEG are
available to date.

The pertinent point is that those ranges are either
within the ranges discussed already with respect to HEG
representation fidelity or are verging on high-t limits.
Thus ∆ftot/|ftot|, Eq. (2), for corrKSDT never exceeds
about 0.02% for the HEG and the most conservative es-
timate of error8 is 0.3% up to t = 10. Matters improve as
t grows beyond that. This focus on ftot errors is critical,
because focus on fxc errors can be quite misleading. The
decomposition, Eq. (1), is important primarily to iso-
late the quantity for which approximation is required and
as a route to computational feasibility (e.g., the Kohn-
Sham procedure). That decomposition is unimportant

for many physical quantities of interest (e.g., pressure).

To be specific, in the WDM regime, DFT calcula-
tions of quantities for which the effects of explicit T -
dependence in the XC free energy are significant include
the equation of state (EOS), thermal properties, and op-
tical and direct current (dc) conductivity16. The first two
of those exemplify quantities for which the decomposition
is only an instrumentality, a route to the dependence
upon ftot. The third type of quantity (transport coef-
ficients), at least as calculated in the Kubo-Greenwood
approximation28, does depend on the details of the de-
composition (2) through sums of quantities (e.g., matrix
elements) dependent upon the Kohn-Sham orbitals and
eigenvalues. The values of such sums, however, depend
only weakly upon small detailed differences in LDA ver-
sions.

As an aside, Ref. 12 includes speculation as to possible
inaccuracy in the KSDT spin interpolation function. The
question is whether this matters for DFT application.
That seems doubtful. KSDT spin-interpolation faithfully
recovers the Spink et al.5 ground-state partially polarized
QMC results. There seems little reason, therefore, to ex-
pect meaningful improvement from matching to partially
polarized finite-T QMC results, though it would be in-
teresting to have them if only for confirmation.

The foregoing facts and reasoning confirm that all
three HEG representations for f (rs, t), corrKSDT,
KSDT, and GDB are essentially equivalent as satisfac-
tory fxc LDAs.
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VI. SUMMARY

Three objectives have been achieved. The first is based
on recent simulation studies of the free energy for the
HEG in a domain of the (rs, t) plane not previously ex-
plored. The data combined with thermodynamic consis-
tency and known theoretical limits led to three global
representations of the free energy, corrKSDT, its direct
antecedent KSDT, and GDB. In section II the equiva-
lence of these for reproducing the simulation data for
f (rs, t) was demonstrated. Furthermore, the equivalence
of corrKSDT and GDB for the XC component alone was
illustrated, although the original KSDT representation
has some inconsequential small errors for fxc (rs, t)

2.
The second objective was to draw attention to the

fact that, in spite of these very accurate representations
for f (rs, t), derived thermodynamic properties obtained
by temperature derivatives exhibit suspicious anoma-
lies. Those occur outside the domain for which simu-
lation data is available and are properties of the extrap-
olation/interpolation provided by the fitting procedure.
This was discussed in section III where it was noted that
the entropy per particle (first order temperature deriva-
tive) can become negative for large rs and small t. For the
corrKSDT and GDB representations, this corresponds
to state conditions beyond the expected spin polariza-
tion transition and therefore outside the domain of their
intended application. A second more, serious anomaly
occurs for the specific heat (second derivative with re-
spect to T ). In that case, all three representations pre-
dict unusual oscillatory behavior for t between 0.1 and
1 and rs ≥ 10. Without any theoretical or simulation
guidance, this must be seen as a possible flaw in the
representation function. A related question is the en-
hanced Fermi liquid relative effective mass (defined as
the ratio of the interacting and non-interacting specific
heat at T = 0). Calculations based on the three repre-
sentations and the STLS theoretical model are shown in
Fig. 6. Those results differ from expectations from ap-
proximate (uncontrolled) Fermi liquid theories. In the
present context it must be considered that this differ-
ence may be due to the form of the fitting function.
Finally, section III B considered the polarization depen-
dence of the exchange free energy, specifically the dif-
ference between the unpolarized and polarized results
∆fxc,pol(rs, t) := fxc;ζ=0(rs, t) − fxc,ζ=1(rs, t). The re-
sults calculated from the GDB representation are shown
in Fig. 7. The oscillations at low t increasing in ampli-
tude with increasing rs are unexplained and potentially
unphysical.
The third objective was to verify the use of the three

representations as essential interchangeable for use as
LDA functionals in free energy DFT calculations and in
more refined fxc approximations. It is helpful to note the
parallel with most T = 0 DFT calculations. They are
based in a similar way on ground state HEG simulations.
Generalized gradient approximations, for example, have

the LDA (hence the HEG) as a limiting case. Therefore,
the extensions discussed here to the entire (rs, t) plane
constitute an essential prerequisite for addressing WDM
in an accurate, practical fashion. An first example of
a non-empirical semi-local free-energy density functional
for matter under extreme conditions, built on the LDA
representations here was noted8.
As for the advocacy for a more accurate fit to fxc in

Refs. 2 and 6, the arguments given here suggest those
calls to have been ill-timed. The demonstrated indistin-
guishability of corrKSDT and GDB stands as confirma-
tion. Going forward, there is an essential prerequisite
to achieving a representation that represents HEG ther-
modynamics substantially better. That prerequisite is
new adequately accurate and densely spaced QMC data

to resolve the anomalies we have discussed. Without
such data, an allegedly better fit would be premature,
if not outright misleading. While the anomalies we have
highlighted are of no direct importance for DFT calcu-
lations of WDM, they are important signatures of phys-
ical effects that must be addressed for a better under-
standing of the HEG. A very high quality representation
of the HEG free energy would provide an unassailable
benchmark against which to test ingenious but uncon-
trolled many-body approximation methods and simula-
tion methods.
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