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The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes k Majorana fermions with
random all-to-all four-body interactions. We consider the SYK model in the framework of a many-
body Altland-Zirnbauer classification that sees the system as belonging to one of eight (real) sym-
metry classes depending on the value of k mod 8. We show that, depending on the symmetry
class, the system may support exact many-body zero modes with the symmetries also dictating
whether these may have a nonzero contribution to Majorana fermions, i.e., single-particle weight.
These zero modes appear in all but two of the symmetry classes. When present, they leave clear
signatures in physical observables that go beyond the threefold (Wigner-Dyson) possibilities for level
spacing statistics studied earlier. Signatures we discover include a zero-energy peak or hole in the
single-particle spectral function, depending on whether symmetries allow or forbid zero modes to
have single-particle weight. The zero modes are also shown to influence the many-body dynamics,
where signatures include a nonzero long-time limit for the out-of-time-order correlation function.
Furthermore, we show that the extension of the four-body SYK model by quadratic terms can be
interpreted as realizing the remaining two complex symmetry classes; we thus demonstrate how the
entire tenfold Altland-Zirnbauer classification may emerge in the SYK model.

I. INTRODUCTION

The SYK model1,2, named after Sachdev, Ye and Ki-
taev, is a zero-dimensional system with random four-
body interactions between a set of Majorana fermions.
It is believed to provide a toy model for the holographic
principle3–5, a relationship between gravity and lower-
dimensional conformal field theories6–8. The model is
exactly solvable in a suitable thermodynamic and con-
formal limit, where it is conjectured to have a two-
dimensional nearly anti-de Sitter space dual, a space-time
structure arising close to extremal black holes9.

Majorana fermions by now have several proposed re-
alizations in condensed matter, where they emerge as
zero energy bound states in certain superconducting sys-
tems10–21. Viewing the Majorana fermions in the SYK
model as such bound states transforms the system from
an intriguing conceptual advance to one with potential
physical realizations. Existing proposals include Majo-
ranas in a superconducting vortex on the surface of a
topological insulator22, or multiple Majorana wires con-
nected to a disordered quantum dot23. In addition to
these condensed-matter proposals, digital quantum sim-
ulations on different platforms have been suggested24.

As in any condensed-matter setting, such tabletop re-
alizations have a finite number of interacting degrees of
freedom (set, e.g., the inserted magnetic flux22, or the
number of Majorana wires23). Working with a finite
number k of interacting Majorana modes allows one to
consider novel “mesoscopic” features complementary to
those in the thermodynamic limit. These include the
level spacing statistics of the many-body eigenenergies,
which follow the three Wigner-Dyson symmetry classes—
corresponding to random hermitian matrices with real,

complex or quaternionic elements—but in a remarkable
eightfold periodic pattern in k25–27.

The origin of this eightfold pattern may be revealed
by viewing the SYK model as arising from k Majo-
rana modes living at one end of a one-dimensional time-
reversal invariant topological phase27. In the presence of
interactions, the topological classification of such systems
follows a Z8 structure, which at the ends of the system
is manifested by the emergence of one of the eight (real)
Altland-Zirnbauer symmetry classes, depending on the
value of k mod 828,29. Thus, as k is varied, the SYK
model is toggled through these classes, which, in turn,
imply the eightfold pattern of the three Wigner-Dyson
spacing statistics noted in Ref. 27.

For free fermions, different Altland-Zirnbauer classes
show distinct signatures in correlation functions, e.g.,
in the density of states28. These signatures go beyond
the three possible Wigner-Dyson level spacing statistics,
and characterize the eight real and two complex Altland-
Zirnbauer classes. These ten classes together give rise to
the so-called “tenfold way”.

This comparison to free fermion leads to our two
main questions: first, do the eight real Altland-Zirnbauer
classes in the SYK model have signatures beyond the sim-
ple Wigner-Dyson spacing statistics? Second, can one go
beyond the eight real classes and find SYK realizations
of the entire tenfold way?

In this work, we answer these in the affirmative: we
show that correlation functions carry various signatures
of the tenfold way beyond the Wigner-Dyson classifi-
cation. In particular, we show that the eightfold pat-
tern in the purely quartic SYK model is reflected in the
strongly interacting analogue of the single-particle den-
sity of states: the single-particle spectral function. De-
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pending on the symmetry class, this displays a peak, a
hole, or it is featureless near zero energy. These are ro-
bust characteristics, valid not only for the ground state,
but throughout the spectrum and thus for any (includ-
ing infinite) temperature. We further show that when
bilinear terms are added to the Hamiltonian, the only re-
maining distinction, namely whether k is even or odd, can
be viewed as labeling the two complex Altland-Zirnbauer
classes, thus completing the tenfold classification. These
two complex classes, while again identical in terms of
their level spacing statistics, are distinguished by the
single-particle spectral function, as we show in this work.

In addition to studying spectral features, we also in-
vestigate phenomena in the time domain. In the thermo-
dynamic limit, the holographic correspondence implies
that scrambling, i.e., the spread of locally inserted (into
few degrees of freedom) quantum information across the
system occurs with maximal efficiency, similar to scram-
bling in black holes30,31. This maximal scrambling is
characterized by an exponential decay of the out-of-time-
order correlation function (OTOC) with the maximal
Lyapunov exponent2,9,31–33. Working in the mesoscopic
regime also provides complementary insights here. In
particular, we find that in contrast to its complete decay
in the thermodynamic limit, the k-dependent symmetries
may dictate that the OTOC approach a nonzero value at
long times, thus linking many-body quantum chaos to
the tenfold way.

Our key observation that ties together the various fea-
tures we find is that, for certain values of k, the SYK
model supports exact many-body zero modes: linear op-
erators local to the SYK model that commute with the
Hamiltonian. Similar objects have appeared in recent
studies of “strong zero modes” in one-dimensional inter-
acting Majorana models, spin chains, as well as higher
dimensional topologically ordered systems 34–42. That
they also arise in the SYK model provides an unexpected
new link between these emerging directions.

The remainder of this work is organized as follows: we
introduce the SYK model and provide its symmetry clas-
sification in Sec. II. As we show in Sec. III, the presence
of (many-body analogues of) particle-hole and/or chi-
ral symmetries implies the presence of odd-parity many-
body zero modes in the SYK model; depending on the
symmetry class, these may have, or be forbidden to
have, contributions to Majorana operators, i.e., a single-
particle weight. We turn to the consequences of zero
modes and their single-particle weight in Sec. IV, where
we consider signatures both in the single-particle spectral
function and the OTOC. In Sec. V, we add symmetry-
breaking quadratic terms to the SYK model and show
that these lead to the two complex Altland-Zirnbauer
classes; these will also be seen to be distinguished by the
presence and absence of zero modes and their energy- and
time-domain signatures. We conclude in Sec. VI, where
we also give an outlook on experimental perspectives and
some generalizations of our results.

k mod 8 T 2
+ T 2

− Cartan label
0 +1 0 AI
1 +1 +1 BDI
2 0 +1 D
3 −1 +1 DIII
4 −1 0 AII
5 −1 −1 CII
6 0 −1 C
7 +1 −1 CI

TABLE I. Eightfold symmetry classification of the SYK
model. Time-reversal (T+) and particle-hole symmetry (T−)
may be absent (labeled by 0) or present, labeled by the
squares T 2

+ = ±1 and T 2
− = ±1. We give the correspond-

ing Cartan labels in the last column. The correspondence
between the sign structure and the Cartan labels follows the
same pattern as for free fermions. However, while for free
fermions T± and their sign structure represent physically dif-
ferent symmetries, in the SYK model they arise from the same
physical symmetry TγqT

−1 = γq and its properties, especially
its interplay with parity, which changes with the number k of
Majorana fermions.

II. MODEL AND SYMMETRY
CLASSIFICATION

For the most part, we focus on the SYK Hamiltonian
with random four-body interactions1,2,9

H =

k−1∑
t=0

t−1∑
s=0

s−1∑
r=0

r−1∑
q=0

Jqrstγqγrγsγt (1)

between k Majorana modes that obey the anticommuta-
tion relation {γq, γr} = 2δqr with γ†q = γq. (A Hamilto-
nian with additional terms is considered in Sec. V) The
random interaction Jqrst, with zero mean 〈JI〉 = 0, de-
fines the system’s only energy scale J via its variance

〈JIJI′〉 =
3!

k3
J2 δI,I′ , (2)

where 〈. . .〉 denotes averaging over different realizations
of the random interaction Jqrst, with combined indices
I = (qrst).

Depending on the number of Majorana modes con-
tributing to the Hamiltonian, the SYK model realizes
one of the eight real symmetry classes of the Altland-
Zirnbauer classification, a result we obtain below follow-
ing Ref. 29 and summarize in Table I. (This realization of
the Altland-Zirnbauer classes is distinct from that aris-
ing in the context of supersymmetric generalizations of
the SYK model43–46.) The Altland-Zirnbauer classifi-
cation originates in random-matrix theory and, in its
original context, determines universal spectral properties
of single-particle Hamiltonians28. For a single-particle
Hamiltonian H (or more generally its irreducible sub-
block with respect to unitary symmetries) two indepen-
dent antiunitary operators T± may exist that commute
(time-reversal symmetry [T+,H] = 0) or anticommute
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(particle-hole symmetry {T−,H} = 0) withH. When the
operators T± are present, they either square to T 2

± = +1
or T 2

± = −1. This gives nine distinct possibilities for the
antiunitary symmetries H may possess: absence of T±,
presence with T 2

± = +1 or presence with T 2
± = −1. When

both symmetries are absent, their combination, the uni-
tary chiral symmetry Z = T+T− with {Z,H} = 0, can
still be present. This results in a total of ten different
symmetry classes. Eight of these ten classes have a real-
ity condition: the Hamiltonian and its complex conjugate
are related via one or both of the antiunitary operators
T+ and T−; thus, we refer to these classes as real sym-
metry classes. Conversely, the two remaining classes we
refer to as complex symmetry classes.

Many-body systems may also be classified according to
their antiunitary symmetries29,47–50. For example, Fid-
kowski and Kitaev considered gapped one-dimensional
fermion systems with k Majorana fermion end modes
γq satisfying TγqT

−1 = γq for some antiunitary T .
They showed that upon restricting considerations to the
Hilbert space for only these Majoranas, the properties
of T are set only by k. Depending on k mod 8, T may
preserve fermion parity, in which case we denote it by
T = T+, or flip it, which we denote by T = T−. (For odd
k, an additional Majorana at infinity that is necessary
for a valid fermion Hilbert space allows one to construct
both T+ and T−, see below.) The square of T±, when
present, also depends on k. There is thus a k-dependent
symmetry classification of Hamiltonians for k Majorana
end modes. As Fidkowski and Kitaev also showed, this
emergent eightfold structure provides a novel incarnation
of the eightfold (real) Altland-Zirnbauer classification.

While in Fidkowski and Kitaev’s work the symme-
try TγqT

−1 = γq arose at the end of a one-dimensional
time-reversal-invariant system (with Majorana fermions
at the other end satisfying TγqT

−1 = −γq), such a sym-
metry is also a symmetry of the SYK Hamiltonian (1):
THT−1 = H. In fact, any antiunitary symmetry T of
the SYK model can be shown to imply TγqT

−1 = ±γq
(with q-independent signs): phases other than ±1 are in-
compatible with unitary operators γ†q = γq and mixing
signs or indeed different γq does not result in a symmetry
for all realizations of the random couplings Jqrst. We can
therefore directly apply this classification scheme to the
SYK model27. Here we provide a summary of the main
results formulated in terms of the T± notation introduced
above. To make the work self contained, we show in Ap-
pendix A how higher-dimensional Clifford algebras51–54

or an explicit construction of T± as a product of Majo-
rana operators may be used to obtain these results, with
the former providing an alternative approach to that in
Ref. 29. To connect with the symmetries associated to
Altland-Zirnbauer classes in free fermion systems, we re-
fer to T+ as time-reversal and T− as particle-hole symme-
try; this allocation can be motivated, e.g., by observing
that similarly to time-reversal in the free fermion case,
it is the T+ properties that set the level spacing statis-
tics25–27. (In contrast, T− will be seen to set features

beyond Wigner-Dyson, as we shall explain.)
We first discuss the case when k is even. In this case the

fermion parity is simply the product of all the Majorana
fermions10

P = ik/2γ0γ1 · · · γk−1 (3)

where the phase is chosen such that P † = P . This ex-
pression can be viewed as the product of single fermion

parities iγjγk = (−1)d
†
jkdjk where djk = (γj + iγk)/2

is an ordinary (“complex”) fermion constructed from γj
and γk. When k = 4n, P consists of Majorana operators
multiplied by a real number and therefore TγqT

−1 = γq
combined with antiunitary of T implies TPT−1 = P ;
thus, T = T+ in this case. Conversely, when k = 4n+ 2,
P consists of Majorana operators multiplied by a purely
imaginary number, and thus T = T− in this case. We
obtain the square T 2

± by writing T as a product of com-
plex conjugation and k/2 Majorana operators47, which
are higher-dimensional generalization of charge conjuga-
tion matrices53 (see Appendix A for details).

For an odd number of Majorana modes, which can for
example be realized at topological defects (e.g,. a vortex)
or at the boundary of a higher-dimensional system, a
fermion parity operator cannot be directly defined as it
requires an even number of Majorana modes. Instead,
we need to introduce an additional decoupled Majorana
fermion γ∞, which does not enter the Hamiltonian and
may be thought of as residing at a different boundary or
defect. The parity operator then takes the form

P = i(k+1)/2γ0γ1 · · · γk−1γ∞. (4)

It turns out useful to define the hermitian and unitary
operator Z

Z = i(k−1)/2γ0γ1 · · · γk−1. (5)

This object may be informally thought of as a composite
Majorana fermion complementary to γ∞, since fermion
parity is now given by P = iZγ∞, and Z anticommutes
with P and γ∞. Z, however, commutes with all γq 6=∞,
and consequently with the Hamiltonian. As the notation
suggests, this operator has an interpretation as an opera-
tor for chiral symmetry, as we show below. Note that the
states |ψp〉 and |Zψp〉 have the same energy eigenvalue
(since [Z,H] = 0) but different parity eigenvalue (since
{Z,P} = 0), which implies that the two parity sectors
are always degenerate for odd k.

For odd k, it is always possible to find both operators
T± that act as time-reversal and particle-hole symme-
try on γq 6=∞. Once we find an operator T+ that com-
mutes with all γq 6=∞ and with P , we can construct the

particle-hole symmetry T− = T−1+ Z with {T−, P} =

T−1+ {Z,P} = 0. Thus viewing Z = T+T− motivates
interpreting Z as a chiral symmetry. Analogously to the
case with even k, the squares T 2

± = ±1 may be obtained
by constructing the operators in terms of Majorana oper-
ators or by using the Clifford algebra structure, see Ap-
pendix A. We summarize the results in Table I, together
with the corresponding Cartan labels28.
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As we mentioned above, based on T+ alone, the system
may be thought to belong to one of three Wigner-Dyson
classes: T+ absent (unitary), T 2

+ = +1 (orthogonal), or
T 2
+ = −1 (symplectic). This has important consequences

for the level spacing statistics55–57 of the SYK Hamil-
tonian (1), which have been shown to follow the corre-
sponding Gaussian ensembles25–27.

It is known already for single-particle problems that
the different level spacing statistics are not sufficient to
distinguish the Altland-Zirnbauer classes28. Instead, one
needs to consider other observables, such as the single-
particle spectral function, which simplifies to the average
level density in the noninteracting case. Key distinguish-
ing features include the possibility, or the impossibility,
of robust zero energy modes for classes with particle-hole
and/or chiral symmetries58. A particular example per-
tains to classes D and C: while in terms of their level
spacing statistics the two may look identical, it is only
the single-particle Hamiltonian of the former that can
support a robust nondegenerate zero mode protected by
particle-hole symmetry59. For the latter, the fact that
particle-hole symmetry squares to minus unity implies
level degeneracy at, and only at, zero energy, preclud-
ing the presence of a robust zero mode. The spectral
density, instead, displays a spectral hole near zero en-
ergy28. As these features follow from the single-particle
Hamiltonian, the resulting zeros modes may be viewed
as single-particle zero modes.

Based on the existence of such a taxonomy of fea-
tures tied to the symmetry classification of noninteract-
ing fermions, it is tempting to ask whether an analogous
taxonomy of features, such as symmetry-guaranteed or
forbidden many-body zero modes, may emerge for the
Altland-Zirnbauer classes of the—interaction only—SYK
model. This is what we turn to in the next section.

III. ZERO MODES AND MATRIX OVERLAPS

Zero modes are local (linear) operators that commute
with the Hamiltonian35,39,40. (For a zero-dimensional
system such as the SYK model, by local we mean lo-
cal to the Hamiltonian, i.e., not involving external de-
grees of freedom such as γ∞.) They have been dis-
cussed in other contexts, such as anyonic excitations34–36,
spin chains37,38, and certain interacting Majorana mod-
els39–42. But, to the best of our knowledge, the idea
that the SYK model could support zero modes, and the
connection of these to the above symmetry classification,
has not yet been considered. In Ref. 35, only operators
that do not commute with a discrete symmetry of the
Hamiltonian were considered zero modes; here, following
Ref. 39, we use a broader definition that distinguishes
between even-parity zero modes that commute with the
parity operator P and odd-parity zero modes that anti-
commute with P .

Zero modes are eigenoperators Oi of the Hamiltonian

[H,Oi] = λiOi (6)

with λi = 0. Such zero modes are many-body generaliza-
tions of zero-energy eigenstates of single-particle Hamil-
tonians. Since the system’s total energy does not de-
pend on the occupancy of these eigenstates, the opera-
tors that create or annihilate them must commute with
the second-quantized Hamiltonian. As the SYK model is
an interaction-only model without an underlying single-
particle picture, we use the term “zero modes” to refer
only to the many-body operators introduced above.

Previous approaches for Majorana systems solved
Eq. (6) by expanding Oi into an operator basis, obtain-
ing matrices that are exponentially large (in the num-
ber of Majoranas) to be diagonalized to obtain solutions
with λi = 039. Although all zero modes can be obtained
within this approach for each realization of the Hamil-
tonian, further information, e.g., the degeneracy of the
zero modes (a key factor, e.g., if one wishes to consider
zero mode based qubits), cannot be argued for on general
grounds away from the weakly interacting limit.

Instead of expanding Eq. (6) in an operator basis, be-
low we introduce a direct method that not only delivers
the zero modes, and indeed all eigenmodes, in terms of
the eigenstates of the system, but immediately accounts
for their degeneracies for arbitrary values and forms of
interactions.

Our key observation is that if H is diagonalized as

H =
∑
µ

εµ|ψµ〉〈ψµ|, (7)

then the eigenoperator equation is solved by

Oi ≡ Oµν = |ψµ〉〈ψν |, λi ≡ λµν = εµ − εν . (8)

All the solutions arise this way, as seen by noting that
for Hilbert space dimension M , we have M2 linearly in-
dependent operators Oµν , which exhaust the dimension
of the operator Hilbert space [and hence the possibilities
for Oi in Eq. (6)]. While the above observation is gen-
eral, more care needs to be taken to ensure that the zero
modes are local. For the SYK model, possible nonlocality
arises only for odd k, due to the presence of the external
degree of freedom γ∞ in the operator algebra.

A. Even k

For even k, there are 2k−1 even-parity eigenoperators
that preserve parity

Oepµν = |ψpµ〉〈ψpν |,
[
H,Oepµν

]
= (εpµ − εpν)Oepµν (9)

labeled by the parity p = ±1 and H|ψpµ〉 = εpµ|ψpµ〉 with

µ, ν ∈ [1, . . . , 2k/2−1]. The operators Oepµµ are trivially
zero modes of the Hamiltonian, as they are simply pro-
jectors on the eigenstate |ψpµ〉. In class AII, another
even zero mode is present due to Kramers degeneracy
with T 2

+ = −1: for each state |ψpµ〉, the orthogonal state

|ψpµ′〉 = T+|ψpµ〉 has the same energy, resulting in Oepµµ′
being a zero mode.
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In addition to the even eigenoperators, there are 2k−1

odd-parity eigenoperators

Oopµν = |ψpµ〉〈ψ−pν |,
[
H,Oopµν

]
= (εpµ − ε−pν )Oopµν (10)

that change the parity of a state. In classes AI and AII,
generally εpµ 6= ε−pν for all µ, ν, so no odd zero modes
are present. In classes C and D, however, the two par-
ity sectors are degenerate εpµ = ε−pµ due to the presence

of a particle-hole symmetry T−: the states |ψ+
µ 〉 and

|ψ−µ 〉 ≡ T−|ψ+
µ 〉 are orthogonal and have the same energy.

Thus, all Oopµµ are odd-parity zero modes of the Hamil-
tonian (and these are the only odd-parity zero modes due
to the absence of other degeneracies between the parity
sectors). This is a nontrivial result: while the presence
of even-parity zero modes is obvious from this construc-
tion, the presence of odd-parity zero modes is not gener-
ally expected to happen for an even number of Majorana
fermions. It is a key finding of this work that the symme-
try classification of the SYK model ensures the presence
of odd zero modes in classes C and D.

The contribution of the zero modes to correlation func-
tions depends on the symmetry class. To see this, we ex-
pand the Majorana operators in terms of the odd eigen-
operators Oo and split the sum

γq =
∑
pµ

uq,pµµOopµµ︸ ︷︷ ︸
≡Aq

+
∑
pµν
µ6=ν

uq,pµνOopµν

︸ ︷︷ ︸
≡Bq

(11)

into a zero mode term Aq with [Aq, H] = 0 and the rest,
Bq, with [Bq, H] 6= 0. The zero mode coefficients are

uq,pµµ = 〈ψpµ|γq|ψ−pµ 〉 = 〈ψpµ|γqT−|ψpµ〉, (12)

where the last equality holds up to a sign that can be
neglected in the further analysis. The presence of the
antiunitary operator γqT− places restrictions on when
uq,pµµ 6= 0 is possible. In particular, when (γqT−)2 = −1,
this guarantees uq,pµµ = 0 by the same mechanism as
that behind Kramers’ theorem.

Using [T−, γq] = 0, we get (γqT−)2 = T 2
− and therefore

uq,pµµ =

{
0 class C

nonzero class D.
(13)

Thus, we generally have a zero-mode contribution to
the Majorana operators in class D, but not in class C.
The structure we have uncovered shows an emergent
Altland-Zirnbauer pattern of features that can be viewed
as many-body incarnations of those in noninteracting sys-
tems: In particular, classes C and D, which are identical
as far as energy spacing statistics go, are clearly distin-
guished by the presence or absence of the zero mode con-
tribution Aq. The absence of odd zero modes for classes
AI and AII is again analogous to the absence of zero
modes in these classes in the noninteracting case.

B. Odd k

For odd k, the two parity sectors are related via
|ψpµ〉 = Z|ψ−pµ 〉. Since Z commutes with the Hamiltonian,
the two parity sectors are guaranteed to be degenerate,
εpµ = ε−pµ ≡ εµ. This implies that the previously de-

fined operators Oe/opµν are not local to the SYK model, i.e.,
they include the operator γ∞: If Oepµν = |ψpµ〉〈ψpν | were
local, it would commute with Z (since [γq 6=∞, Z] = 0);
this would imply |ψpµ〉〈ψpν | = Z|ψpµ〉〈ψpν |Z = |ψ−pµ 〉〈ψ−pµ |,
which is not possible since these operators project on op-
posite parity subspaces. Instead, the 2k−1 different linear
combinations of even operators

Oeµν = |ψ+
µ 〉〈ψ+

ν |+ |ψ−µ 〉〈ψ−ν | (14a)[
H,Oeµν

]
= (εµ − εν)Oeµν (14b)

and 2k−1 odd eigenoperators

Ooµν = |ψ+
µ 〉〈ψ−ν |+ |ψ−µ 〉〈ψ+

ν | (15a)[
H,Ooµν

]
= (εµ − εν)Ooµν (15b)

that commute with Z, and thus do not include γ∞, span
the local Hilbert space. Due to parity degeneracy, both
Oeµµ and Ooµµ are zero modes. When T 2

+ = −1, as in
classes DIII and CII, Kramers degeneracy results in more
even and odd zero modes, Oeµµ′ and Ooµµ′ , involving time-

reversed partners |ψpµ′〉 6= |ψpµ〉 with εµ = εµ′ , defined via

|ψ+
µ′〉 ≡ T+|ψ+

µ 〉.
As in the k even case, the Majorana operators can be

split up a zero mode part and the rest,

γq =
∑
µν

εµ=εν

uq,µνOoµν

︸ ︷︷ ︸
≡Aq

+
∑
µν

εµ 6=εν

uq,µνOoµν

︸ ︷︷ ︸
≡Bq

(16)

with

uq,µν =
1

2

∑
p

〈ψpµ|γq|ψ−pν 〉 =
1

2

∑
p

〈ψpµ|γqZ|ψpν〉, (17)

where the factor of 1/2 is due to tr[Oeµν ] = 2δµν . Only
those elements uq,µν with εµ = εν contribute to Aq.
Two different symmetries demand opposite-parity states
of the same energy: chiral symmetry with matrix ele-
ments

uq,µµ =
1

2

∑
p

〈ψpµ|γqZ|ψpµ〉, (18)

and particle-hole symmetry with

uq,µµ′ =
1

2

∑
p

〈ψpµ|γq|ψ
−p
µ′ 〉 = T 2

−〈ψ+
µ |γqT−|ψ+

µ 〉. (19)

The zero-mode contribution to γq can be rewritten using
the notation introduced above,

Aq =
∑
µ

uq,µµOoµµ +
∑
µ

uq,µµ′Ooµµ′ . (20)
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k mod 8 〈ψpµ|γqT−|ψpµ〉 〈ψpµ|γqZ|ψpµ〉 Cartan label
0 – – AI
1 nonzero nonzero BDI
2 nonzero – D
3 nonzero nonzero DIII
4 – – AII
5 0 nonzero CII
6 0 – C
7 0 0 CI

TABLE II. Expectation value of the parity-conserving opera-
tors γqT− and γqZ for eigenstates with a well-defined parity
p. A nonzero value of at least one of these matrix elements is
required for a nonvanishing zero mode contribution Aq to the
Majorana operator γq. The cases where Z or T− do not exist
are marked by –. When the Z and/or T− exist, the overlap
might be zero due to symmetry restrictions (marked by 0);
otherwise, it is generally nonzero.

The second contribution, involving matrix elements
uq,µµ′ , is zero when (γqT−)2 = T 2

− = −1, i.e.,

uq,µµ′ =

{
0 classes CI, CII

nonzero classes BDI, DIII.
(21)

Further, when T 2
+ = +1, i.e., in classes CI and BDI,

T+|ψpµ〉 and |ψpµ〉 only differ by a phase, such that each
parity sector is nondegenerate. Accordingly, the states
Z|ψpµ〉 and T−|ψpµ〉 also differ only by a phase, thus
|〈ψpµ|γqZ|ψpµ〉| = |〈ψpµ|γqT−|ψpµ〉| and therefore

uq,µµ =

{
0 class CI

nonzero class BDI.
(22)

Thus, in class CI, all contributions to Aq are zero. When
T 2
+ = −1, i.e., in classes CII and DIII, Z|ψpµ〉 and
T−|ψpµ〉 are orthogonal, thus 〈ψpµ|γqZ|ψpµ〉 is independent
of 〈ψpµ|γqT−|ψpµ〉 and hence uq,µµ 6= 0 in general. To-
gether with the results for even k, we summarize the
symmetry constraints on the matrix elements in Tab. II.

IV. CORRELATION FUNCTIONS

We now turn to discussing the consequences of the
Altland-Zirnbauer classes and the SYK zero modes on
various correlation functions. As the zero modes relate
to pairs of equal-energy eigenstates, their main effect is
expected to be at small energies (or long times in the time
domain), though with no restriction for this energy to be
relative to the ground state, or even a thermal state. In
the energy domain, we focus on the behavior of Majorana
single-particle spectral functions, while in the time do-
main, in addition to commenting on the consequences of
our findings on the spectral function, we investigate how
the zero modes influence the behavior of the OTOC. The
OTOC is related to the effect of one observable on an-
other observable at a later time, and shows the butterfly
effect in many-body chaotic systems60–65.

A. Single-particle correlations

The Majorana single-particle spectral function is a
quantity accessible in solid-state realizations of the SYK
model through tunneling experiments22,23. In terms of
the retarded single-particle Green’s function C+

qq(ω), it
reads

A(ω) = −1

k

1

π
Im
∑
q

C+
qq(ω), (23)

where the single-particle Green’s function can be ex-
pressed in Källén-Lehmann representation as66

C+
qr(ω) =

1

Z
∑
µνp

〈ψpµ|γq|ψ−pν 〉〈ψ−pν |γr|ψpµ〉
ω + εpµ − ε−pν + iη

(24)

×
(
e−βε

p
µ + e−βε

−p
ν

)
,

with the inverse temperature β and infinitesimal η > 0
that corresponds to level broadening. As we show below,
as a consequence of the zero modes, the spectral function
has either a peak, a hole or is featureless near ω = 0.

1. Spectral function at zero temperature

At zero temperature, the spectral function (23) simpli-
fies to

A(ω) =
1

k

∑
q

∑
µp

[
δ(ω + εp0 − ε−pµ ) + δ(ω + ε−pµ − ε

p
0)
]

×
∣∣〈ψpµ|γq|ψ−p0 〉

∣∣2 , (25)

i.e., only the overlap with the ground state enters [ν → 0
in Eq. (24)]. To resolve the spectral function at small
energies, we focus on ω ∼ ∆0, the average first exci-
tation energy ∆0 = 〈εp1 − εp0〉 (this is independent of
p). For large k, one may express ∆0 analytically us-
ing approximations25,67 for the single-particle density of
states at ω ∼ ε0; however, since we are especially inter-
ested in a moderate number of Majoranas, we employ a
more pragmatic numerical approach and obtain ∆0 by
numerically averaging over a large ensemble of the ran-
dom interactions Jqrst. When computing the correlation
function (25), we replace the delta function by a Lorentz
function δ(x) = limη→0 η/(π(η2 + x2)), with η chosen as
η = c∆0 with constant c much smaller than unity.

In Fig. 1, we show the numerically evaluated spectral
function at zero temperature, averaged over a large en-
semble [ranging from 26 to 212 realizations of Jqrst in
panels (a)–(c), and from 211 to 218 realizations in panels
(d) and (e)]. Panels (a)–(c) show cases with Aq 6= 0.

The corresponding nonvanishing 〈ψp0 |γq|ψ
−p
0 〉 overlaps

[cf. Eqs. (12) and (17)] translate into a nonzero weight
for δ(ω): the spectral function displays a ω = 0 peak.

Classes C and CI host zero modes, but their contri-
bution to γq is zero, Aq = 0, as shown in the previous
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FIG. 1. Spectral function at zero temperature versus ω/∆0.
The level broadening is η = 0.005∆0. Panels (a)–(c) show
symmetry classes where the spectral function exhibits a peak
at zero energy (with different peak sizes), panel (d) shows
classes with a hole and (e) featureless behavior. Different
colors denote different k.

section. In both classes, the spectrum is the same for
both parities, thus level repulsion is present across the
two parity sectors. Together with Aq = 0, this results in
the spectral function having a hole at ω = 0, panel (d).
This is again similar to the noninteracting case, specif-
ically to the spectral hole for classes C and CI at zero
energy. Up to energies ω ∼ ∆0, the spectral function fol-
lows the gap statistics, ε1− ε0, i.e., the Gaussian unitary
ensemble (C) and Gaussian orthogonal ensemble (CI),
once we unfold the energies ω → ξ(ω) to have the same
mean level spacing everywhere in the spectrum, i.e., a
constant density of states (cf. Refs. 27 and 68 for the un-
folding procedure). In particular, for ξ � ∆0, we have
a power law scaling A(ξ) ∝ ξβ with β = 1 for class CI
and β = 2 for class C, in complete analogy with the spec-
tral density of the corresponding symmetry classes in the
noninteracting case28.

These features distinguish the (real) classes BDI, D,
DIII, CII, C and CI from the two real Wigner Dyson
classes AI (orthogonal) and AII (symplectic): as shown
in Fig. 1 (e), the latter two classes display no peak nor
hole for ω near zero. This featureless ω � ∆0 behavior
results from the two parity sectors being independent:
although the energies in each parity sector follow the level
statistics from the Gaussian orthogonal ensemble (AI)
or Gaussian symplectic ensemble (AII) individually, the
differences εpµ − ε−pν do not—there is no level repulsion
between the parity sectors, such that we do not observe

the typical power laws at low energies.

2. Spectral function at infinite temperature

The equal-energy matrix elements associated with the
nonzero single-particle contribution Aq 6= 0 are present
for generic eigenstates, not only the groundstate. In par-
ticular, the spectral function displays the peaks and holes
following the same pattern relative to any eigenstate.
The pattern is therefore also reflected in the infinite-
temperature spectral function

A(ω) =
1

k

2

M

∑
q

∑
µνp

∣∣〈ψpµ|γq|ψ−pν 〉∣∣2 δ(ω + εpµ − ε−pν ),

(26)

which is an equal-weight sum over all eigenstates and
where the partition function Z equals the Hilbert space
dimension M . The features described in the previous
subsection for zero temperature survive even in this ex-
treme opposite limit, as we demonstrate explicitly by
evaluating Eq. (26) numerically.

At infinite temperature, the small energies we are in-
terested in are in comparison to the mean level spacing

∆∞ = ⟪εµ+1 − εµ⟫ = χ
ε+ − ε−
M

, (27)

where ⟪. . .⟫ denotes thermal and ensemble average, χ is
the level degeneracy, and ε± are the maximal and mini-
mal energies. ε± can be computed analytically for all k:
By employing the Majorana anticommutation relations,
and the mean and variance of Jqrst, Eq. (2), we find that
the variance of the energy eigenvalues

⟪ε2µ⟫ =
tr
[
〈H2〉

]
M

= J2 3!

k3

(
k

4

)
(28)

and the mean ⟪εµ⟫ = 0. Since the eigenvalues do not
strictly follow a Wigner semicircle distribution25, we need
to take into account the correction69

ζ =

(
k

4

)−1 4∑
r=0

(−1)r
(

4

r

)(
k − 4

4− r

)
(29)

to obtain

ε± = ±
2
√
⟪ε2µ⟫

√
1− ζ

. (30)

In Fig. 2, we show the spectral function at infinite tem-
perature. The overall behavior is very similar to the spec-
tral function at zero temperature, Fig. 1, i.e., we observe
peaks, holes or featureless behavior at ω � ∆∞. For
large k, fewer realizations of Jqrst than for zero temper-
ature are needed to obtain smooth functions of energy
(e.g., 28 realizations for k = 28 at β−1 = ∞ vs. 211 at
β−1 = 0), since the number of states contributing to the
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FIG. 2. Spectral function at infinite temperature versus
ω/∆∞, cf. Eq. (27). The level broadening is η = 0.005∆∞.

spectral function close to ω = 0 grows with the Hilbert
space dimension at β−1 = ∞, while it stays constant
at β−1 = 0 (only states close to the ground states con-
tribute).

In classes C and CI, Fig. 2 (d), the spectral function
follows the level spacing statistics of εµ+1 − εµ up to
energies ω ∼ ∆∞. As for zero energy, unfolding the
energies reveals power laws characteristic of the Gaussian
unitary (C) and Gaussian orthogonal ensemble (CI).

As evident from panels (a)–(c), it is again the Aq 6= 0
cases (classes BDI, D, DIII, and CII) that display zero
energy peaks. The appearance of these peaks may be
understood by noting that the infinite temperature spec-
tral function displays a particularly transparent relation
between a δ(ω) contribution and the zero mode piece Aq
of γq. Specifically, we find

A(ω) =
2

M

1

k

∑
q

∑
p,µν
εµ 6=εν

∣∣〈ψpµ|Bq|ψ−pν 〉∣∣2 δ(ω + εpµ − ε−pν )

+
2

M

1

k

∑
q

tr [AqAq] δ(ω). (31)

This relation is also a useful starting point for assessing
the relative weight of the δ(ω) term compared to the
nonzero energy (ω & ∆∞) part of A(ω). For k sufficiently
large (k & 10), the ensemble average of the latter takes
a roughly ω and k independent value of order unity; this
translates to a weight of order ∆∞ per eigenstate, which
scales as ∝ ε+/M as the function of k.

For the weight of δ(ω) to scale identically, the ensemble
average of wk ≡ 1

k

∑
q tr[AqAq] must scale as 〈wk〉 ∼ ε+

FIG. 3. Ensemble-average 〈wk〉 as a function of k, where
different colors denote different symmetry classes. For the
Aq 6= 0 classes, 〈wk〉 increases with k, approximately following
mε+/J (solid lines included as guide for the eye) with m = 1
for class CII, m = 2 for classes BDI and D, and m = 3 for
class DIII. Error bars denoting the sample standard deviation
are smaller than the marker size.

with k. As we show in Fig. 3, this is precisely the ob-
served behavior. For k & 10, we find 〈wk〉 ≈ mε+/J
with a simple, symmetry-class-dependent rule for the co-
efficient: m/χ = 1 for classes BDI and D, m/χ = 3/4 for
class DIII, and m/χ = 1/4 for class CII.

B. Single-particle correlations in the time domain

In the time domain, further signatures of the zero
modes are visible in the retarded single-particle corre-
lation function

C+
qq;ρ(t1, t2) = −iθ(t1 − t2)tr [ρ {γq(t1), γq(t2)}] (32)

with the density matrix ρ. When ρ is diagonal in the
energy eigenbasis,

ρ =
∑
pµ

αpµ|ψpµ〉〈ψpµ|, (33)

e.g., ρ = Z−1 exp(−βH) for a thermal average, we have
[ρ,H] = 0 and hence

C+
qq;ρ(t) = −iθ(t)tr

[
ρ
(
eiHtγqe

−iHtγq + (t→ −t)
)]
.

(34)

Now decompose γq = Aq +Bq and use [Aq, H] = 0. This
results in the decomposition of the spectral function into
four terms. Cross terms that involve both Aq and Bq are
zero,

〈ψpµ|Aq|ψ−pν 〉〈ψ−pν |Bq|ψpµ〉
= 〈ψpµ|Bq|ψ−pν 〉〈ψ−pν |Aq|ψpµ〉 = 0, (35)
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since 〈ψpµ|Aq|ψ−pν 〉 is only nonzero when εpν = ε−pµ while

〈ψ−pν |Bq|ψpµ〉 is only nonzero when εpµ 6= ε−pν . Only the

remaining two terms contribute to C+
qq;ρ(t), specifically,

C+
qq;ρ(t) =− iθ(t)tr

[
ρ
(
eiHtBqe

−iHtBq + (t→ −t)
)]

− 2iθ(t)tr [ρAqAq] . (36)

Thus, while the Bq part leads to the conventional time-
dependent behavior, the zero mode piece Aq gives a time-
independent contribution. For the infinite-temperature
ensemble, ρ = M−1, the time-independent part is pro-
portional to tr[AqAq] that also enters in the spectral
function in the energy domain, Eq. (31). At long times,
the time-dependent contribution decays to zero, but
tr [ρAqAq] remains: if (and only if) Aq 6= 0 is present,
C+
qq;ρ(t) has a nonzero long-time limit.
Differences in the long-time limit that depend on k

were previously observed in Ref. 26 (for even k) and
linked to equal-energy matrix elements. As additionally
pointed out there, degenerate parity sectors give “ramps”
in the time-domain, i.e., the correlations linearly increase
to their long-time limit after an initial dip26,68. Such
ramps are visible in all symmetry classes with degener-
ate parity sectors, i.e., they are only missing in classes AI
and AII. The ramps connect differently to the long-time
limit, depending on the level spacing statistics: either
with a kink (GSE, classes DIII and CII), smoothly (GOE,
classes BDI, CI), or a sharp corner (GUE, classes D and
C)68. Our findings show that both long-time limits and
ramps go hand in hand with the zero modes: the pres-
ence of odd-parity zero modes corresponds to ramps, and
Aq 6= 0 corresponds to nonzero long-time limits. We illus-
trate this in Fig. 4, where we show C+(t) ≡ i 1k

∑
q C

+
qq(t)

at infinite temperature and averaged over a large en-
semble, thus linking the behavior of the single-particle
Green’s function in the time domain to the eight (real)
Altland-Zirnbauer classes.

C. Out-of-time-order correlation function

How do the zero modes influence other, including mul-
tiparticle, correlation functions? In this section, we focus
on the out-of-time-order correlation function and inves-
tigate how the low-energy features expected to arise due
to zero modes translate into the long-time behavior.

We consider the OTOC that is symmetrized with re-
spect to the thermal weights31,33

Fqr(t) = Z−1tr
[
γqyγry

†γqyγry
†] (37)

where the operator

y ≡ exp
[
−
(
it+ 1

4β
)
H
]

(38)

includes both real and imaginary-time evolution. We
again split up the Majorana operators into zero-mode
and nonzero-energy contributions, γq = Aq + Bq, and

FIG. 4. Ensemble-averaged single-particle Green’s function in
the time domain, C+(t), at infinite temperature and averaged
over 27 to 217 realizations of Jqrst. (a) In classes D and DIII, a
ramp in C+(t) is visible that connects to the long-time limit
with a kink (class DIII) or in a sharp corner (class D). (b)
Similarly, the connection has a kink in class CII and it is
smooth in BDI. (c) Ramps are also visible when the long-
time limit equals zero, as in classes C (connection with a sharp
corner) and CI (smooth connection). (d) Only in classes AI
and AII, with independent parity sectors, does the spectral
function decay directly to zero, without a ramp. Note that in
panels (a)–(c) both axes are rescaled by ∆∞.

use [Aq, y] = 0 to rewrite the terms contributing to the
trace of Eq. (37), e.g.,

tr
[
AqyAry

†AqyAry
†] = tr

[
AqArAqAryy

†yy†
]

(39)

with the time-independent thermal weight yy† =
exp(−βH/2). Similarly, the contributions containing two
Aq or two Ar operators are time-independent,

tr
[
AqyBry

†AqyBry
†] = tr

[
AqBryy

†AqBryy
†] (40)

tr
[
BqyAry

†BqyAry
†] = tr

[
BqAryy

†BqAryy
†] . (41)

All other terms are either zero, e.g.,

tr
[
AqyAry

†AqyBry
†] = tr

[
AqArAqBry

†yy†y
]

= 0,
(42)

as can be seen by inserting a complete basis (cf. Eq. (35)),
or time-dependent, since [Bq, y] 6= 0, such that terms
BqyBr are always time-dependent. Hence, the OTOC
also decomposes into a time-independent and a time-
dependent part

Fqr(t) = F∞qr + δFqr(t) (43)

with

F∞qr = Z−1
(
tr
[
AqArAqAryy

†yy†
]

(44)

+tr
[
AqBry

†yAqBry
†y
]

+ tr
[
BqAryy

†BqAryy
†]) .

We emphasize that F∞qr 6= 0 if and only if Aq 6= 0.
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FIG. 5. Ensemble-averaged OTOC F (t) as a function of time
for different k. When Aq = 0, the OTOC approaches zero
for long times, here clearly visible for k = 8. Otherwise, after
some initial decay, the OTOC approaches a long-time value
F∞/M , marked by the dashed lines. We chose a log-log scale
for a better visibility of the different time scales. The inset
shows F∞ as a function of k, with the gray line an exponential
decay as a guide for the eyes. Different colors denote different
symmetry classes.

In Fig. 5, we show the numerically obtained OTOC at
infinite temperature, averaged over a large ensemble (27

to 216 realizations of Jqrst) and all Majorana modes,

F (t) =
1

k2
1

M

∑
q,r

〈tr [γq(t)γrγq(t)γr]〉 (45)

with γq(t) = exp(itH)γq exp(−itH). While for classes
with Aq = 0 the absence of F∞qr implies that F (t) de-
cays to zero, for all classes with Aq 6= 0 the conse-
quent F∞qr 6= 0 leads to a nonzero long-time limit for F (t)
(dashed lines in Fig. 5). In the inset, we show the scal-
ing of F∞ ≡ M lim

t→∞
F (t) with k. The numerical data

suggest an approximately exponential decay of F∞, al-
though we cannot determine the exact scaling due to the
finite system sizes within numerical reach.

V. SYMMETRY-BREAKING TERMS

How do the properties shown above survive once
symmetry-breaking terms are added to the Hamiltonian?
We investigate an additional random bilinear term9,70–73

that extends the original model (1)

H = i
∑
q<r

Kqrγqγr +
∑

q<r<s<t

Jqrstγqγrγsγt (46)

and defines a second energy scale K via

〈KI〉 = 0, 〈KIKI′〉 =
1

k
K. (47)

This bilinear term anticommutes with both T+ and T−,
i.e., it breaks both antiunitary symmetries. When view-
ing our system as the end of a one-dimensional noninter-
acting system, this corresponds to breaking time-reversal

FIG. 6. Spectral function at infinite temperature for the SYK
model including bilinear terms (46) with J = K, cf. Eqs. (2)
and (47). (a) For even k, the system is in symmetry class
A. The spectral function is almost featureless (oscillations die
out with increasing k). (b) For odd k, the chiral symmetry
Z remains and the system is in symmetry class AIII. The
spectral function displays a peak at zero energy, cf. Eq. (48).

symmetry in the one-dimensional bulk29,47, changing its
symmetry class from BDI to D. In the noninteracting
case, this allows two distinct topological sectors charac-
terized by a Z2 invariant10,74. Once we introduce Kqr,
pairs of Majorana modes gap out, leaving either one or no
zero-energy mode, hence, the Z2 classification. In pres-
ence of interactions, the Z2 classification remains75,76.
Using our approach with the T+ and T− symmetries,
this Z2 classification can be also given a different in-
terpretation: even though both antiunitary symmetries
are broken, the product of the two, the chiral symme-
try Z = T+T−, remains for odd k. This allows one to
view the odd k case as implementing the chiral unitary
symmetry class AIII, and the case with k even, with no
symmetries, the unitary class A. The latter case was dis-
cussed in Ref. 44.

In class AIII, the Majorana operators can again be
split up into a zero-mode and remainder contribution,
γq = Aq + Bq, due to the guaranteed parity degeneracy.
Since Z changes the parity of a state, the combination
γqZ preserves parity. Thus, the matrix element

〈ψpµ|γqZ|ψpµ〉 6= 0, (48)

which implies that a peak at zero energy is present in the
spectral function for odd k even when K 6= 0.

In class A, on the other hand, the different parity sec-
tors are nondegenerate. The operator Z does not exist
and the overlap of equal-energy states always vanishes,

〈ψpµ|γq|ψpµ〉 = 0, (49)

giving a featureless spectral function close to zero energy.
In Fig. 6 (a), we show that the spectral function (23)

at ω ∼ 0 is indeed featureless for even k, class A. As
expected from the previous considerations, the spectral
function has a peak for odd k, class AIII, shown in
panel (b). Similarly, the OTOC (not shown) does not
decay to zero in class AIII, while it does in class A. It
can be decomposed into a time-dependent and a time-
independent part, with the latter given by Eq. (44).
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In addition to the 8 classes discussed in the absence of
K, we thus see that the physics that arises by adding K
(or indeed by breaking T+ and T− in different ways, e.g.,
by six-Majorana terms) may be viewed as bringing about
the 2 complementary complex symmetry classes, thereby
completing the tenfold Altland-Zirnbauer classification.

VI. CONCLUSION AND OUTLOOK

In this work we brought together the SYK model and
a corresponding many-body incarnation of the Altland-
Zirnbauer classification. We discovered that the SYK
model furnishes novel many-body counterparts of fea-
tures familiar from Altland-Zirnbauer classes the single-
particle domain, and that these have interesting conse-
quences for the strongly-correlated dynamics of the sys-
tem. In particular, we found that the Altland-Zirnbauer
symmetry classes manifest themselves not only in the
level spacing statistics (that distinguishes them only
along the three Wigner Dyson classes25–27), but also in
the presence or absence of zero modes and their single-
particle weight Aq in Majorana operators γq. These have
been found to set the dominant features of a range of
correlation functions at low energies (or long times).

The single-particle spectral function has been found to
display a peak (hole) at zero energy whenever the SYK
model supports zero modes with nonzero (zero) Aq. The
zero modes also determine the behavior at small nonzero
energies: they lead to power-law scaling in the spectral-
function with exponent determined by the level repul-
sion (as set by time-reversal T+), corresponding to the
system’s symmetry class. All of these features are ab-
sent in the cases without zero modes. These symmetry
class dependent characteristics are in a one-to-one cor-
respondence to analogous Altland-Zirnbauer features of
the density of states in the free-fermionic case. We em-
phasize that this is not due to Altland-Zirnbauer features
of some free fermion system surviving the addition of in-
teractions, but rather a remarkable pattern of signatures
emerging in an interaction-only model.

The effects on the strongly correlated dynamics have
been illustrated by considering correlation functions in
the time-domain, including the out-of-time-order correla-
tion function (OTOC). We found that, while the OTOC
displays its familiar long-time decay to zero for classes
where zero modes are absent or have vanishing single-
particle weight, the presence of zero modes with Aq 6= 0
dictates that the OTOC reaches a nonzero long-time
limit. As these OTOC results illustrate, the main dy-
namical effect of zero modes is on the long-time behavior.
We expect zero modes to exhibit interesting long-time ef-
fects also on other dynamical correlation functions, the
study of which we leave for future work.

The features we have summarized so far have been for
a purely quartic SYK model, thus in the presence of the
antiunitary symmetry TγqT

−1 = γq; depending on the
number k of Majoranas, these systems realize the eight

real Altland-Zirnbauer classes. We have shown, how-
ever, that the remaining two complex Altland-Zirnbauer
classes also arise in the SYK model, if one allows terms
(e.g., quadratic couplings) that explicitly break T . In
this case, for even k, all symmetries are broken and the
system is in class A, while for odd k, chiral symmetry
remains and the system is effectively in class AIII. In
the latter case, the two parity sectors remain degener-
ate, which results in an odd-parity zero mode that has
a nonzero overlap with the Majorana operators. Con-
sequently, the spectral function in class AIII displays a
peak at zero energy, whereas it is featureless in class A.
Thus, allowing for both T preserving (e.g., quartic) and
T -breaking (e.g. quadratic, or six-Majorana) terms, the
SYK model realizes the entire tenfold way.

We emphasize that the zero modes we find are not
low-energy objects: they have consequences for all states,
not only the ground state35. We have demonstrated this
by evaluating correlation functions with respect to all
states, in an equal weight average, i.e. at infinite tem-
perature: we found that both the single-particle spectral
function and the OTOC display their aforementioned fea-
tures, even in this extreme limit. Furthermore the cor-
relation functions need not even be thermal: we expect
analogous low-energy (long-time) features to arise in the
highly nonequilibrium situation where the reference state
for the correlation functions is an (arbitrary) highly ex-
cited state |ψpµ〉, replacing the groundstate |ψp0〉, e.g., in
Eq. (25).

The zero modes we find in fact are “strong”35 (even
exact) zero modes within the SYK model. However, if
one views the SYK model as arising in a higher dimen-
sional system (e.g., at the end of a 1D system or in a
vortex), they are not strong zero modes any more, as
they arise within the low-energy physics of this larger
system. While they are thus low-energy objects from
this perspective, they may provide useful starting points
for constructing strong zero modes in these cases.

Of the signatures we have described, the low-energy
behavior of the spectral function is the most accessi-
ble in experiments. In the proposed realizations of the
SYK model in the solid-state22,23,77, the spectral func-
tion may be directly measured in tunneling setups con-
sisting of an electrode weakly coupled to the Majorana
fermions22,23,77,78. The main limitation in this case is due
to the thermally smeared variant of the spectral function
appearing in the differential conductance79; thus, while
the features we predict are robust even for infinite tem-
peratures, to resolve the spectral function near ω = 0 in
tunneling setups, the temperature should be of the order
of the many-body level spacing or below.

Our work opens several interesting directions for future
study and we close by mentioning just a few examples of
these. An immediate generalization of our work is to the
recently discussed variants of the SYK model with terms
coupling an even number q > 4 Majoranas9,69. Although
the symmetry classification remains valid for general q
(eight real classes if only terms q = 4, 8, . . . are included,
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two complex classes otherwise), the resulting observables,
e.g., the scaling of the weight of the zero mode peaks
relative to their background, may change.

Our results can also be generalized to systems with
a local Hamiltonian instead of the all-to-all couplings
in the SYK model. For translationally invariant one-
dimensional systems, bilinear terms coupling neighboring
sites correspond to the Kitaev chain and can be trans-
formed into the transverse field Ising model10. Similarly,
quartic couplings translate to an exotic spin model with
nearest and next-nearest neighbor interactions42,80,81.
All results we found are also valid for these spin sys-
tems, where the local structure of the interactions may
have potentially interesting consequences, e.g., an emer-
gent nontrivial spatial structure for the zero modes.

One may also develop approaches analogous to ours
for the so-called complex SYK model1,27,82. This model
has ordinary (i.e., complex), instead of Majorana (real)
fermions, and may be viewed as arising at the end of
a one-dimensional system that admits a Z4 topological
classification. The complex SYK model shows a corre-
sponding fourfold pattern for the three possible Wigner-
Dyson level spacing statistics27; it is an interesting ques-
tion whether these cases may be further distinguished in
terms of zero modes and correlation functions.
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Dmitry Pikulin for useful discussions. This work was sup-
ported by the ERC Starting Grants No. 679722 QUANT-
MATT and No. 678795 TopInSy, the Knut and Alice
Wallenberg Foundation 2013-0093, the National Science
Foundation under Grant No. NSF PHY-1748958, and
the Royal Society.

Appendix A: Explicit construction of time-reversal
and particle-hole symmetry

In this appendix, we show how the operators for time-
reversal symmetry T+ and particle-hole symmetry T−
with [T±, γq] = 0 and T±PT

−1
± = ±P can be constructed

explicitly. Since Majorana operators realize a Clifford
algebra with signature (+ + + + . . .), they can be rep-
resented by higher-dimensional gamma matrices of di-
mension M × M , where M = 2bk/2c with b· · · c the
floor function51. We use a basis where complex conju-
gation K does not affect Majorana modes with an even
index Kγ2qK = γ2q, but changes the sign of Majorana
modes with an odd index Kγ2q+1K = −γ2q+1. Sum-
marizing previous work on higher-dimensional Clifford
algebras51–54, we discuss the properties of the Hilbert
space spanned by k Majorana operators and link these
properties to the Altland-Zirnbauer classification28,29 We
further connect to the notation of Ref. 29.

k mod 8 C+C
∗
+ C−C

∗
− a T 2

+ T 2
− Cartan label

0 +1 +1 +1 +1 0 AI
1 +1 0 +1 +1 +1 BDI
2 +1 −1 −1 0 +1 D
3 0 −1 −1 −1 +1 DIII
4 −1 −1 +1 −1 0 AII
5 −1 0 +1 −1 −1 CII
6 −1 +1 −1 0 −1 C
7 0 +1 −1 +1 −1 CI

TABLE III. Eightfold periodicity of the operators C± and T±.
Depending on the number of interacting Majorana modes k,
the matrices C± may not exist (denoted by 0), or exist and
square to +1 or −1. From C+ may commute (a = +1) or
anticommute (a = −1) with the parity operator P , such that
the antiunitary operator C+K effectively acts as either time-
reversal (T+ for a = +1) or particle-hole symmetry (T− for
a = −1).

1. Even k

For an even number of Majoranas, one can find two
unitary matrices C+ and C− with the properties51,53

C± γ
∗
q C
†
± = ±γq. (A1)

As the Hamiltonian only includes parity-conserving
terms involving an even number of Majoranas, the com-
bination of each of these matrices with complex conju-
gation commutes with the Hamiltonian [C±K, H] = 0.
We can construct both matrices C± as the product of
k/2 Majorana operators. More explicitly, the form of C+

depends on k,

C+ =

{
γ0γ2 · · · γk−2 k = 4n+ 2

γ1γ3 · · · γk−1 k = 4n.
(A2)

When k = 4n+ 2, C+ contains an odd number of Majo-
rana operators with an even index, giving a sign change

C+γ2q+1C
†
+ = −γ2q+1 while the sign of γ2q remains in-

variant as C+ contains γ2q itself. Similarly, when k = 4n,
C+ contains an even number of Majorana operators with

an odd index, giving a sign change C+γ2q+1C
†
+ = −γ2q+1

(as C+ contains γ2q+1 itself), while the sign of γ2q re-
mains invariant. Analogously,C− is given by k/2 Majo-
rana operators

C− =

{
γ1γ3 · · · γk−1 k = 4n+ 2

γ0γ2 · · · γk−2 k = 4n.
(A3)

As both C+ and C− contain k/2 Majorana operators,
these matrices are purely real when k = 4n, which results
in

C+C
∗
+ = γ1γ3 · · · γk−1γ1γ3 · · · γk−1

= (−1)k/4(k/2−1) = (−1)n (A4)

C−C
∗
− = γ0γ2 · · · γk−2γ0γ2 · · · γk−2

= (−1)k/4(k/2−1) = (−1)n (A5)
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where the sign results from (k/2−1)+(k/2−2)+· · ·+1 =
k/4(k/2 − 1) exchanges that are necessary to couple all
Majoranas γqγq = 1. Thus, when k = 8m (m ∈ N, n
even), C±C

∗
± = 1, while, when k = 8m + 4 (n odd),

C±C
∗
± = −1. When k = 4n+2, C+, which only contains

Majoranas with an even index, is purely real, while C−,
which contains an odd number of Majoranas with an odd
index, is purely imaginary, resulting in

C+C
∗
+ = γ0γ2 · · · γk−2γ0γ2 · · · γk−2

= (−1)k/4(k/2−1) = (−1)n (A6)

C−C
∗
− = −γ1γ3 · · · γk−1γ1γ3 · · · γk−1

= −(−1)k/4(k/2−1) = −(−1)n (A7)

such that, when k = 8m+ 2, C+C
∗
+ = +1 and C−C

∗
− =

−1, while, when k = 8m+ 6, C+C
∗
+ = −1 and C−C

∗
− =

+1. The squares of the operators are summarized in the
first three columns of Tab. III.

Combining both signs from Eq. (A1) gives

C+C−γqC
†
−C
†
+ = −C+γ

∗
qC
†
+ = −γq, (A8)

i.e., the joint operator C+C− anticommutes with all γq.
Since the operator γq changes the parity p of a state
|ψp〉10, C+C− equals the parity operator up to a phase,
P = C+C−e

iφ. The phase is chosen such that the parity
operator itself is hermitian, which is satisfied by

P = ik/2γ0γ1 · · · γk−1, (A9)

it equals the product of all Majorana operators times
a phase51. Given the definition of P , we realize that,
since C+K commutes with all γq, only the number of
Majorana operators k determines if C+K and P commute
or anticommute

C+P
∗C†+ = (−1)k/2P ≡ aP. (A10)

Thus, for k = 4n, C+K and P commute, such that time-
reversal symmetry is present with T+ = C+K. For k =
4n + 2, C+K and P anticommute, such that particle-
hole symmetry is present with T− = C+K. Using that P
equals C+C− up to a phase, it is evident that a equals
the product of (C−K)2 and (C+K)2

a = C+P
∗C†+P̂ = C+C

∗
+ C

∗
−C−, (A11)

with a given in Tab. III for different numbers of Majo-
ranas k.

In Ref. 29, both T− and T+ are referred to as time-

reversal symmetry and denoted by T̂ . This notation
stems from the system that is considered, i.e., the edge

of one-dimensional BDI system. The physical symmetry
that restricts the interaction is time-reversal symmetry—
bilinear terms, such as in Eq. (46), break T̂ , but not the
physical particle-hole symmetry. When only considering
the edge, T̂ breaks down to either particle-hole or time-
reversal symmetry.

2. Odd k

As discussed in the main text, we need to include an
additional Majorana fermion located at infinity that is
completely decoupled from the Hamiltonian. Parity is
only well-defined when γ∞ is included, giving

P = i(k+1)/2γ0γ1 · · · γk−1γ∞. (A12)

Chiral symmetry is represented by the operator

Z = i(k−1)/2γ0γ1 · · · γk−1 (A13)

that anticommutes with P and commutes with all γq.
Different from even k, only one of the matrices C+

and C− can be found without incorporating γ∞. This
can be easily seen from considering both operators for
l = k + 1 Majorana modes, Eqs. (A2) and (A3): the
operator γ∞ ≡ γl−1 is necessary to construct C+ for
l = 4n and C− for l = 4n + 2. Thus, only C+ can be
found when k = 4n+ 3 and only C− when k = 4n+ 1.

Incorporating γ∞, however, gives the same operators
C± as for l = k + 1 Majoranas. Depending on k, the
operators C±K and Z may commute or anticommute,

C±Z
∗C± = ±(−1)(k−1)/2Z ≡ ±aZ (A14)

with the sign given by the phase of Z plus an extra mi-
nus sign (−1)k for C−K. As γ∞ is not part of the local
Hilbert space, we can define the action of C± on γ∞ most
conveniently; following Ref. 29, we chose

C+γ
∗
∞C

†
+ = −aγ∞. (A15)

This choice ensures [C+K, P ] = 0, such that T+ = C+K
for all odd k. In Ref.29, T+ is identified with the phys-

ical time-reversal T̂ . Different from even k, the Hamil-
tonian commutes with Z, i.e., we can construct a second
antiunitary operator T− = T−1+ Z. Since {Z,P} = 0,
{T−, P} = 0 is always guaranteed. The square of T+ is
identical to the square C+C

∗
+ for l = k + 1 Majoranas.

The square of T− is

T 2
− = T−1+ ZT−1+ Z = T 2

+T+ZT
−1
+ Z = aT 2

+. (A16)

The operators C±, T± and the sign of the commutation
relation are summarized in Tab. III.
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