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Laura Classen,1 Carsten Honerkamp,2 and Michael M. Scherer3

1Condensed Matter Physics & Materials Science Department,
Brookhaven National Laboratory, Upton, NY 11973, USA

2Institut für Theoretische Festkörperphysik, RWTH Aachen University,
and JARA Fundamentals of Future Information Technology, Germany

3Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
(Dated: April 24, 2019)

We study the quantum many-body instabilities of interacting electrons with SU(2)×SU(2) sym-
metry in spin and orbital degrees of freedom on the triangular lattice near van-Hove filling. Our work
is motivated by effective models for the flat bands in hexagonal moiré heterostructures like twisted
bilayer boron nitride and trilayer graphene-boron nitride systems. We consider an extended Hub-
bard model including onsite Hubbard and Hund’s couplings, as well as nearest-neighbor exchange
interactions and analyze the different ordering tendencies with the help of an unbiased functional
renormalization group approach. We find three classes of instabilities controlled by the filling and
bare interactions. For a nested Fermi surface at van-Hove filling, Hund-like couplings induce a
weak instability towards spin or orbital density wave phases. An SU(4) exchange interaction moves
the system towards a Chern insulator, which is robust with respect to perturbations from Hund-
like interactions or deviations from perfect nesting. Further, in an extended range of fillings and
interactions, we find topological d± id and (spin-singlet)-(orbital-singlet) f -wave superconductivity.

Correlated insulating and superconducting behavior
have recently been discovered in twisted bilayer graphene
(TBG)1–3 triggering ample excitement due to their po-
tential to shed new light on the problem of unconven-
tional superconductivity. More generally, experiments
with moiré superlattices of two-dimensional van-der-
Waals heterostructures – further including, for example,
hexagonal boron nitride (hBN) layers4 – are established
as an experimental platform for studies of correlated elec-
tron physics. These systems allow for a high degree of
control, e.g., in the regulation of the twist angle, a low
level of disorder and gate-tunable effective bandwidths
or filling factors. Indeed, signatures of tunable insulat-
ing and superconducting states have been reported in
trilayer graphene/hBN heterostructures4,5. Further, it
has been suggested that moiré flat bands also emerge
in heterostructures of transition metal dichalcogenides6

and that a wider class of “magic-angle” systems can be
realized in present cold-atom setups7.

The appearance of strong correlations in these sys-
tems is usually ascribed to the emergence of low-lying
flat bands and an increased density of states amplify-
ing the impact of electronic interactions8–13. However,
in conjunction with the experimental findings, the na-
ture of correlated states in moiré superlattices has yet
to be identified and described by appropriate models
and methods. One way, recently pursued, is the con-
struction of effective multi-orbital tight-binding models
for the nearly flat bands based on Wannier states14–16.
While this in itself is a non-trivial task, some univer-
sal aspects are shared by all models, including the focus
on the emergent superlattice, the presence of several or-
bitals inherited from the valleys of the original bands
and sizable further-neighbor interactions. Hence, a basic
understanding of the correlated behavior may be devel-
oped by analyzing phenomenological models that capture
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FIG. 1. Tentative phase diagram showing the quantum
anomalous Hall (QAH) instability near van-Hove filling µ = 2t
flanked by the d-wave superconducting states based on our
functional renormalization group calculations. We plot the
instability temperature T ∗ for initial couplings U = 3t, J =
0.4t, Vh = 0.1t, and variable chemical potential µ. Unspec-
ified initial couplings are zero. Inset: Brillouin zone of the
triangular lattice with Fermi level at the van-Hove singular-
ity, Eq. (1). Black dots illustrate our discretization of the
Fermi surface.

the qualitative features of moiré flatbands17–33. In ad-
dition, this approach allows one to study multi-orbital
effects in hexagonal systems in general. This opens the
possibility to new types of interactions and correlations.
For example, spin-singlet(triplet) pairing is not bound
to even(odd)-parity because the anti-symmetry can be
guaranteed through the orbital degrees of freedom.

Regarding the role of interactions, no consensus has
been reached on whether the experimentally observed
insulating states in TBG or trilayer graphene/hBN are
due to Mott physics in the strong coupling limit or
due to interaction-driven symmetry-breaking, e.g., based
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on Fermi-surface nesting close to van-Hove singulari-
ties11–13,22,24. For the lattice structure of the effective
model, triangular and honeycomb geometries have been
discussed. While for TBG most recent suggestions favor a
honeycomb superlattice14–16, moiré structures with hBN
are argued to support a triangular superlattice, e.g., tri-
layer graphene/hBN4,16 and twisted bilayer hBN34. In
these systems, the flat bands are suggested to be well
isolated4,34,35 so that application of an effective model
for the flat bands seems appropriate.

In this work, we consider a phenomenological model of
electrons on a triangular lattice with two spin and two
orbital states as well as onsite and nearest-neighbor inter-
actions. We follow earlier arguments that the combined
spin and orbital degrees of freedom form an approximate
SU(4) flavor symmetry17–20 and perturb it by Hund-like
interactions down to SU(2)×SU(2). We assume that the
experimental observations correspond to fillings close to
a van-Hove singularity and a (near-)nested Fermi sur-
face and determine potential ordered states induced by
moderate interactions. In this situation, electronic cor-
relations in several channels are important, which is why
we approach the problem with the help of the fermion
functional renormalization group (fRG) method36,37.

Several other works have analyzed multi-orbital mod-
els on hexagonal lattices close to van-Hove filling with
a nested Fermi surface and repulsive interactions. We
extend different aspects of these works: in contrast to
random phase approximation (RPA) approaches30, we
take into account the essential coupling between particle-
particle and particle-hole channels. While such competi-
tion between the different channels is included in parquet
RG studies22,24, our calculations are not restricted to a
small number of patches at the van-Hove singularity, but
resolve the momentum dependence of the entire Fermi
surface. This allows us to draw a direct connection to
microscopic models and upon inclusion of model param-
eters to provide quantitative estimates on doping ranges
and energy scales. Further, the fRG equations are well
defined rooting in an exact flow equation38 and include
not only the leading ln2-diverging channels, but also sub-
leading ln-divergent contributions. We extend previous
fRG studies20,21,34 by inclusion of other interaction types
and a more comprehensive exploration of the induced
ordering tendencies. The exploitation of SU(2)×SU(2)
symmetry facilitates high Fermi-surface resolution, which
is important near van-Hove singularities.

We find that the interplay between (approximate) nest-
ing, a large density of states and interaction terms re-
sults in three classes of strongly-growing correlations: (1)
spin/orbital density wave states, (2) d ± id and f -wave
superconductivity and (3) a Haldane-like loop-current
phase39. The density waves are generated right around
perfect nesting and involve the different SU(2)×SU(2)
(pseudo-)spins. It depends on the SU(4)-symmetry-
breaking interactions if a density wave in the sepa-
rate SU(2) spin or orbital sector, or in the combined
SU(2)×SU(2) sector develops. Due to the larger num-

ber of fermion flavors and available nesting vectors in
the hexagonal geometry, however, the density wave in-
stabilities are fragile. Instead, superconducting and loop-
current phases are more robust, see also Ref. 24. Which
pairing instability emerges depends on the fermiology:
for a closed Fermi surface we find topological d ± id
superconductivity17,24, for an open Fermi surface pair-
ing correlations in either d- or f -channel23 grow strong.
The loop-current state also develops around the per-
fectly nested situation as soon as small nearest-neighbor
SU(4) exchange interactions are present. This quantum-
anomalous-Hall state breaks time-reversal symmetry and
has a non-zero Chern number together with a fully
gapped spectrum24,40.

Model and parameters. We follow early phenomeno-
logical approaches17,19,24 and model the superlattice
of twisted hexagonal multi-layered systems by a two-
dimensional triangular lattice populated by electrons
with SU(2) spin and orbital degrees of freedom. In par-
ticular for twisted hBN, this seems to be an appropriate
starting point, where the dispersion close to the Fermi
level is well-matched by a two-orbital tight-binding model
with nearest-neighbor hopping on the superlattice with
hopping amplitude t(α) depending on twist angle α34,

H0 = −t(α)
∑
〈ij〉

∑
σ=↑,↓

∑
o=1,2

c†iσocjσo + h.c. . (1)

Here, the c
(†)
iσo are the fermion annihilation (creation) op-

erators on site i with spin projection σ and orbital (or
band) index o. We add a chemical potential µ

∑
i,ν niν

with density niν = c†iνciν . Combining the indices σ and
o as ν = (σ, o) into four flavors of fermion states makes
an SU(4) symmetry of Eq. (1) apparent. In TBG and
trilayer graphene/hBN, the index o corresponds to the
two valleys of the untwisted lattice system14–16. But the
model can also be considered in the more general context
of multiorbital effects. We expect spin-SU(2) symmetry
to be a good approximation because of the small spin-
orbit coupling of the light atoms composing graphene-
or boron-nitrite-based systems. Approximate orbital de-
generacy is assumed because in twisted graphene het-
erostructures, mixing of different valleys is suppressed
by their large separation in momentum space14. In
twisted hBN, ab initio calculations even show an exact
degeneracy34.

To study correlations, we start with SU(4)-invariant
Hubbard repulsion U and nearest-neighbor exchange J

HI =
U

2

∑
i,ν,ν′

niνniν′ + J
∑
〈ij〉

15∑
n=1

T̂ni T̂
n
j , (2)

with T̂ni = c†iνT
n
νν′ciν′ . The Tnνν′ with n ∈ {1, . . . , 15} are

the fifteen 4×4 matrices forming the fundamental repre-
sentation of the SU(4) Lie algebra. Our motivation to
consider the exchange J is twofold. First, it was shown
that nearest-neighbor interactions can be sizable despite
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the large moiré lattice spacing22. Second, the exchange
term is introduced in the strong coupling limit of the
onsite term. Being limited to weak and intermediate in-
teractions by our method, we can use J as a hint for the
effect of stronger couplings.

We account for corrections to the approximate SU(4)
symmetry by adding a Hund’s coupling Vh and its equiv-
alent in orbital space K, which can be induced from in-
tegrating out higher-energy phonons in an anti-adiabatic
limit due to the small band widths of the flat bands19,

H ′I = −Vh
∑
i

S2
i −K

∑
i

L2
i , (3)

where Si = 1
2c
†
iσoσσσ′ciσ′o and Li = 1

2c
†
iσoτoo′ciσo′ with

the Pauli matrices σa, τa, a ∈ {1, 2, 3}. Summation over
repeated spin and orbital indices is implied here and
in the following41. Alternatively, we consider nearest-
neighbor spin or orbital SU(2) exchange couplings H ′′I =∑
〈ij〉(JsSiSj + KnLiLj) to break the SU(4) symme-

try and amplify the effect of nearest-neighbor exchange.
Upon inclusion of H ′I , H

′′
I , a SU(2)×SU(2) invariance re-

mains, which originates from the SU(2) spin-rotational
invariance and the two-orbital structure of the Hamilto-
nian. Below, we assume that Vh,K, Js and Kn are small
compared to U, J , but we will comment on larger correc-
tions to SU(4) in the discussion.

Method. We employ a functional renormalization
group (fRG) approach for the one-particle-irreducible in-
teraction vertices of the fermionic many-body system in
the Fermi-surface patching scheme36,37. Here, we specifi-
cally use that any SU(2)×SU(2)-invariant interaction can
be decomposed into two parts

H̃I =
∑

k1,k2,k3

[
V (k1, k2, k3)c†k3σoc

†
k4σ′o′ck2σ′o′ck1σo

+W (k1, k2, k3)c†k3σoc
†
k4σ′o′ck2σ′ock1σo′

]
, (4)

where the first interaction vertex ∝ V is SU(4) invariant
and the second one ∝W breaks it down to SU(2)×SU(2).
The ki, i ∈ {1, 2, 3, 4} are wavevectors in the first Bril-
louin zone (BZ) and k4 is fixed by wavevector conser-
vation. The fRG approach introduces an infrared cut-
off Λ and determines the renormalization of the system
with respect to Λ. We derive fRG flow equations for the
scale-dependent vertices V and W in the SU(2)×SU(2)-
invariant case, see App. A. The fRG flow is initialized at
the bandwidth of the system and integrated out toward
the Fermi level upon lowering Λ. This scheme amounts to
an infinite-order summation of coupled particle-particle
and particle-hole channels of second order in the effective
interactions. It enables an unbiased investigation of the
competing correlations through the analysis of the com-
ponents of V (k1, k2; k3) and W (k1, k2; k3), which signal
Fermi-liquid instabilities by flowing to large values at a
critical fRG scale Λc. We use Λc as an estimate for tran-
sition temperatures Λc = T ∗. In a RPA-like summation,
T ∗ would equal the mean-field transition temperature,
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FIG. 2. (a) Instability temperature for initial U = 3t, Vh =
0.4t, µ = 2t and variable SU(4) exchange J . For small J , there
is a weak tendency towards a spin density wave (SDW, yel-
low), for increasing J an interaction-induced quantum anoma-
lous Hall state (QAH, purple) develops. (b1) The character-
istic vertex V (ϕ,ϕ′, ϕ0) at T ∗ of the QAH instability as func-
tion of the angles of the two incoming momenta. The angle
of the third wavevector is fixed at ϕ0 = −5π/6. Initial cou-
plings are U = 3t, J = 0.4t, Vh = 0.1t and µ = 2t. The
structure at ϕ ≈ π/2 can be fitted by a d-wave form factors
as given above Eq. (5). (b2) Sketch of the corresponding real
space flux pattern of the QAH obtained from transforming
the mean-field suggested by Eq. (5) back to real space. (c)
The characteristic vertices of the SDW instability Eq. (6) for
initial U = 3t, J = 0, Vh = 0.4t and µ = 2t. The inset shows
the spin configuration of the triple-M SDW on the triangular
lattice.

whereas it can be altered in our case due to the mu-
tual feedback of the different channels. For the numerical
computation, we discretize the wavevector dependence of
V and W . To this end, we project all wavevectors onto
the Fermi surface and resolve the angular dependence by
dividing the BZ into N patches as shown in Fig. 1, i.e.
V (k1, k2, k3) → V (ϕ1, ϕ2, ϕ3) with |ki| = kF (ϕi) being
the corresponding Fermi vector. In the following, we dis-
cuss our findings from varying µ and J , whilst keeping
fixed U, Vh and K (or Js and Kn). Phase diagrams sug-
gested by the diverging correlations are shown in Figs. 1,
2 and 4.

Instabilities of the nested Fermi surface. In our
model, a chemical potential of µ = 2t (three electrons per
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site) leads to a perfectly nested Fermi surface with three
inequivalent nesting vectors Ma, a ∈ {1, 2, 3} (see Fig. 1).
The nesting vectors are equivalent to the vectors of the M
points in the Brillouin zone because Ma −Mb = εabcMc

up to a reciprocal lattice vector. As a result, we find
both real and imaginary density wave instabilities near
van-Hove filling depending on the initial interactions. We
assume that the onsite interaction U is always dominat-
ing.

The SU(4) exchange coupling J induces an ordering
tendency in the imaginary charge density wave channel.
This generates a finite expectation value for the bond cur-
rent operator leading to a Haldane-like quantum anoma-
lous Hall (QAH) state24,39,40. It robustly appears in the
tentative fRG phase diagram for varying initial couplings
and persists when doping slightly away from van-Hove
filling, µ 6= 2t, cf. Fig. 1. In particular, it is stable upon
inclusion of small SU(4)-breaking terms. The character-
istic vertex structure of the QAH instability exhibits a
special sign modulation, cf. Fig. 2. The divergence only
occurs in vertex V for scattering processes connected by
the different Ma vectors. At van-Hove filling, the ver-
tex can be fitted by V (k1, k2, k3) = ḡ da(k1)da(k2)δ(k3 −
k1−Ma) with three d-wave functions for each of the Ma

points a ∈ {1, 2, 3}: d1 = 2 sin(kx/2) sin(
√

3ky/2), d2,3 =

∓ cos(kx)±cos((kx±
√

3ky)/2). This leads to the effective
Hamiltonian

HQAH = ḡ
∑
a

b†aba , (5)

where ba =
∑
k da(k)c†k+Maσo

ckσo and ḡ > 0. Away from
µ = 2t, the QAH divergencies are more limited to the
vicinity of the M points. HQAH suggests a purely imagi-
nary mean-field configuration with 〈ba〉 = −〈b†a〉, leading
to loop currents in real space24,40. We find simultaneous
ordering tendencies of all three components ba. This is
expected to be energetically favored as it leads to a fully
gapped state, which breaks time-reversal symmetry and
has a non-zero Chern invariant40. We show the corre-
sponding flux configuration in Fig. 2 (b).

For spin or orbital Hund couplings Vh,K 6= 0
larger than the exchange J , strong correlations of real
SU(2)×SU(2) spin/orbital-density waves (SODW) are in-
duced. This is signaled by sharp horizontal and vertical
lines in the vertices as illustrated in Fig. 2 (c). It depends
on the SU(4)-breaking terms (3), which spin and orbital
correlations are chosen from the allowed SU(2)×SU(2)
possibilities: S · S, L ·L or (c†σ ⊗ τ c) · (c†σ ⊗ τ c). For
the example in Fig. 2 (b), we choose U = 3t, Vh = 0.4t
and K = 0, which favors S · S. We show other exam-
ples in the appendix. The divergent lines in Fig. 2 again
correspond to scattering processes that involve points on
the Fermi surface connected by one of the three nest-
ing vectors Ma, cf. Fig. 1. We read off the strength
of the vertices as V (k1, k2, k3) = g δ(k3 − k1 −Ma) and
W (k1, k2, k3) = 2g δ(k3− k2−Ma) with g > 0. This ten-

sor structure corresponds to the effective Hamiltonian

Ha
SDW = gSMa

· S−Ma
, (6)

with SMa =
∑
k c
†
k+Maoσ

σσσ′ckoσ′ . The instability in-
volves all three nesting vectors Ma depending on which
of them connects the respective part of the Fermi sur-
face. We interpret this as the itinerant triple-M state of
Ref. 42 for the triangular lattice which is conjectured to
occur before an insulating chiral SDW sets in at lower
temperatures43–45. We sketch the real-space spin pat-
tern in the inset of Fig. 2 (c). In contrast to the QAH,
the SDW is relatively weak and quickly suppressed by
tuning µ away from perfect nesting or increasing J . We
attribute this to the increased available phase space due
to the three inequivalent nesting vectors. Moreover, the
higher flavor number favors the QAH, cf. Ref. 24.

Unconventional superconductivity. When we tune the
chemical potential further away from perfect nesting, we
find that the system is susceptible to superconductivity
(SC) in the d-wave channel. In addition, we see strong
pairing correlations at µ = 2t for small onsite U or large
exchange J . Interestingly, the orbital degrees of freedom
open the possibility to d-wave pairing with (spin-triplet)-
(orbital-singlet) or (spin-singlet)-(orbital-triplet) symme-
try. In our calculation it depends on the size of Hund’s
and orbital-Hund’s couplings which of them is selected.
We find that for Vh > K, superconductivity is mediated
by fluctuations of the effective spin Hamiltonian Eq. (6).
Mean-field decoupling of Eq. (6) in the pairing channel
with even parity leads to attraction in the (spin-singlet)-
(orbital-triplet) channel (App. D). This is different to the
strong-coupling scenario, where the Hund’s coupling fa-
vors (spin-triplet)-(orbital-singlet) pairing. The reason
is that in this case, superconductivity is mediated by
purely ferromagnetic spin-fluctuations, which is qualita-
tively different from the mediation in terms of the weak-
coupling spin-density wave as found here. Note, how-
ever, that one still can get (spin-triplet)-(orbital-singlet)
d-wave SC from weak coupling, e.g., for K > Vh > 0,
an orbital density wave is induced for small J mediating
(spin-triplet)-(orbital-singlet) d-wave pairing.

A snapshot of the SC vertex is shown in Fig. 3 for the
example of µ = 1.9t, U = 3t, J = 0.4t and Vh = 0.1t. It
exhibits a dominant diagonal feature with d-wave form
factor d(k), i.e. V (k1, k2, k3) = −ĝ d(k1)d(k3)δ(k1 + k2)
where ĝ > 0. As we explain in App. B, the relative
sign between vertices V and W gives information about
the spin and orbital pairing configuration. In the above
example, the divergent structure in W (ϕ,ϕ′, ϕ0) (not
shown) is weaker and has the same sign as compared
to V (ϕ,ϕ′, ϕ0). Therefore, the leading SC instability
corresponds to (spin-singlet)-(orbital-triplet) pairing as
expected. We extract the effective Hamiltonian

HSC = −ĝ∆†d∆d , (7)

with ∆d =
∑
k d(k)c−kσo(iτ τy)oo′(iσ

y)σσ′ckσ′o′ . From
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our calculation, the form factor d(k) is predicted to
be a superposition of the two d-wave functions dxy =

−2
√

3 sin kx/2 cos
√

2ky/2 and dx2−y2 = 2 cos kx −
2 cos kx/2 cos

√
3ky/2 (see Fig. 3). Eventually, we expect

the dx2−y2 ± idxy states of Ref. 17 – or rather their spin-
singlet, orbital-triplet equivalent – to be favored because
this maximizes the pairing gap on the Fermi surface46

(see also Refs. 47 and 48). As outlined in Ref. 17, this
leaves two types of d± id superconductors degenerate at
the mean-field level, which are both topological with pro-
tected edge states. Note that nematic superconductivity
has also been discussed as an alternative49.

Regarding the interplay with the QAH, we observe two
different scenarios. In the case of a closed Fermi surface,
µ < 2t, there appears to be a competition between both
phases. This is suggested by the behavior shown in Fig. 1
which exhibits a downturn of the superconducting in-
stability temperature just before the steep increase very
close to µ = 2t when the QAH tendencies grow strong. In
contrast, for µ ≥ 2t, the diverging structure of the ver-
tex suggest a crossover from a QAH- to SC-dominated
regime when increasing µ. In the intermediate regime,
correlations in both channels grow large and one has to
go beyond our approach to decide whether or not there
will be a phase of coexistence.

We also find the possibility of f -wave SC with (spin-
singlet)-(orbital-singlet) configuration. This pairing in-
stability occurs for an open free Fermi surface, µ > 2t,
and dominant Js > 0 or dominant Kn > 0, see Fig. 4.
The unconventional combination of an odd form factor
with spin-singlet is due to mediation by spin fluctua-
tions: mean-field decoupling of Eq. (6) in the odd parity
channels leads to attraction in the (spin-singlet)-(orbital-
singlet) channel (App. D). Our vertex data is well fitted

by fx(x2−3y2) = sin kx−2 sin kx/2 cos
√

3ky/2 (see Fig. 5)
with nodes along the Γ − Ma directions. Thus, they
do not coincide with the Fermi lines which are centered
around the K,K ′ points. Since the gap function follows
the form factor, this suggests a nodeless f -wave SC state.
A (spin-singlet)-(orbital-singlet) f -wave SC state has also
been found in Ref. 23) from a Kohn-Luttinger analysis
on the two-orbital honeycomb lattice.

Conclusion. In this work, we have studied the quan-
tum many-body instabilities of a multi-orbital model for
interacting electrons on the triangular lattice. We have
incorporated various universal aspects which were sug-
gested to be relevant for the correlated behavior in moiré
heterostructures, such as twisted bilayer boron nitride
and trilayer graphene-boron nitride systems. We used
the N -patch functional renormalization group approach
for a vertex structure with SU(2)×SU(2) symmetry. This
formulation of the fRG is a suitable method to investi-
gate the interplay between (approximate) nesting and
a large density of states in an unbiased way because
it takes into account all correlation channels and their
mutual couplings. We have identified three classes of
strongly-growing correlations: spin/orbital density wave
states, two types of unconventional superconductivity
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FIG. 3. Pairing vertex at the critical temperature for µ = 1.9t
and initial U = 3t, J = 0.4t, Vh = 0.1t. The third angle
ϕ0 = −5π/6. The extracted form factors on the right are
fitted by a linear combination of dx2−y2 and dxy.

0 0.1 0.2 0.3 0.4
0

0.04

0.08

0.12

0.16

J/t

T
* /
t

d-SCf-SC

FIG. 4. (a) Instability temperature for U = 3t, Vh = 0 and
Js = 1.2t with variable J/t. (b) Snapshot of the vertex for
an instability towards f -wave superconductivity. Initial cou-
plings are U = 3.0t, Js = 1.2t and µ = 2.05t. The angle of the
third wavevector is set to φ0 = −2π/3 Note that the diagonal
structure crosses zero six times as opposed to four times for
the d-wave instability in Fig. 3.

and a Haldane-like loop-current phase with non-zero
Chern number.

While the density waves are fragile and found only very
close to perfect nesting, the superconducting and loop-
current phases are robust, and occupy an extended range
in parameter space. The type of pairing that emerges
depends on the Fermi surface topology. We provided
further evidence for the previously discussed topologi-
cal d ± id superconductivity scenario17,24. On the other
hand, for an open Fermi surface the pairing correlations
can be of d- or f -wave form in our computation, depend-
ing on the ratio and size of SU(4)-breaking Hund’s or
spin/orbital exchange couplings. For larger corrections
to the SU(4) invariance we find other types of instabil-
ities. For example, slightly away from van Hove filling
for Vh > t and the other interactions set to zero, an
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(orbital-singlet)-(spin-triplet) SC instability with s-wave
form factors emerges. For negative Js,Kn, the flow is
towards a ferromagnetic spin or ferro-orbital order.

As a perspective for future studies we note that the
fRG approach has the advantage that all modes of the
effective model are taken into account. Hence, in prin-
ciple, the resulting instability scales T ∗ can serve as es-
timates for actual (short-range) ordering scales in the
experimental system if the model parameters are known.
At present, there are only rough estimates for the inter-
action parameters in TBG14 and twisted bilayer boron
nitride34 that point to potentially very large onsite re-
pulsions ∼ 30 meV compared to effective hoppings t ∼
0.33 meV14. The effect of these large onsite terms might,
however, be reduced by the competition with nonlocal
interactions50, which are also expected to be sizeable. A
study of this interplay is beyond the scope of our paper.
Here we only state that the mentioned t-value, our crit-
ical scales for U = 3t end up in the sub-Kelvin range,
T ∗ ∼ 0.03t ≈ 0.1K. Note, however, that these scales
depend exponentially on the chosen couplings such that
energy scales of a few Kelvin can be reached already for
moderate interaction strengths.

As the discussion about the role of interactions is still
ongoing, we think that the weak-to-intermediate cou-
pling perspective given here, together with the use of
the universal aspects of moiré heterostructures can pro-
vide essential insights into the general ordering tenden-
cies in such multi-orbital systems. In particular, our
prediction of the appearance of robust topological/chiral
interaction-induced phases is accessible to experimental
examination.
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Appendix A: Fermion functional RG setup

We study many-body instabilities of the model de-
fined in Eqs. (1), (2) and (3) by means of the fRG
method38. To that end, we employ its specific formu-
lation for correlated fermion systems51,52, see Refs. 36
and 37 for reviews. The fRG-N -patch scheme starts with
a fermionic action corresponding to our model Hamilto-
nian S[ψ̄, ψ] = −(ψ̄, G−1

0 ψ)+V[ψ̄, ψ] . The quadratic first
term with the free propagator G0(ωn, k) = 1/(iωn−ε(k))
includes Matsubara frequencies ωn and wavevectors k.
The dispersion ε(k) is measured relative to the chemi-
cal potential. In the present case, the free propagator is
diagonal with respect to spin and the orbital quantum
numbers, σ and o, and we have suppressed the according
indices. The general interaction contribution V[ψ̄, ψ] is
quartic in the fermion fields. Its specific form can be di-
rectly inferred from the Hamiltonians in Eqs. (2) and (3).

The bare propagator is then regularized by an infrared
cutoff with energy scale Λ: G0(ωn, k) → GΛ

0 (ωn, k) =
θΛ
ε (ε(k))/(iωn − ε(k)) , where θΛ

ε is an approximate step
function with smoothening scale ε cutting off fluctuations
with energies |ε(k)| . Λ. The regularized propagator
GΛ

0 is then used to set up the functional integral for the
scale-dependent effective action ΓΛ, which generates the
one-particle irreducible vertex functions Γ(2n)Λ.

The fRG flow is generated upon variation of Λ pro-
ducing a hierarchy of differential equations for the ver-
tex functions Γ(2n)Λ. Integration of the flow towards
the infrared Λ → 0 yields the full effective action
Γ. We employ the standard truncation for analyzing
many-body instabilities in two-dimensional fermion sys-
tems, where the fRG flow of all higher n-point func-
tions with n ≥ 6 and self-energy feedback are neglected.
In our SU(2)×SU(2)-invariant system, this corresponds
to following the scale dependence of the two generally
frequency- and momentum-dependent effective interac-
tion vertices V and W as defined in Eq. (4). Their flow
consists of three contributions, i.e. the particle-particle,
direct and crossed particle-hole channels:

∂ΛV (q1, q2, q3) = TVpp(q1, q2, q3) + TVph,d(q1, q2, q3) + TVph,cr(q1, q2, q3) (A1)

∂ΛW (q1, q2, q3) = TWpp (q1, q2, q3) + TWph,d(q1, q2, q3) + TWph,cr(q1, q2, q3) . (A2)

The expression for the different channels are

TVpp(q1, q2, q3) = −
∫
dkL−(q1 + q2, k)

[
V (qpp, k, q3)V (q1, q2, qpp) +W (qpp, k, q3)W (q1, q2, qpp)

]
(A3)

TWpp (q1, q2, q3) = −
∫
dkL−(q1 + q2, k)

[
V (qpp, k, q3)W (q1, q2, qpp) +W (qpp, k, q3)V (q1, q2, qpp)

]
(A4)

TVph,d(q1, q2, q3) = −
∫
dkL+(q1 − q3, k)

[
− 4V (q1, k, q3)V (qph,d, q2, k) + V (k, q1, q3)V (qph,d, q2, k)

+ V (q1, k, q3)V (q2, qh,d, k) +W (k, q1, q3)W (qph,d, q2, k) +W (q1, k, q3)W (q2, qph,d, k)

− 2V (q1, k, q3)W (qph,d, q2, k) + 2V (q1, k, q3)W (q2, qph,d, k)− 2W (q1, k, q3)V (qph,d, q2, k)
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+ 2W (k, q1, q3)V (qph,d, q2, k)
]

(A5)

TWph,d(q1, q2, q3) = −
∫
dkL+(q1 − q3, k)

[
− 2W (q1, k, q3)W (qph,d, q2, k) + V (k, q1, q3)W (qph,d, q2, k)

+W (q1, k, q3)V (q2, qph,d, k)
]

(A6)

TVph,cr(q1, q2, q3) = −
∫
dkL+(q2 − q3, k)V (k, q2, q3)V (q1, qph,cr, k) (A7)

TWph,cr(q1, q2, q3) = −
∫
dkL+(q2 − q3, k)

[
2W (k, q2, q3)W (q1, qph,cr, k) + V (k, q2, q3)W (q1, qph,cr, k)

+W (k, q2, q3)V (q1, qph,cr, k)
]
, (A8)

where we defined qpp = q1 + q2 − k, qph,d = q1 − q3 + k,
qph,cr = q2 − q3 + k and L±(q, k) = SΛ(k)GΛ

0 (q ±
k) + GΛ

0 (k)SΛ(q ± k) with the single-scale propagator
SΛ = ∂ΛG

Λ
0 . In Eqs. (A1)-(A8), the arguments are com-

bined frequency and momentum vectors q = (ω, q). The
most singular part of the vertices is expected to come
from zero Matsubara frequency. Thus, for the numerical
evaluation of instabilities, we do not resolve the frequency
dependence of the two-particle vertices and only consider
the zero-frequency limit. The wavevector dependence is
taken into account via a patching of the Fermi surface
which resolves the angular direction. This truncation
has been shown to successfully describe the Fermi sur-
face instabilities of numerous systems. In particular, it
goes beyond the random phase approximation because
the coupling of the different channels is taken into ac-
count. We discretize the Fermi surface by patch points,
each representing one of N patches covering the BZ, as
shown in Fig. 1. We use up to N = 96 to check the
convergence of our results, which is particularly impor-
tant at van-Hove filling. For µ > 2t, the Fermi surface
is open and we choose patches that are centered around
the K,K ′ points. For details on the patching, we refer
to Ref. 53 which depicts both geometries used here.

We initialize our numerics with an RG scale equal to
the bandwidth. An instability towards an ordered state is
signaled by a divergence in the two-particle vertices V,W
during the flow towards the infrared and we stop the RG
evolution when this occurs. In practice, our stopping con-
dition is that one vertex component exceeds 40t. When
V,W remain finite, we stop the flow when Λ < 10−9t.

Appendix B: Extraction of effective Hamiltonians

The snapshots of the vertices in Figs. 2 (b)-(d) show
that the fRG predicts specific momentum dependencies
for the many-body instabilities, which allows us to char-
acterize the occuring ordering tendencies in some de-
tail. Therefore, we systematically extract54 the effective
Hamiltonians, cf. Eqs. (5), (6), (7).

In particular, for the SC instability, the procedure is
as follows. The diverging part of the vertex suggests
V (k1, k2, k3) → V (k,−k, k′). We compute the eigensys-

tem of this effective N × N matrix as defined on the
patch points. The eigenvector with the largest absolute
value is expected to provide the order parameter with
the highest transition temperature in a meanfield ap-
proach and we therefore examine its momentum depen-
dence in more detail. In the case of the d-wave SC insta-
bility, we find two eigenvectors with degenerate largest
eigenvalue. Introducing the momentum-space represen-
tations of the d-wave form factors on the triangular lat-
tice, dx2−y2 = 2 cos(kx) − 2 cos(kx/2) cos(

√
3ky/2) and

dxy = −2
√

3 sin(kx/2) sin(
√

3ky)/2), we can fit the ex-
tracted momentum dependencies very well by d+(k) =
− sin(φ)dx2−y2 + cos(φ)dxy and d−(k) = cos(φ)dx2−y2 +
sin(φ)dxy with φ = 5π/4 as shown in the Fig. 3. We also
show the f -wave form factor extracted from the vertices
in Fig 4 in Fig. 5.
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FIG. 5. Left: SC f -wave form factor of the V and W vertices
shown in Fig. 4 fV = −fW = − sin kx+2 sin kx/2 cos

√
2ky/2.

Initial values are U = 3.0t, Js = 1.2t and µ = 2.05t. Right: d-
wave form factor of the QAH instability of the vertex in Fig. 2.
We show d3 = cos(kx)− cos((kx −

√
3ky)/2) as example.

We now only keep these leading channels, i.e.
V (k,−k, k′) → λV d(k)∗d(k′) with corresponding form
factor superposition d(k). To connect to the standard
notation, we use the Fierz identity δadδbc = (σabσcd +

δabδcd)/2 = [(Γ†0)ab(Γ0)cd+(Γ†)ab(Γ†)cd]/2 with Γ0 = iσ2

and Γi = σiiσ2. The Γµ matrices are a convenient way
to encode the parity of the pairing function with respect
to spin because Γ>0 = −Γ0 and Γ> = Γ. Thus Γ0 corre-
sponds to a spin-singlet and Γ to a spin-triplet configu-
ration. Accordingly, we define the matrices G0 = iτ2 and
G = τ iτ2 in orbital space. We rewrite the interaction
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V SC =
λV

4
dV (k)∗dV (k′)c†kaαc

†
−kbβc−k′cγck′dδ

[
(G†0)ab(G0)cd + (G†)ab(G)cd

]
⊗
[
(Γ†0)αβ(Γ0)γδ + (Γ†)αβ(Γ)γδ

]
+
λW

4
dW (k)∗dW (k′)c†kaαc

†
−kbβc−k′cγck′dδ

[
−(G†0)ab(G0)cd + (G†)ab(G)cd

]
⊗
[
(Γ†0)αβ(Γ0)γδ + (Γ†)αβ(Γ)γδ

]
. (B1)

We used Greek symbols for spin and Latin symbols for
orbital space. The minus sign in the expression from
the W vertex is due to a transpose that one has to
take because of the exchanged orbital index. Now, we

see if di(k), i ∈ {V,W} is even, only G†0G0 ⊗ Γ†Γ or

G†G ⊗ Γ†0Γ0 are allowed by the antisymmetry of the
pairing function. This correspond to (orbital-singlet)-
(spin-triplet) and (orbital-triplet)-(spin-singlet) SC, re-
spectively. Due to the minus sign in the expression, we
find for λV = λW (orbital-triplet)-(spin-singlet) and for
λV = −λW (orbital-singlet)-(spin-triplet).

For the QAH instability we proceed accordingly and
find that the form factor da is determined by the mo-
mentum transfer Ma as given in the main text. We plot
d3(k) as an example, see top panel in Fig. 5.

Appendix C: Other instabilities

As we mentioned in the main text, we find an orbital-
singlet, spin-triplet s-wave instability for small onsite
repulsion and dominant Hund’s coupling. The reason
is that there is an attractive onsite interaction for this
combination. We show the corresponding vertices in
Fig. 6 (a).

We also note that besides the spin-density wave dis-
cussed in the main text, the system can flow towards
an orbital density wave or a combined spin-orbital den-
sity wave at µ = 2t. It depends on the Hund-like V,K
and SU(2) exchange Js,Kn couplings which density-wave
instability of the allowed SU(2)×SU(2) combinations is
chosen. We show examples for the vertex of an orbital
density wave in Fig. 6 (b) with initial couplings U = 3t,
K = 0.4t. The leading vertex structure corresponds to

Ha
ODW = gODWLMa

·L−Ma
(C1)

with LMa =
∑
k c
†
k+Maoσ

τoo′cko′σ and gODW > 0. For
U = 3t and V = K = 0, but Js,Kn 6= 0, the density-wave
instability corresponds to a combined spin-orbital density
wave. That is, we find V (k1, k2, k3) = gSODW[4δ(k3 −
k2 − Ma) − δ(k3 − k1 − Ma)] and W (k1, k2, k3) =
2gSODW[−δ(k3 − k2 − Ma) + δ(k3 − k1 − Ma)] with
gSODW > 0 and the effective Hamiltonian becomes

Ha
OSDW = gSODWJMa · J−Ma (C2)

with JMa
=
∑
k c
†
k+Maσo

σσσ′τoo′ckσ′o′ .

(a)

(b)

(c)

FIG. 6. (a) Pairing vertex with s-wave form factor for Vh =
1.2t and µ = 1.98t. (b) Vertex of an orbital density wave
for µ = 2t and initial U = 3t and K = 0.4t (c) Vertex of
a spin-orbital density wave for µ = 2t, U = 3t, Js = −0.3t,
Kn = −0.4t, Vh = 0.1t. Non-specified couplings are zero.

Appendix D: Pairing from spin fluctuations within
mean-field

As we said in the main text, mean-field decoupling of
the spin-density-wave Hamiltonian allows us to assess the
symmetry of the pairing function mediated by spin fluc-
tuations. To this end, we translate the spin-density-wave
Hamiltonian back to real-space and rewrite the nearest-
neighbor contribution in terms of pairing bilinears. In
reals space, we obtain

HSDW = g
∑
a

SMa
· S−Ma
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= g
∑
a

∑
〈r,r′〉

e−Ma(r−r′)c†rσcr c
†
r′σcr′ (D1)

with g > 0, which is ferromagnetic in one direction and
antiferromagnetic in the other for a single momentum
transfer Ma. When all three Ma are involved, we obtain
the spin configuration as shown in Fig. 2 in the main
text. To address the pairing, we focus on nearest neigh-
bors, i.e. r′ = r + δ with the nearest-neighbor vector δ,
then

∑
a exp(−iMaδ) = −1. With the help of the Fierz

indentities δαβδγδ = [−(Γ†0)αγ(Γ0)βδ + (Γ†)αγ(Γ†)βδ]/2
and σαβσγδ = [3(Γ†0)αγ(Γ0)βδ+(Γ†)αγ(Γ†)βδ]/2, we find

the pairing form

HSDW = g
∑
r,δ

[
−3

4
(∆ss

r,r+δ)
†∆ss

r,r+δ −
3

4
(∆ts

r,r+δ)
†∆ts

r,r+δ

+
1

4
(∆st

r,r+δ)
†∆st

r,r+δ +
1

4
(∆tt

r,r+δ)
†∆tt

r,r+δ

]
(D2)

with pairing bilinears for orbital-singlet, spin-singlet
∆ss
r,r′ = cr′(G0 ⊗ Γ0)cr, orbital-triplet, spin-singlet

∆ts
r,r′ = cr′(G⊗Γ0)cr, orbital-singlet, spin-triplet ∆st

r,r′ =

cr′(G0 ⊗ Γ)cr and orbital-triplet, spin-triplet ∆tt
r,r′ =

cr′(G⊗Γ)cr. At this expression, we can directly see that
the spin-fluctuations induce an attractive interaction in
the orbital-triplet, spin-singlet, even parity and orbital-
singlet, spin-singlet, odd parity channel on the mean-field
level.
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