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Topological Superconductivity in Dirac Honeycomb Systems

Kyungmin Lee,∗ Tamaghna Hazra,∗ Mohit Randeria, and Nandini Trivedi
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

We predict two new topological superconducting phases in microscopic models arising from the Berry
phase associated with the valley degree of freedom in gapped Dirac honeycomb systems. The first one
is a topological helical spin-triplet superconductor with a non-zero center-of-mass momentum that does
not break time reversal symmetry. We also find a topological chiral triplet superconductor with Chern
number ±1 with equal-spin-pairing in one valley and opposite-spin-triplet pairing in the other valley.
Our results are obtained for the Kane-Mele model in which we have explored the effect of three different
interactions – on-site attraction U , nearest-neighbor density-density attraction V and nearest-neighbor
antiferromagnetic exchange J – within self-consistent Bogoliubov-deGennes theory. Transition metal
dichalcogenides and cold atom experiments are promising platforms to explore these novel phases.

I. INTRODUCTION

A topological superconductor (SC) has a superconduct-
ing gap in the bulk but protected Majorana fermions on
the boundaries or in the cores of vortices in an externally
applied magnetic field [1, 2]. There has been considerable
excitement about the search for topological superconduc-
tors in recent years.

While signatures of topological superconductivity have
been observed in one-dimensional chains with proximity-
induced superconductivity [3, 4], the experimental search
for topological superconductivity in two dimensions is a
promising [5] and relatively unexplored territory [6–9]

The honeycomb lattice, with special features of Dirac
dispersion and opposite Berry curvature around the two
inequivalent valleys in the Brillouin zone, has emerged
as a paradigmatic system for exploring topological states.
In this paper, we extend these investigations to include
attractive interactions between electrons and outline a
novel route to topological superconductivity, highlighting
the crucial role played by the Berry phase and valley de-
gree of freedom.

Transition metal dichalcogenides (TMDs) with the val-
ley degree of freedom, are a viable family of materials in
the search for topological superconductivity. TMDs are
layered materials containing a transition metal layer that
form a triangular layer sandwiched between two chalco-
gen layers. Based on DFT calculations that indicate con-
siderable d-p mixing between the chalcogen and transi-
tion metal ions [10], we expect the effective Hamiltonian
to reduce to a honeycomb model, similar to graphene, but
with the richness of strong spin-orbit coupling and inter-
actions between electrons.

In TMD materials like MoS2 and WS2 [11], supercon-
ductivity is observed below ∼10K [12–14], though these
appear to be trivial SCs. Other TMD materials like 1T′-
WTe2 exhibit gapless edge states, suggesting that they
are topological insulators [15]. WTe2 is reported to be-
come superconducting under pressure [16, 17] and gat-
ing [18, 19], though whether it is a topological supercon-
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ductor is still unclear. Also more recently, magic angle
twisted bilayer graphene [20] has emerged as a model sys-
tem for understanding superconductivity in the strongly
correlated regime. Refs. [21–23] suggest that, despite the
concentration of charge density on a triangular lattice, the
low energy physics is that of a Dirac honeycomb system.
This is also true for the naturally occurring layered min-
eral jacutingaite, Pt2HgSe3 where the low energy physics
is dominated by the Hg atoms on a honeycomb lattice[24],
resulting in a room-temperature quantum spin hall insu-
lator with a gap of 110meV [25]. Preliminary theoretical
investigations suggest the possibility of unconventional
superconductivity when gated/doped to the van Hove sin-
gularities in the bandstructure [26]. The question of in-
trinsic topological superconductivity in this system is as
yet unexplored.

Given these motivations, we examine the supercon-
ducting states that emerge in the Kane-Mele model [27]
as a result of various interactions. This is the archetypal
model on a honeycomb lattice that exhibits a transition
from a topological to a trivial insulator as a function of
spin-orbit coupling [see Fig. 1]. What are the supercon-
ducting instabilities of this gapped Dirac system? Un-
der what conditions do we get topological superconduct-
ing states? These are the primary questions we address
in this paper.

We use self-consistent Bogoliubov-deGennes theory to
map out the phase diagrams of the Kane-Mele model with
three different types of interactions, and analyze the topo-
logical invariants associated with the resulting supercon-
ducting phases. Throughout this article, we will use the
terms “trivial”, and “topological” to refer to zero and non-
zero topological invariants of the corresponding symmetry
class. For the three types of interactions we find:
(i) We show that on-site attraction, irrespective of
whether the parent insulator is topological or trivial, the
resulting superconductor is non-topological [see Fig. 2(a)].
(ii) For nearest neighbor attraction, topological supercon-
ductivity can arise from both the trivial as well as the
topological insulator, and is most prominent near the
transition [see Fig. 2(b)].
(iii) With antiferromagnetic nearest-neighbor interaction,
we find exotic singlet states with broken rotation, trans-
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lation and time-reversal symmetries; however, none of
these states are topological [see Fig. 8].

Our most significant results on topological supercon-
ducting states pertain to Fig. 2(b)] where we find that two
of the four superconducting states are topological, a time-
reversal symmetric helical superconductor and a chiral
superconductor with Chern number ±1 that breaks time-
reversal. These topological states involve pairing within
the same Dirac cone, and are stabilized when the under-
lying band structure is close to the transition between the
topological and the trivial insulating phases.

The topological superconducting states we find are dif-
ferent from those discussed in the literature. For exam-
ple, unlike 3He-B, the helical superconductor we predict
has a non-zero COM momentum due to the valley de-
gree of freedom. The chiral superconductor too is differ-
ent from the proposed paired state for the spinless ν = 5/2
quantum Hall state with Chern number 1, or the p± ip
superconducting state in spin-full Sr2RuO4 or in 3He−A
that have a Chern number of ±2. The chiral SC we pre-
dict is composed of a condensate of equal-spin pairs with
non-zero COM momentum, and another condensate of
opposite-spin pairs with the COM momentum reversed.

In the final section, we compare our results with previ-
ous theoretical works on superconductivity in TMDs, and
also comment on the implications of our results for cold
atom experiments.

II. KANE-MELE MODEL WITH INTERACTIONS

To study the pairing instability of a two-dimensional
Dirac system across the topological phase transition be-
tween topological and trivial insulating phases, we take
the Kane-Mele model defined on a honeycomb lattice
[Fig. 1(a)] as the underlying band structure [27]:

HKM =−t ∑
⟨i, j⟩

ψ†
iψ j −µ∑

i
ψ†

iψi

− iλSO ∑
⟪i, j⟫

νi jψ
†
iσ

zψ j +mAB∑
i
ξiψ

†
iψi (1)

where ψ†
i ≡ (c†

i↑, c†
i↓) is the electron creation operator

at site i, and ⟨⋅, ⋅⟩ and ⟪⋅, ⋅⟫ represent nearest-neighbor
and next-nearest-neighbor pairs of sites. Here, t is the
nearest-neighbor hopping amplitude, µ the chemical po-
tential, λSO the strength of Ising spin-orbit coupling,
with νi j = sgn(ẑ ⋅ (v1 ×v2)) where v1 and v2 are nearest-
neighbor vectors that connect an electron hop from site
i to site j, and mAB the sublattice potential, with ξi = 1
(−1) if the site i belongs to the sublattice A (B). The sub-
lattice potential breaks inversion symmetry and reduces
the symmetry group of the Hamiltonian to D3h. For the
sake of simplicity, we do not include the Rashba spin-orbit
coupling in our analysis. Our main results, nevertheless,
remain the same for a small Rashba coupling, as we dis-
cuss later.
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FIG. 1. (a) Honeycomb lattice on which the Hamiltonian in
Eq. (1) is defined. The blue hexagon marks the

√
3×
√

3 su-
percell used in our study, which allows pairing with non-zero
center-of-mass (COM) crystal momentum K and K ′ of Cooper
pairs in addition to Γ. (b) Brillouin zone of the honeycomb
lattice. The inner blue hexagon represents the reduced Bril-
louin zone of the supercell; both K and K ′ defined for the orig-
inal Brillouin zone are folded to the Γ point in the reduced
Brillouin zone. (c)-(e) Dispersions of the non-interacting Kane-
Mele model defined in Eq. (1). The solid (dashed) curves show
the dispersion of electrons with spin up (down). The parame-
ter x = 3

√
3λSO/(mAB + 3

√
3λSO) that represents the relative

strength of the Ising spin-orbit coupling is varied between (c)
0 ≤ x < 1/2 in the trivial insulator phase, (d) x = 1/2 at the topo-
logical transition, and (e) 1/2 < x ≤ 1 in the topological insulator
phase. The color of the curves indicate the sign of the Berry cur-
vature: In each spin sector, the signs of the Berry curvature at
K and K ′ are opposite in the trivial phase, and the same in the
topological phase. At the topological transition (x = 1/2), there
is a single Dirac cone in each spin sector in the corresponding
valley.

Symmetry and topology: The topology of a non-
interacting (or mean-field) Hamiltonian is character-
ized by different topological indices depending on the
dimensionality and the symmetry of the system [28, 29].
The band structure HKM has time-reversal symmetry
(T -symmetry) with T 2 =−1, and thus belongs to the class
AII [30]. In two dimensions, this class has two distinct
topological phases characterized by a Z2 topological index
ν = 0 or 1. To take the system across the topological phase
transition, we introduce a parameter x between 0 and 1,
which is related to the spin-orbit coupling and sublattice
potential by 3

√
3λSO = Egx and mAB = Eg(1− x). HKM

has a topological (trivial) ground state for x > 1/2 (x < 1/2).
The low energy degrees of freedom involve two massive
spin-polarized Dirac cones at each “valley” centered at K
and K ′ [Fig. 1(b)-(e)]. At x = 1/2, the band structure is
at a topological phase transition, with one of the Dirac
cones in each valley being massless. The mass of the
other Dirac cones remains constant at Eg throughout
the transition for all values of x. For the purpose of our
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FIG. 2. Phase diagrams of Kane-Mele model in Eq. (1) as functions of the tuning parameter x = 3
√

3λSO/(mAB +3
√

3λSO) which
interpolates between the trivial and topological insulating band structures, with (a) on-site attractive interaction U , (b) nearest-
neighbor attractive density-density interaction V . Solid lines mark continuous (topological) phase transitions, and the dotted lines
mark first order transitions. (a) With U , we find an s-wave pairing state that is topologically trivial. (b) With V , we find more exotic
pairing states, two of which are topological: The topological helical triplet superconductor(SC) (in green) near x = 1/2 has equal-spin
spin-triplet pairing (∆↑↑,∆↓↓ ≠ 0) and a T -invariant topological superconducting ground state with ν̃ = 1. The trivial p-Kekule triplet
SC (in blue) near x = 1 has spin-triplet pairing between opposite spins (dz

≠ 0), is T -invariant and is topologically trivial. Both of
these states have non-zero center-of-mass momentum pairs, with non-trivial real-space patterns in the pairing order parameters,
shown in Fig. 4. The other two superconducting phases (shown in purple and in pink) have a mixture of both types of triplet pairing
and are T -breaking. The topological chiral triplet SC (in purple) is a topological state with Chern number C̃ = ±1. The trivial
T -breaking triplet SC (in pink) on the other hand is topologically trivial with C̃ = 0.

calculation we have chosen Eg = t/2. Adding a small
Rashba spin-orbit coupling does not affect the topology of
the system, as long as the bulk gap remains finite [27].

Interactions: We study the pairing instability of the
Hamiltonian HKM with three different types of interac-
tions: (1) attractive on-site interaction −U∑i ni↑ni↓, (2)
attractive nearest-neighbor density-density interaction
−V∑⟨i j⟩ nin j, or (3) antiferromagnetic nearest-neighbor
Heisenberg interaction J∑⟨i j⟩σi ⋅σ j, where niσ ≡ c†

iσciσ,
ni ≡ ψ

†
iψi, and σ

µ
i ≡ ψ

†
iσ

µψi for µ = x, y, z. In each case,
we decouple the interaction in the pairing channel and
find the Bogoliubov-de Gennes ground states. All the su-
perconducting states that emerge self-consistently in this
analysis are fully gapped. This allows us to calculate the
relevant topological index in each phase corresponding to
its symmetry class [See Appendix A]. Once again, Rashba
spin-orbit coupling does not qualitatively affect the re-
sults, as long as it is weak compared to the Bogoliubov
quasiparticle gap.

Non-zero COM momentum pairs: Since the low-energy
electronic degrees of freedom lie at valleys near K and K ′

[see Fig. 1(b)-(e)], we also allow pairing of two electrons
from the same valley. To incorporate such pairing with
Cooper pairs having non-zero center-of-mass momentum
2K ≡ K ′ or 2K ′ ≡ K , we use a supercell with 6 sites [blue
hexagon in Fig. 1(a)], whose reduced Brillouin zone folds
the K and K ′ to Γ [blue hexagon in Fig. 1(b)]. This intro-
duces 6 on-site pairing order parameters and 36 nearest-

TABLE I. Summary of the superconducting phases in Fig. 2(b)
found with attractive nearest-neighbor density-density interac-
tion V . ΦK and ΦK ′

are spatial form factors defined by ΦQ
i j =

eiQ⋅(ri+r j), representing pairing of two electrons at K and K ′

valleys, respectively.

superconducting order parameter ∆ T -sym. topo.

phase index

topo. helical triplet ∆↑↑ ∼Φ
K , ∆↓↓ ∼Φ

K ′

✓ ν̃ = 1

triv. p-Kekule triplet dz
∼ΦK

−ΦK ′

✓ ν̃ = 0

topo. chiral triplet ∆↑↑ ∼Φ
K , dz

∼ΦK ′

⨉ C̃ =±1

(or its T -partner)

triv. T -breaking ∆↑↑,∆↓↓ ∼Φ
K
−ΦK ′

, ⨉ C̃ = 0

triplet dz
∼ΦK

+ΦK ′

neighbor pairing order parameters. We then minimize
the ground state energy within this exhaustive parameter
space averaging over 24×24 momentum grid. Note that
we are not imposing a particular structure of the pairing
order parameter; we are allowing the self-consistency loop
to pick the lowest energy configuration in the space of 42
complex pairing order parameters.
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FIG. 3. As described in Table I, the phase diagram for nearest
neighbour attractive interaction V is understood in terms of six
order parameters, corresponding to triplet pairing between up-
up, down-down and up-down pairs of fermions on each valley.
(See Appendix C for details.) The real space pattern ΦK

i j corre-
sponding to the condensate at the valley K is shown in Fig. 4(a).
The p-Kekule pair potential exhibits interference between the
two condensates ΦK

i j and ΦK ′

i j .

III. VARIOUS SUPERCONDUCTING PHASES AND
THEIR TOPOLOGY

On-site attraction U : In the Kane-Mele model at µ = 0
with on-site attractive interaction U , we find three differ-
ent phases as shown in Fig. 2(a). Away from x = 1/2, the
system is an insulator for weak interaction due to the non-
zero band gap: Its topological property is completely de-
termined by the underlying band structure parametrized
by x. For strong enough interaction, we find a continu-
ous transition to a uniform s-wave spin-singlet supercon-
ducting phase. Note that in the presence of spin-orbit
coupling (at x ≠ 0), spin-singlet and spin-triplet are not
symmetry-distinct, and pair amplitudes ⟨ciσc jσ′⟩ in both
spin channels can be non-zero in general. The on-site
interaction, however, allows pair potential ∆ only in the
spin-singlet channel. Throughout this article, we use the
terms spin-singlet and spin-triplet pairings to refer to the
spin-component of ∆ and not necessarily the pair ampli-
tude.

Since the pairing leaves the T -symmetry intact, the
Bogoliubov-de Gennes Hamiltonian is in the class DIII,
with a Z2 topological index ν̃ = 0 or 1, defined analogously
to the Z2 topological index ν of class AII topological in-
sulator, but in terms of the Bogoliubov quasiparticles in
Nambu space. The superconducting state that arises from
either the topological insulator or the trivial insulator is
a trivial superconductor with ν̃ = 0. This can be under-
stood in the following way: The insulating phase can be
seen as a T -invariant superconductor with zero pair po-
tential. Such a “superconducting state” is trivial since
ν̃ = 2ν = 0 (mod 2) independent of ν; (the factor of two is
due to the particle-hole redundancy of Nambu spinors).
At a continuous transition to a superconducting state, ν̃

1 2

2

1

2

1

1

2

1 2

1

1
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1

1
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1
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1
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dz
ij in p-Kekule SC

(b)

FIG. 4. Real-space patterns of the pairing order parameters that
we find with nearest-neighbor attractive density-density inter-
action. A bond between sites i and j represents pair potential
(a) ∆i↑; j↑ of the “topological helical triplet SC”, which is ∼ ΦK

i j ,

and (b) dz
i j of the “p-Kekule SC”, which is ∼ΦK

i j−Φ
K ′

i j . The color
of a bond marks the phase of the order parameter, which is also
indicated 1, −1, ω, and ω2 on the bonds (ω ≡ e2πi/3). Since both
∆i↑; j↑ and dz

i j are antisymmetric under i↔ j, we choose a con-
vention for the phases: i is always chosen from the A sublattice,
and j from the B sublattice.

cannot change since the single-particle gap does not close.
Thus it is natural that the superconductor that emerges
from a continuous transition from a trivial or topological
time-reversal invariant insulator, is topologically trivial.
Conversely, a topological superconductor must be sepa-
rated from a time-reversal invariant insulator either by
a discontinuous transition, or an intervening state where
the single-particle gap closes.

Nearest-neighbor density-density attraction V : With at-
tractive nearest-neighbor density-density interaction V ,
we find a much richer phase diagram shown in Fig. 2(b).
(We have implicitly assumed the presence of long
range Coulomb repulsion to prevent phase separation at
stronger interaction.) Unlike U which only allows spin-
singlet pairing, V also allows spin-triplet pairing chan-
nels. The pair potential ∆iσ; jσ′ between electrons at sites
i and j with spins σ and σ′ can thus be decomposed into
spin-singlet and three spin-triplet channels as

∆iσ; jσ′ = [(ψi jσ
0
+di j ⋅σ)iσy]

σσ′
(2)

where σµ for µ = 0, x, y, z are the identity and the Pauli
matrices in spin space. Since, however, the Hamiltonian
HKM only has a U(1) spin rotation symmetry related to
the Sz conservation rather than the full SU(2) spin ro-
tation symmetry, it is more convenient to decompose the
pairing channels intoψ (Cooper pairs with spin S = 0), ∆↑↑
(S = 1, Sz = 1), dz (S = 1, Sz = 0), and ∆↓↓ (S = 1, Sz = −1).
We find four distinct superconducting phases, all of which
have ∆ purely in the spin-triplet channel (with ψi j = 0).
These phases and their order parameters are summarized
in Table I. [Appendix D discusses how these order param-
eters transform under symmetry operations.]
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Topological helical SC: Around x = 1/2 at weaker inter-
action strength, we find a helical spin-triplet supercon-
ductor, which is T -invariant and characterized by a non-
trivial topological Z2 index ν̃ = 1 [green region in Fig. 2(b)].
The pairing in this state is in the equal-spin channel
(∆↑↑,∆↓↓ ≠ 0), with non-zero momentum Cooper pairs, as
indicated by the real-space pattern of ∆i↑; j↑ shown in
Fig. 4(a), which goes as ∆i↑; j↑ ∼Φ

K , whereΦQ
i j ≡ eiQ⋅(ri+r j),

for i in sublattice A and j in sublattice B. ΦQ represents
pairing with center-of-mass momentum 2Q. The magni-
tude of the pair potential is uniform across all unitcells
and only the phase modulates.

This T -invariant superconducting state, whose non-
trivial topology is characterized by the Z2 topological in-
dex ν̃ = 1, can be understood in terms of the Dirac dis-
persions at each valley. When x ≈ 1/2, the low energy
electronic degrees of freedom are spin-valley locked [see
Fig. 1(d)]. The order parameters ∆i↑; j↑ ∼ Φ

K
i j and ∆i↓; j↓ ∼

ΦK ′

i j , therefore represent pairing between two electrons of
the same spin from the same valley, which can be written
in momentum space as

∑
q
∆K+qc†

K+q,↑c
†
K−q,↑+∆K ′+qc†

K ′+q,↓c
†
K ′−q,↓+H.c. (3)

For small q, ∆K+q ≈ ∆K +O(q2) with ∆K ≠ 0. The non-
zero momentum pair potential ∆K+q thus plays the role
of “uniform s-wave” gap within the Dirac cone at the K
valley (and similarly ∆K ′+q for the K ′ valley), which effec-
tively becomes px± ipy pairing in the band basis [31, 32].
This results in a non-zero Chern number C̃ = ±1 in each
spin sector, leading to a non-trivial Z2 index ν̃ = 1.

As we have argued previously for the on-site attrac-
tion, a transition from an insulator to a topological su-
perconductor must either involve an intermediate trivial
superconducting phase if it is continuous, or be first-order.
Within our exploration of the phase diagram, we have
not found any intermediate phase between the insulating
phases, both trivial and topological, and the topological
helical superconducting phase. Is the transition first or-
der, or have we simply missed the intermediate phase? In
Appendix E we present a more careful study of the nature
of this transition, where we identify a jump in the order
parameter, a clear sign of a first-order transition.

p-Kekule SC: At x = 1 and nearby where the underlying
band structure is in the topological insulator phase, we
find a T -invariant triplet SC which is topologically trivial
(ν̃ = 0) [blue region in Fig. 2(b)]. The pairing in this state
is in the opposite-spin spin-triplet channel (dz ≠ 0), and
also has non-zero momentum Cooper pairs, forming the
“p-Kekule” pattern in real-space [see Fig. 4(b)], which was
originally discussed in the context of graphene [33]. This
phase was previously found by Tsuchiya et al. [34] who
studied the same Hamiltonian (HKM with V ) in the x = 1
limit.

Topological chiral SC: In a thin region between the topo-
logical helical SC and the p-Kekule SC, we also find a T -

breaking topological triplet SC with non-zero Chern num-
ber C̃ = ±1 [purple region in Fig. 2(b)]. We refer to this
state as topological chiral SC, following Ref. [35]. In this
state, one of the valleys develops equal-spin-pairing gap
within the same cone, while the other valley develops an
opposite-spin spin-triplet pairing gap across the two Dirac
cones in the same valley. This results in a non-zero Chern
number with unequal contribution from the two valley.

Trivial T -breaking SC: At x ≈ 0 and at larger interaction
strength, the system favors a pairing state which is T -
breaking with a mixture of equal-spin and opposite-spin
pairing channels in both valleys [pink region in Fig. 2(b)].
This is distinct from the chiral SC in that it is topologi-
cally trivial (C̃ = 0). [See Appendix F for discussions on
the structure of the order parameter in this phase.]

Finite doping µ ≠ 0: So far we have considered the band
structure at half filling with µ = 0, and found topologi-
cal superconducting phases with V . Do these topological
phases exist even when the underlying band structure is
metallic? Figures 5 and Fig. 6 summarize the phase di-
agrams at non-zero chemical potential µ = t/4. Note that
Eg = t/2, and therefore the band structure is metallic with
a single non-spin-degenerate Fermi surface in each valley
within the range 1/4 < x < 3/4 [See Fig. 5(c)]. As shown in
Fig. 5, the µ ≠ 0 phase diagrams contain the same super-
conducting phases as the µ = 0 ones, in both cases of U and
of V . The topological indices of these phases remain iden-
tical to the µ = 0 counterparts. Importantly, we find that
the topological helical superconductor that we find with V
is accessible at lower interaction strength with increasing
µ, as shown in Fig. 6.

Within the range 1/4 < x < 3/4, where the normal state
band structure contains Fermi surfaces, the s-wave su-
perconductivity with U becomes an infinitesimal instabil-
ity. For the superconducting phases that we find with
V , all of which have spatially modulating pair poten-
tial, the electrons that form a Cooper pair are not time-
reversal partners: They reside at momenta opposite of
K or K ′ (e.g. cK+q,σ and cK−q,σ′ ). Because of the trig-
onal warping of the Fermi surfaces, these two electrons
cannot both be at the Fermi level, except on a finite num-
ber of k-points. Therefore, such non-zero momentum pair-
ings are no longer infinitesimal instabilities, even in the
presence of Fermi surfaces, and requires finite interaction
strength. Following this argument, we mark the region
near x = 1/2 in Fig. 5(b) with very small pair potential
(numerically indistinguishable from zero) as “metal”. The
warping is minimal near the metal-insulator transition
in the underlying band structure, but in spite of the finite
density of states in this limit, intravalley pairing is still
not an infinitesimal instability because the low energy
fermions exactly at K and K ′ are sublattice polarized, and
the nearest neighbour interaction pairs fermions from op-
posite sublattices. Nevertheless, this does not rule out the
possibility that the underlying metallic state is unstable
to other pairing channels, such as spin-singlet extended
s-wave.
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FIG. 5. (a), (b) Phase diagrams at chemical potential µ = t/4 = Eg/2 away from half-filling, with (a) attractive on-site interaction U
and (b) attractive nearest-neighbor density-density interaction V . (c) Dispersions of the non-interacting band structure at different
values of x, with the chemical potential µ marked by the horizontal dashed lines. Within the range 1/4 < x < 3/4, the normal-state
band structure contains a non-spin-degenerate Fermi surface in each valley. With U , we find s-wave superconducting phase as
in Fig. 2(a). When there are Fermi surfaces (1/4 < x < 3/4), pairing amplitude should develop with infinitesimal U . With V , we
find similar phases as to Fig. 2(b), in addition to the “metal” phase near x = 1/2. The “metal” phase is defined to be regions with
a very small pair amplitude (⟨ciσc jσ′⟩ < 10−6), which is numerically difficult to distinguish from zero. Unlike the trivial s-wave
superconductivity, the non-zero center-of-mass momentum pairing is not necessarily an infinitesimal instability even in the presence
of Fermi surfaces, due to their trigonal warping.

topo. helical 

triplet SC

“metal”
topo.

ins.

FIG. 6. The critical interaction strength for the transition to
the topological helical SC is lowered by increasing µ. We show
a doping-driven transition at x = 0.6 on a 90×90 lattice with a
temperature of T = t/100.

Haldane model: A natural corollary of the topological he-
lical SC is that if we were to consider only one spin
species, as in the Haldane model [36], we expect a chiral
SC near the topological transition in the band structure

(II)
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2 1
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2 1

2 1
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2
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FIG. 7. (a) Phase diagram of Haldane model with nearest-
neighbor attractive interaction V . (b) The real-space pattern of
the pairing gap∆i j of the “stripe SC” phase. For the same reason
as in Fig. 4, i is always chosen from the A sublattice and j from
the B sublattice.

at µ = 0. This turns out to be true: By solving the self-
consistent Bogoliubov-deGennes equation of the following
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Hamiltonian,

HHaldane−V =−t ∑
⟨i, j⟩

c†
i c j − iλ ∑

⟪i, j⟫
νi j c

†
i c j

+mAB∑
i
ξi c

†
i ci −V ∑

⟨i, j⟩
nin j (4)

as a function of V and x defined analogously to that of the
Kane-Mele model above, we get a phase diagram shown
in Fig. 7(a). For smaller values of V we find the topolog-
ical “planewave SC”, whose ∆i j is equivalent to the ∆i↑; j↑
of the helical SC in Fig. 2(b) and thus has Chern num-
ber C̃ = 1. The chirality is determined by the underlying
band structure, since the time-reversal symmetry is ex-
plicitly broken at the band structure level, even without
the interaction. Due to the reduced degrees of freedom
and thus less number of competing orders, the topological
plane wave SC phase expands and spans the whole range
of x.

At stronger V , we find two more superconducting
phases, which we refer to as the “p-Kekule (II) SC” and
“stripe SC”, both of which have zero Chern number. Note
that the “p-Kekule (II) SC” phase in the Haldane model is
different from the p-Kekule triplet SC phase of the Kane-
Mele model: The spatial structure of ∆i j of “p-Kekule
(II) SC” is identical to that of dz

i j of “p-Kekule SC”. How-
ever, while p-Kekule triplet SC pairs two electrons from
different Dirac cones in the same valley, “p-Kekule (II)
SC” pairs two electrons from the same Dirac cone in the
same valley, due to the lack of the other Dirac cone. The
“stripe SC”, whose spatial structure of this phase is shown
in Fig. 7(b), breaks the C3 rotation symmetry, but pre-
serves the original translation symmetry of the lattice.
This state pairs electrons from the opposite valleys.

The Haldane model has been experimentally realized
with ultracold atoms [37] and there are proposals to en-
gineer near-neighbor interactions [38]. Based on our cal-
culation, we predict that the resulting superconductivity
with attractive interactions should be topological with a
Chern number of C̃ =±1.

Antiferromagnetic Heisenberg exchange J: With antifer-
romagnetic Heisenberg exchange J betweem nearest
neighboring sites at µ = 0, we find two distinct supercon-
ducting states as shown in Fig. 8. Both of these states are
topologically trivial, but have exotic characteristics: The
pairing state for x ≲ 1/2 is a nematic singlet SC, which
is T -invariant but breaks rotation symmetry. The pair-
ing state for x ≳ 1/2, on the other hand, is a chiral sin-
glet SC, which is in the spin-singlet channel, yet is T -
breaking and also breaks translation symmetry. The real-
space patterns of the singlet order parameter ψi j in these
phases are shown in Fig. 9.

IV. DISCUSSION AND OUTLOOK

Summary: To summarize, we have derived the phase dia-
gram of the Kane-Mele model across its trivial-insulator-

FIG. 8. Phase diagrams of Kane-Mele model in Eq. (1) as func-
tions x with nearest-neighbor antiferromagnetic Heisenberg in-
teraction J. We find two distinct topologically trivial singlet
pairing states. Near x = 0 we find a topologically trivial nematic
singlet SC that is T -invariant, and breaks the C3 rotation sym-
metry of the system. Near x = 1 we find a topologically trivial
chiral singlet SC, which is T -breaking with pairing in the spin-
singlet channel.

1

1

1

1 1

ij in nematic singlet SC

(a)

2

2

1

2

ij in chiral singlet SC

(b)

FIG. 9. Real-space patterns of the spin-singlet pair potential ψi j
of (a) the nematic singlet SC and (b) the chiral singlet SC phases
that we find with nearest-neighbor antiferromagnetic Heisen-
berg exchange J.

to-topological-insulator transition, with various interac-
tions using the Bogoliubov-de Gennes framework. With
attractive on-site interaction U , we find trivial s-wave su-
perconductivity as expected. With nearest-neighbor in-
teractions, both the attractive density-density interaction
V , and the antiferromagnetic Heisenberg exchange J, we
find exotic superconducting phases with finite Cooper-
pair momentum. Especially with V , we find two distinct
topological superconducting phases, one T -invariant and
one T -breaking, near the trivial-insulator-to-topological-
insulator transition, where one pair of the Dirac cones be-
come gapless.

New route to topological superconductivity: While the
models we have solved are specific, the broad lessons we
have learned are applicable to a more general class of
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phenomena. The central thrust of our work is to under-
stand the conditions under which we get topological su-
perconductivity in a Dirac system. Through our study
of the Kane-Mele model, we have identified two crucial
ingredients for obtaining a topological superconductor.
First, there needs to be uniform pairing within a Dirac
cone [31, 39]. Second, such pairing must manifest on a
single time-reversed pair of non-degenerate Dirac cones
for T -invariant helical SC. This corresponds to “topologi-
cal helical triplet SC” in Fig. 2(b) that is characterized by
a Z2 topological index ν̃ = 1. If the intra-cone pairing is
non-zero only on one Dirac cone, we have a chiral super-
conductor characterized by a non-zero Chern number C̃.
This corresponds to the purple region in Fig. 2(b), which
is T -breaking.

A single time-reversed pair of spin-polarized Dirac
cones appears naturally at the topological transition of
the Kane-Mele model at x = 1/2. Pairing internal to each
of these Dirac cones is necessarily between equal-spin
electrons. It is only with nearest-neighbor density-density
attraction that the equal-spin pairing channel is allowed.
Both on-site attraction and antiferromagnetic Heisenberg
exchange enable pairing in the singlet channel, we there-
fore find no topological superconductivity with these in-
teractions.

Thus far, the search for topological superconductivity
has been driven largely by one theme: break T and get
effectively spinless fermions, and then induce (effective)
p-wave pairing between them. This originates from work
by Kitaev in 1D [40] and T -breaking is central to this
quest. One of the strengths of the work presented here is
a new route to 2D topological superconductivity in pres-
ence of T -invariance and an explicit demonstration in the
context of the Kane-Mele model.

BCS-BEC crossover and connection with topology: The
intuition from the p + ip superconductors is that the
strong coupling BEC regime is trivial whereas topological
superconductivity only arises in the weak coupling BCS
regime. We note, based on our studies, that such a demar-
cation does not apply to the honeycomb Dirac system. The
most obvious difference is that in our model, the Fermi
energy is in the middle of the band gap so that we have
both electron and hole bands, each with nontrivial Berry
phase. Unlike the p+ ip superconductors where the sense
of “winding” is related to the winding of the order parame-
ter along the Fermi surface, in a Dirac system the winding
is related to the Berry phase of the underlying band struc-
ture. This makes our normal state qualitatively different
from a trivial vacuum. Therefore, upon including inter-
action in an otherwise insulating state, the system can
enter topological superconducting state even in the BEC
regime.

Comparison with previous theoretical studies: In previ-
ous theoretical studies, pairing in the TMD materials
has hitherto been studied without incorporating the full
effect of the honeycomb lattice [41, 42], ignoring the
Dirac physics and the π Berry phase around the val-

ley. Yuan et al. [41] considered on-site and nearest-
neighbour attraction on a triangular lattice, and found T -
breaking topological superconductivity only in the pres-
ence of Rashba spin-orbit coupling. We note that the
phases discussed there are, in principle, included in our
mean-field study and turn out to be energetically less fa-
vored than the finite momentum paired states that we en-
counter. Hsu et al. [42] used renormalization group analy-
sis to explore the leading instability of one spin-polarized
circular Fermi surface at K and K ′ with on-site repul-
sive interactions. They found several degenerate paired
states: an interpocket chiral SC, an intrapocket chiral SC
and an intrapocket helical SC similar to our topological
helical triplet SC phase.

Experimental probes: We expect that the theoretical
phase diagrams and general principles for topological su-
perconductivity that we have unearthed from simple mod-
els are relevant for the low energy physics of monolayer
TMD materials, such as MoS2, WS2, WTe2.

Recent experiments on monolayer WTe2 [18, 19] have
observed gating-driven transition from quantum spin
Hall insulator to superconductor. The type of supercon-
ductivity induced in this system, and its topological prop-
erties, are not yet known. If the superconductivity is
driven by electron-phonon interaction, where the attrac-
tive on-site U is the most relevant effective interaction,
we can place the system in Fig. 5(a) across the topolog-
ical insulator and trivial s-wave superconductor phases.
If, on the other hand, the superconductivity is driven by
electron-electron interaction, where the on-site pairing is
suppressed by strong short-range repulsion, phase dia-
grams with V [Fig. 2(b)] or with J (Fig. 8) may be relevant
to superconductivity in these systems.

The phases we have described could be experimen-
tally identified by establishing signatures of spin-triplet
pairing, of spatially modulated superconductivity and of
the Majorana edge modes characteristic of the topolog-
ical superconductors. The spin susceptibility measured
using Knight shift and relaxation rates may be used to
identify triplet pairing and discern whether it is equal-
spin or opposite-spin pairing. The p-Kekule SC with
Sz = 0 would exhibit a suppression of spin-susceptibility
to zero, with out of plane fields, unlike the other phases.
The equal-spin paired helical superconductor would have
spin-polarized Majorana modes counterpropagating along
the edges of the sample, which would contribute to a finite
quantized thermal Hall conductivity in the superconduct-
ing state. Time-reversal breaking in the chiral supercon-
ductor states could be identified by polar Kerr effect [43]
or muon spin rotation spectroscopy.

Detecting the spatial modulation of the phase in the he-
lical superconductor is possible using the dc-SQUID setup
outlined in Ref. [42]. In addition, in realistic samples
we expect finite Rashba spin-orbit coupling to result in
a singlet order parameter derived from both the up-spin
condensate with momentum 2K and the down-spin con-
densate with momentum 2K ′. The resulting pair density
wave in the singlet channel would be observable by scan-
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ning Josephson tunneling microscopy (SJTM) [44] with a
superconducting tip with singlet pairs.

The pair density wave nature of the p-Kekule SC would
be expected to show up both in STM and in SJTM experi-
ments with a tip exfoliated from the substrate. However,
as we show in Section C 2, this might require going to ex-
tremely low temperatures to prevent tunneling between
the three equivalent p-Kekule configurations related to
each other by a lattice translation.

Spatial modulation of the order parameter is a direct
consequence of intravalley pairing. In the TMDs, it is
now well established that circularly polarized light can be
used to selectively excite fermions from one valley. An ob-
servable consequence of intravalley pairing would then be
a suppression of the Cooperon energy observed with circu-
larly polarized light as we approach the superconducting
transition by lowering temperature.
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Appendix A: Computing topological indices

The various phases that we find as solutions to the
Bogoliubov-de Gennes equations have different broken
symmetries, time-reversal, particle-hole, space group,
and spin rotation. To characterize the topology of these
phases requires calculating topological indices that cor-
respond to the symmetry class. For insulators, an effi-
cient numerical method of calculating Chern number C
has been presented by Fukui et al. [45], and a related
method of calculating the Z2 index ν by Fukui and Hat-
sugai [46]. Here we summarize these numerical methods,
and their extension to superconducting systems. For su-
perconductors, we denote the Chern number of the Bogoli-
ubov quasiparticle dispersion by C̃ and the correspond-
ing Z2 index by ν̃. We note that for the special case
of equal-spin pairing on a Sz-conserving band structure
(such as HKM), the Z2 invariant is simply the difference
of the Chern numbers in the two time reversed spin sec-
tors ν̃ = (C̃↑− C̃↓)/2.

1. Chern number in insulating and superconducting
states

For an insulating band structure in two dimensions
with broken time-reversal symmetry, the topological in-
dex which characterizes the topological class is the Chern
number C ∈Z, also referred to as the TKNN invariant [47].
Analytical calculation of C depends on fixing the gauge

0

0
k1 k2

k3k4

(a)

0

0

+

(b)

FIG. 10. (a) Berry flux through a plaquette in momentum space.
The Chern number can be calculated numerically by collecting
the Berry flux through all the plaquettes in the Brillouin zone.
(b) The partioning of the Brillouin zone into two domains that
are time-reversal partners of each other. The Z2 topological in-
variant ν of a time-reversal-invariant insulator (or ν̃ of a time-
reversal-invariant superconductor) can be calculated as the sum
of the Berry flux through D+ and the Berry phase around the
boundary of D−.

such that the Bloch wavefunction is smooth in the entire
Brillouin zone, except at a number of points. Calcula-
tion of C from the numerically calculated eigenstates is,
however, ill-behaved; a more efficient numerical method
which does not require gauge fixing has been presented
by Fukui et al. [45].

Given a set of Bloch wavefunctions ∣n(k)⟩ defined
on the Brillouin zone, its Berry connection defined as
An(k) = i ⟨n(k)∣∇k∣n(k)⟩ can be expressed as

An(k) ⋅δk ≈ arg(⟨n(k+δk)∣n(k)⟩) (A1)

Thus, the line integral of the Berry connection around a
plaquette [Fig. 10(a)] can be written as

∫
1→2→3→4→1

A ⋅dk = arg[⟨1∣4⟩⟨4∣3⟩⟨3∣2⟩⟨2∣1⟩] (A2)

where ∣i⟩ is a shorthand for ∣n(ki)⟩. This is also the Berry
flux ∆Ω◻ through the plaquette, modulo 2π. Defining
Ui j ≡ ⟨i∣ j⟩ (Wilson line between sites i and j), we can write
the total flux as

∆Ω◻ = arg(U14U43U32U21) (A3)

The Chern number is the total number of fluxes through
the whole Brillouin zone, which thus can be calculated as

C ≡
1

2π ∫
Ω d2k =

1
2π
∑
◻
∆Ω◻ (A4)

where ∆Ω◻ ≡ Arg(U14U43U32U21), assuming that the
Berry curvature is a smooth function of k and the plaque-
ttes are small enough such that the flux through every
plaquette is smaller than π.

This method of calculating the Chern number can be
extended to multi-band systems. The total Chern number
of a set of bands can be calculated simply by summing the
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Chern numbers of all the band. In general, however, there
can be band crossings which introduces degeneracies at
certain k points. In such a case the Berry curvature of
a single band is not well-defined. It is thus necessary,
for the numerical calculation of Berry flux, to work with
objects which are invariant under unitary transformation
within the manifold defined by the select bands. It is easy
to see that the following Wilson line between sites i and
j,

Ui j ≡ det
n,m

⟨i,n∣ j,m⟩ (A5)

with n,m being the select band indices, is invariant un-
der unitary transformation within the manifold defined
by the select bands.

In the superconducting phase with broken time rever-
sal symmetry, the relevant topological index is the super-
conducting Chern number C̃. This is computed exactly
as shown above, except that ∣n(k)⟩ now refers to the Bo-
goilubov quasiparticle wavefunction in Nambu space. In
this work, unless otherwise specified, C and C̃ denote the
total Chern number of the bands with negative energy
eigenvalues.

2. Z2 topological index in insulating state

For two-dimensional band structures with time-
reversal symmetry with T 2 = −1 (class AII), a Z2 in-
dex ν characterizes the symmetry protected topological
phases [39, 48], rather than the Chern number which is
zero by symmetry. A numerical method for the calculation
of ν has been presented by Fukui and Hatsugai [46].

The time-reversal operator T can be written as a prod-
uct of complex conjugation operator K and a unitary ma-
trix UT : T =KUT . For example, for spin-1/2 fermions, we
can set UT = iσ2. For a time-reversal-invariant Hamilto-
nian, its momentum space representation Hk transforms
under UT as

UT HkU†
T = H∗

−k (A6)

This places a constraint on the eigenstates of the Hamil-
tonian: If uk is an eigenstate of Hk (Hkuk =Ekuk), then

UT HkU†
TUT uk = H∗

−kUT uk =EkUT uk (A7)

thus (UT uk)
∗ is an eigenstate of H−k with eigenvalue

Ek. From this we can connect eigenstates at k with eigen-
states at −k. We cannot, however, enforce u−k = (UT uk)

∗

for all k since it is inconsistent with T 2 =−1.
We can nevertheless choose a gauge convention in the

following way. Let us first consider a single time-reversal
pair of bands, and label the Bloch eigenstates by the band
index I and II, where uI

k and uII
−k are Kramer’s pairs.

Then we can enforce the following relationship between
the two

UT uI
k ≡ uII

−k
∗

, and UT uII
k ≡−uI

−k
∗

(A8)

The time-reversal symmetry guarantees ΩII
k = −ΩI

−k and
the total Chern number is always zero. However, the Z2
topological index ν can be written in terms of the Chern
number of each band as

ν =
CI−CII

2
= C

I
=

1
2π ∫BZ

ΩI d2k (mod 2) (A9)

From Eq. (A8) we can relate the Berry connection in the
two bands as

AII
k =+AI

−k. (A10)

(Note the plus sign.) Now the following expression writ-
ten in terms of the total Berry curvature and the total
Berry connection evaluated over half of the Brillouin zone
[see Fig. 10(b)] can be written in terms of those of band I:

∫
D+

Ωk d2k+∫
∂D−

Ak ⋅dk (A11)

=∫
D+

(ΩI
k+Ω

I
−k)d2k+2(−∫

D−

ΩI
kd2k+∫

∂D−

AI
k ⋅dk) .

The first term on the right hand side is the total Berry flux
of the band I; the expression in the parentheses evaluates
to an integer multiple of 2π, since both of its integrals
evaluate the flux through D−, modulo 2π. Therefore, the
Chern number of band I, and thus ν satisfies

ν = CI
=

1
2π ∫D+

Ωk d2k+
1

2π ∫∂D−

Ak ⋅dk (mod 2) (A12)

which can be calculated numerically as

ν =
1

2π
∑

◻∈D+
Ω◻+

1
2π

∑
←Ð
i j ∈∂D−

ArgUi j (A13)

As pointed out by Kohmoto [49], the Chern number of
a band structure is the total vorticity of its Bloch wave-
function in the entire Brillouin zone [see Fig. 11(a); while
choosing a different gauge can move the positions of the
vortices, or create vortex-antivortex pairs, the total vortic-
ity remains independent of the gauge choice. For a time-
reversal invariant band structure, however, the total vor-
ticity is zero, since vortex and antivortex always come in
pairs. We can, nevertheless, ensure that the vortex and its
time-reversal partner antivortex lie at opposite momenta
(and also away from time-reversal invariant momenta),
by enforcing the condition Eq. (A8) [see Fig. 11(b)]. Then
the vorticity in half of the Brillouin zone gives us the topo-
logical index.

From this argument it is also easy to see that the topo-
logical classes for T -invariant Hamiltonians in 2D form
a Z2 group and not Z, i.e. even vorticity is equivalent to
trivial. Consider the case where we have vorticity of +2
in half of the Brillouin zone as in Fig.11(c), with vortex-
antivortex pairs 1 and 2. Since Eq. (A8) only constrains
the relative positions of vortex and antivortex that are
time-reversal partners and not the relative positions of
different pairs, we can move the positions of the vortex-
1 and antivortex-1 and annihilate them by combinding
them respectively with antivortex-2 and vortex-1.
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FIG. 11. (a) Vortices of Bloch wavefunction within Brillouin zone in a band structure with Chern number C = 2. (b). In a time-reversal
invariant band structure, vortex and antivortex always come in pairs. Their locations are gauge-dependent; the gauge choice Eq. (A8)
ensures that they are at opposite momenta. (c) Even vorticity is equivalent to zero, since Eq. (A8) does not constrain the relative
positions of different vortex-antivortex pairs.

3. Time reversal operator in Nambu space

In a time-reversal-invariant superconductor with T 2 =

−1 (class DIII), the Z2 topological index ν̃ can be calcu-
lated using the same method as ν as we have described so
far. A crucial step is to fix the gauge of the wavefunction
at k relative to its time-reversed partner at −k [Eq. (A8)].
As we show below, this is non-trivial when the U(1) gauge
symmetry is broken in a superconductor and forces us to
address what time-reversal invariance means in this sit-
uation. For our purposes, we consider a Hamiltonian to
be T -invariant if there exists a gauge in which [T ,H] = 0.
Here we outline a prescription to identify this gauge.

If a normal state Hamiltonian H0 is invariant un-
der time-reversal operator T = KUT , H0 should satisfy
UT H0U†

T = H∗
0 . For a BdG Hamiltonian

H̃ = (
H0 ∆

∆† −H⊺
0

) , (A14)

we can naïvely extend the time-reversal operator to
Nambu space as T̃ =KŨT , where

ŨT = (
UT 0
0 U∗

T
) . (A15)

Then under time reversal, H̃ transforms as

ŨT H̃Ũ†
T =

⎛

⎝

H∗ UT∆U⊺
T

(UT∆U†
T)

†
−H†

⎞

⎠
. (A16)

Therefore if

UT∆U⊺
T =∆∗, (A17)

H̃ satisfies

ŨT H̃Ũ†
T = H̃∗ (A18)

which appears identical to the time-reversal invariance of
an insulating Hamiltonian.

The problem, however, is that the overall phase of ∆ is
not a physical quantity, and the time-reversal invariance
should not depend on it. To resolve this, we introduce a
phase φ to the time reversal operator

ŨT = (
UT 0
0 eiφU∗

T
) (A15’)

under which H̃ transforms as

ŨT H̃Ũ†
T =

⎛

⎝

H∗ UT∆U⊺
T e−iφ

eiφ (UT∆U†
T)

†
−H†

⎞

⎠
(A16’)

and the condition for time-reversal invariance is

UT∆U⊺
T e−iφ

=∆∗. (A17’)

For ∆ = 0, this is satisfied for any value of φ ∈ [0.2π),
and the time-reversal invariance only depends on how H0
transforms under UT . For ∆ ≠ 0, on the other hand, there
is a unique value of φ which satisfies Eq. (A17’), given an
instance of ∆.

For a self-consistently found ∆i j, where i and j rep-
resent all local degrees-of-freedom including site, orbital,
and spin, this phase φ, if it exists, needs to satisfy

⎡
⎢
⎢
⎢
⎣
∑
k,l

[UT]ik∆kl[UT]l j

⎤
⎥
⎥
⎥
⎦

e−iφ
=∆∗i j (A19)

for all i, j. Thus, we can first choose φ as

φ =Arg
⎡
⎢
⎢
⎢
⎣
∑
i, j
∑
k,l

[UT]ik∆kl[UT]l j∆i j

⎤
⎥
⎥
⎥
⎦

, (A20)

and use this φ to construct the time-reversal operator ŨT .
We can then check whether Eq. (A18) is satisfied, after
which we can compute the Z2 topological index.
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Appendix B: Structure of the Bogoliubov-de Gennes
Hamiltonian

As explained in Section II, we work with a supercell
containing 6 sites, which are labeled in Fig. 12(a). The
Bogoliubov-de Gennes Hamiltonian in this basis, at each
crystal momentum k in the reduced Brillouin zone, is a
24×24 matrix — 6 for sites, 2 for spins, and 2 for Nambu
space:

HBdG(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H(6)KM,↑(k) ⋅ ∆n.n.
↑↑ (k) ψo.s.+∆n.n.

↑↓ (k)

⋅ H(6)KM,↓(k) −ψo.s.+∆n.n.
↓↑ (k) ∆n.n.

↓↓ (k)

[∆n.n.
↑↑ ]†(k) [−ψo.s.+∆n.n.

↓↑ (k)]† −[H(6)KM,↑(−k)]T ⋅

[ψo.s.+∆n.n.
↑↓ (k)]† [∆n.n.

↓↓ (k)]† ⋅ −[H(6)KM,↓(−k)]T

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B1)

Here, H(6)KM,σ(k) is a 6 × 6 matrix representing the Kane-Mele Hamiltonian in the 6-site supercell basis
(ck1σ, ck2σ, ... ck6σ) for spin σ =↑,↓ at momentum k in the reduced Brillouin zone, which can be written in terms of
the hopping parameter t, sublattice potential mAB, and spin-orbit coupling λSO as

H(6)KM,σ(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+mAB −teik⋅δ3 −iλSO σϕnnn(k) −teik⋅δ2 +iλSO σϕnnn(−k) −teik⋅δ1

−mAB −te−ik⋅δ2 +iλSO σϕnnn(−k) −te−ik⋅δ1 −iλSO σϕnnn(k)

+mAB −teik⋅δ1 −iλSO σϕnnn(k) −teik⋅δ3

−mAB −te−ik⋅δ3 +iλSO σϕnnn(−k)

H.c. +mAB −te+ik⋅δ2

−mAB

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B2)

where ϕnnn(k) ≡∑
3
i=1 eik⋅ai , and σ = +1(−1) for up(down)

spin. δi and ai are the vectors connecting the nearest-
and next-nearest-neighboring sites, respectively, as de-
fined in Fig. 12(b).

With on-site interaction U , only the on-site spin-singlet

component ψo.s. is allowed, defined on every site: ψo.s. =

diag(ψo.s.
1 ,ψo.s.

2 , . . . ,ψo.s.
6 ). With nearest-neighbor density-

density interaction V or the Heisenberg interaction J,
pair potential is defined on every nearest-neighbor bonds:

∆n.n.
σ,σ′(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋅ ∆n.n.
1σ,2σ′ e

+ik⋅δ3 ⋅ ∆n.n.
1σ,4σ′ e

+ik⋅δ2 ⋅ ∆n.n.
1σ,6σ′ e

+ik⋅δ1

∆n.n.
2σ,1σ′ e

−ik⋅δ3 ⋅ ∆n.n.
2σ,3σ′ e

−ik⋅δ2 ⋅ ∆n.n.
2σ,5σ′ e

−ik⋅δ1 ⋅

⋅ ∆n.n.
3σ,2σ′ e

+ik⋅δ2 ⋅ ∆n.n.
3σ,4σ′ e

+ik⋅δ1 ⋅ ∆n.n.
3σ,6σ′ e

+ik⋅δ3

∆n.n.
4σ,1σ′ e

−ik⋅δ2 ⋅ ∆n.n.
4σ,3σ′ e

−ik⋅δ1 ⋅ ∆n.n.
4σ,5σ′ e

−ik⋅δ3 ⋅

⋅ ∆n.n.
5σ,2σ′ e

+ik⋅δ1 ⋅ ∆n.n.
5σ,4σ′ e

+ik⋅δ3 ⋅ ∆n.n.
5σ,6σ′ e

+ik⋅δ2

∆n.n.
6σ,1σ′ e

−ik⋅δ1 ⋅ ∆n.n.
6σ,3σ′ e

−ik⋅δ3 ⋅ ∆n.n.
6σ,5σ′ e

−ik⋅δ2 ⋅

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B3)

Fermion anticommutation requires ∆n.n.
iσ, jσ′ =−∆

n.n.
jσ′,iσ. The

nearest neighbor pair potential can contain both spin-
singlet and spin-triplet components. Within our study,
however, we have found only the spin-triplet components
of the ∆n.n. to be non-zero with attactive density-density

interaction V , and only the spin-singlet components to be
non-zero for antiferromagnetic Heisenberg interaction J.

Equivalently, we can express the BdG Hamiltonian of
the

√
3×

√
3 supercell completely in momentum space. In

terms of the basis ψ†
k = (c†

k, c†
K+k, c†

−K+k, c−k, c−K−k, cK−k)
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FIG. 12. (a)
√

3×
√

3 supercell containing six sites, which are labeled from 1 to 6. (b) Vectors δi and ai for i = 1,2,3 connecting
nearest- and next-nearest-neighboring sites, respectively. (c) The original Brillouin zone of the honeycomb lattice (the large outer
hexagon) can be partitioned into three regions around Γ, K , and K ′; the region near the Γ is the reduced first Brillouin zone of the√

3×
√

3 supercell.

where c†
k = (c†

k,A,↑, c†
k,B,↑, c†

k,A,↓, c†
k,B,↓), the BdG Hamilto- nian is written as

HBdG(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H(2)KM(k) ⋅ ⋅ ∆ΓΓ(k) ∆ΓK(k) ∆ΓK ′

(k)

⋅ H(2)KM(K +k) ⋅ ∆KΓ(k) ∆KK(k) ∆KK ′

(k)

⋅ ⋅ H(2)KM(−K +k) ∆K ′Γ(k) ∆K ′K(k) ∆K ′K ′

(k)

−[H(2)KM(−k)]T ⋅ ⋅

H.c. ⋅ −[H(2)KM(−K −k)]T ⋅

⋅ ⋅ −[H(2)KM(K −k)]T

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B4)

where k spans the reduced Brillouin zone (blue region in
Fig. 12(c)) and the degrees of freedom in the rest of the
Brillouin zone appear in HBdG(k) as additional bands.
H(2)KM(k) is a 4 × 4 matrix representing the Kane-Mele
Hamiltonian in the 2-site unitcell basis. This is block-
diagonal in spin-space with the following representation
in the basis of sublattice eigenstates created by ckAσ, ckBσ

(
mAB+λSOσϕ̃nnn(k)−µ −tγ(k)

−tγ∗(k) −mAB−λSOσϕ̃nnn(k)−µ
)

(B5)

where ϕ̃nnn(k) ≡ 2∑3
i=1 sin(k ⋅ai), and γ(k) = ∑

3
l=1 eik⋅δl

and σ =+1(−1) for up(down) spin.

The diagonal blocks of the pair potential — ∆ΓΓ, ∆KK ,
and ∆K ′K ′

— represent pairing between valleys (zero
COM momentum), while the off-diagonal blocks represent
pairing within the valley (non-zero COM momentum). Es-
pecially since the low energy fermionic degrees of freedom
lie in the region near K and K ′, we expect that pairing will

develop within and between these regions:

⎛
⎜
⎜
⎝

∆ΓΓ(k) ∆ΓK(k) ∆ΓK ′

(k)

∆KΓ(k) ∆KK(k) ∆KK ′

(k)

∆K ′Γ(k) ∆K ′K(k) ∆K ′K ′

(k)

⎞
⎟
⎟
⎠

≈

⎛
⎜
⎜
⎝

0 0 0
0 ∆KK(k) ∆KK ′

(k)

0 ∆K ′K(k) ∆K ′K ′

(k)

⎞
⎟
⎟
⎠

(B6)

We describe the momentum-space representation in
more detail in the next section.

Appendix C: Momentum space description of
intra-valley pairing

Considering the pairing Hamiltonian in momentum
space illuminates several interesting subtleties of the ex-
otic paired states we have described. For instance, with
nearest-neighbor attraction V , the order parameter in
each spin channel has nine degrees of freedom corre-
sponding to the nearest-neighbor bonds in the supercell.
However, it turns out as we have shown in Tab. I that the
rich phase diagram of Fig. 2(b) is described by only two
spatial form factors ΦK and ΦK ′

. In Sec. C 1, we show
why this is the natural choice for spatial order param-
eter. In general, there can be a relative phase between
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the two condensates described by these order parameters,
when they coexist in any spin sector. In Sec. C 2, we show
how this relative phase distinguishes the p-Kekule and
s-Kekule form factors, and demonstrate that the energy
barrier between these configurations is quite small. In
Sec. C 3, we show that in the basis of band eigenstates in
the vicinity of the valleys, these order parameters ΦK and
ΦK ′

have the form of a p± ip pair potential.

1. Mean-field decomposition in momentum space

We have considered a large set of pairing order param-
eters to exhaust all possible symmetry breaking configu-
rations of ∆iσ; jσ′ within the unit cell. A complementary –
but equivalent – description of the mean-field order pa-
rameter involves decoupling the interaction in momen-
tum space. For the Hamiltonian with nearest-neighbor
density-density attraction,

H =HKM−
∣V ∣

N
∑

Qkk′δl ,σσ
c†

Q+k,Aσc†
Q−k,Bσ′ e

ik⋅δl

× cQ−k′,Bσ′ cQ+k′,Aσeik′⋅δl (C1)

the mean-field Hamiltonian takes the form

HBdG =HKM+ ∑
Qkσσ′

[∆Qσσ′(k)c†
Q+k,Aσc†

Q−k,Bσ′ +H.c.]

+
N
∣V ∣

∑
Qδlσσ

′

∣∆̃Qδlσσ
′ ∣

2 (C2)

where 2Q is the center-of-mass momentum of the pairs
with Q = Γ,K or K ′; 2N is the number of sites and δl are
the vectors corresponding to the nearest neighbor bonds
in Fig. 12(b). The pair potential ∆Qσσ′(k) is defined in
terms of the order parameters ∆̃Qδlσσ

′ along a bond direc-
tion δl by

∆Qσσ′(k) =∑
δl

∆̃Qδlσσ
′ eik⋅δl (C3)

∆̃Qδlσσ
′ =−

∣V ∣

N
∑
p
⟨cQ−p,Bσ′ cQ+p,Aσ⟩e−ip⋅δl (C4)

Hereafter, spin indices are dropped whenever the state-
ments apply to order parameters in all spin channels.

For the low energy fermions living at the valleys, ∆̃Q=Γ
corresponds to inter-valley pairing and ∆̃Q=K(K ′) to pair-
ing within the K(K ′) valley. The order parameters ∆̃Qδl
are related to the real-space order parameters∆i, j = ⟨ci c j⟩

by

∆i j =
1
3
∑
Q
∆̃Q,r j−ri

eiQ⋅(ri+r j), (C5)

for i ∈ A and j ∈ B. The dependence of the center-of-mass
coordinate and the relative coordinate is explicitly shown.
In the basis c†

k = (c†
k,A,↑, c†

k,B,↑, c†
k,A,↓, c†

k,B,↓), the pairing

terms in the Hamiltonian take the form c†
Q+k∆̂Q(k)c†

Q−k
with

∆̂Q(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⋅ ∆Q↑↑(k) ⋅ ∆Q↑↓(k)

−∆Q↑↑(−k) ⋅ −∆Q↓↑(−k) ⋅

⋅ ∆Q↓↑(k) ⋅ ∆Q↓↓(k)

−∆Q↑↓(−k) ⋅ −∆Q↓↓(−k) ⋅

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(C6)

This is the same as the matrices ∆PP′(k̄) in Eq. (B4) if we
identify the COM momentum as 2Q =P−P′ and the rela-
tive momentum as 2k = 2k̄+P−P′. The Bogoliubov quasi-
particle wavefunctions ∣Ψkn⟩ are obtained as the eigen-
vectors of HBdG(k) in Eq. (B4) with the self-consistent or-
der parameters obtained by solving

∆̃Qδlσσ
′ =

−∣V ∣

2N
∑
k
⟨Ψkn ∣

∂HBdG(k)

∂∆̃∗Qδlσσ
′

∣Ψkn⟩ (C7)

with the k-sum spanning the (blue) reduced Brillouin
zone in Fig. 12(c).

For nearest-neighbor density-density attraction, the
four superconducting phases that we find are all de-
scribed by ∆̃Qδ1

= ∆̃Qδ2
= ∆̃Qδ3

with Q = K or K ′. This
results in a pair potential ∆Q(k) which is k-independent
for small k, where low energy fermionic excitations live
within a valley. In real space, this corresponds to a form
factor ΦQ

i j = eiQ⋅(ri+rj) characteristic of pairing within the
valley at Q. It is possible to see that, without breaking
C3 rotation, the other two possibilities for pairing within
a given valley lead to vanishing pair-potential for small k
and are therefore energetically unfavorable.

The p-Kekule SC [blue region in Fig. 2(b)] corresponds
to triplet opposite-spin pairing (OSP) at both valleys
d̃z

K , d̃z
K ′ ≠ 0, resulting in a Larkin-Ovchinnikov-type [50]

pair density wave due to interference of the two form fac-
tors ΦLO =ΦK −ΦK ′

in real space. The topological helical
SC (green region) corresponds to equal-spin pairing (ESP)
at both valleys ∆̃K ,↑↑ = eiφ∆̃K ′,↓↓ ≠ 0, leading to a Fulde-
Ferrell-type [51] phase-modulating pair potential in real
space for each spin sector. The relative phase eiφ between
the condensates does not affect the ground state energy.

We emphasize that although we have considered 36
order parameters to rule out all kinds of symmetry-
breaking paired states, the entire phase diagram Fig. 2(b)
is described in the six parameter space spanned by triplet
pairing with the spatial form factors ΦK and ΦK ′

.

2. Relative phase between condensates at K and K ′:
s-Kekule vs. p-Kekule

As we point out in Appendix C 1, the helical SC has
an additional Goldstone mode corresponding to the rela-
tive phase of the condensates at K and K ′. This is be-
cause, in addition to the total charge N↑+N↓, the charge in
each spin sector fluctuates independently. As a result, the
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ground state breaks an additional U(1) symmetry corre-
sponding to the conservation of Sz = N↑−N↓.

In the p-Kekule SC, the low-energy degrees of freedom
are still effectively decoupled into valleys, resulting in a
U(1)×U(1) symmetry corresponding to charge conserva-
tion on each valley. However, this is only a symmetry of
the low energy effective Hamiltonian. Unlike the ESP
ground state, the U(1) symmetry corresponding to val-
ley charge conservation is broken by the higher energy
fermionic modes which couple the two condensates. As a
result, on a lattice, the free energy corresponding to the
pair potential dz = ∆OSP (ΦK + eiθΦK ′

) does have a weak
dependence on the relative phase θ between the conden-
sates, as shown in Fig. 13(b) which breaks the degeneracy
between the p-Kekule (θ = 2π(n+ 1/2)/3) and s-Kekule
(θ = 2πn/3) form factors [33]. Here n ∈Z.

3. Understanding the non-trivial topology

Having understood the novel SC states in momentum
space, we are now in a position to intuitively understand
the reason for their non-trivial topology as captured by
the Chern number C̃ and the Z2 index ν̃.

At x = 1/2, the low energy dispersion is dominated by
spin-polarized Dirac cones at the two valleys

H
eff
KM =−t∑

k
γ(K +k)c†

K+kA↑cK+kB↑+H.c.

− t∑
k
γ(K ′

+k)c†
K ′+kA↓cK ′+kB↓+H.c. (C8)

where γ(K +k) = ∑δl
ei(K+k)⋅δl = −3(kx + iky)/2+O(k2)

and γ(K ′ +k) = ∑δl
ei(K ′+k)⋅δl = −3(kx − iky)/2+O(k2).

This is diagonalized by a unitary transformation to the
band eigenstates akη =∑τSητckτσ with τ =A,B and η =±.

H
eff
KM =

3tk
2
∑
k

(a†
K+k,+,↑aK+k,+,↑+a†

K ′+k,+,↓aK ′+k,+,↓

−a†
K+k,−,↑aK+k,−,↑+a†

K ′+k,−,↓aK ′+k,−,↓) (C9)

The effective mean field Hamiltonian for equal-spin pair-
ing is

H
eff
BdG =H

eff
KM+∑

k
(∆↑↑c

†
K−kB↑c

†
K+kA↑+H.c.)

+(∆↓↓c
†
K ′−kB↓c

†
K ′+kA↓+H.c.) (C10)

corresponding to a pair potential that is uniform near the
valleys. In terms of the band eigenstates akη, the effective
Hamiltonian involves p± ip-wave pairing

H
eff
BdG =H

eff
KM+∑

kη
(∆↑↑

kx − iky

k
a†

K−kη↑a
†
K+kη↑+H.c.)

+(∆↓↓
kx + iky

k
a†

K ′−kη↓a
†
K ′+kη↓+H.c.) .

(C11)

(a)

(b)

FIG. 13. Relative phase between the condensates at the two
valleys breaks the near-degeneracy between the s-Kekule and
p-Kekule configurations. (a) Free energy as a function of
∆OSP, the amplitude of the p-Kekule order parameter dz =

∆OSP (Φ
K
−ΦK ′

). (b) Free energy as a function of the rela-

tive phase θ in the order parameter dz = ∆OSP (Φ
K
+ eiθΦK ′

)

at optimal ∆OSP. Data shown is at x = 1,V = 2.65t. The energy
barrier between the three equivalent p-Kekule configurations
is less than a mK for t ∼1eV, and is expected to decrease with
increasing Eg.

The order parameter in each spin sector has a Chern
number that reflects the chirality of the pair potential.
This results in a helical SC with a non-trivial Z2 topo-
logical index. The net Chern number is 0 as required by
time-reversal invariance.

It is now easy to see why the purple region in Fig. 2(b) of
the main text is a chiral SC. It has ESP on one valley with
a charactersitic chirality and a non-zero Chern number
and OSP on the other. OSP entails twice the Chern num-
ber characteristic of the valley it pairs in, since there are
two bands with the same winding involved. This state is
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TABLE II. Transformations of spin-triplet pairing order param-
eters with finite center-of-mass momentum K . ∆

Q
σσ (and dQ

z )
is a shorthand for pairing order parameter with form factor
∆iσ; jσ = Φ

Q
i j [and (∆i↑; j↓ +∆i↓; j↑)/2 = Φ

Q
i j], with ΦQ defined in

Tab. I. The symmetry operations are defined as follows; E: iden-
tity operation. CP

3 and CA
3 : 120○ rotations about the center of a

plaquette and about a vertex in sublattice A. C′2: rotation about
the y-axis that passes through a vertex. σh: mirror operation
about x-y plane. ta1

: translation by a lattice constant a1.

E CP
3 CA

3 C′2 σh ta1

∆K
↑↑ ω2 ∆K

↑↑ ∆K
↑↑ ∆K ′

↓↓ −∆K
↑↑ ω2 ∆K

↑↑

dK
z dK

z ω dK
z −dK ′

z dK
z ω2 dK

z

∆K
↓↓ ω∆K

↓↓ ω2 ∆K
↓↓ ∆K ′

↓↓ −∆K
↓↓ ω2 ∆K

↓↓

T -breaking and has a net Chern number of ±1. Uniform
pairing within an odd number of Dirac cones turns out to
be the crucial ingredient for a topological superconductor
in Dirac systems.

The T -breaking SC has both ESP and OSP pairing in
both valleys, and is topologically trivial.

Appendix D: Transformation of order parameters under
symmetry operations

In most of the superconducting phases we have iden-
tified in our calculation, the order parameters show non-
trivial spatial and spin structures. Typically, the uncon-
ventional nature of a superconducting phase (e.g. p-wave,
d-wave, etc.) can be better understood by studying the
transformation of the order parameters under point group
symmetry operation, and symmetry-classifying them ac-
cording to the irreducible representations [52]. This es-
sentially captures the angular momentum of a Cooper
pair. In addition to angular momentum, in our case, the
pairing order parameters are allowed to have non-zero
momenta K or K ′, i.e. the order parameters may trans-
form non-trivially under lattice translations as well. For
example, in the topological helical SC phase, the spin-
triplet order parameters ∆↑↑ and ∆↓↓ have different mo-
menta (∆i↑; j↑ ∼Φ

K
i j and ∆i↓; j↓ ∼Φ

K ′

i j ), and therefore trans-
form differently under lattice translation:

∆i↑; j↑→∆i↑; j↓e
iK ⋅2a1 , and ∆i↓; j↓→∆i↓; j↓e

−iK ⋅2a1 (D1)

under r→ r+a1. In the p-Kekule state, on the other hand,
the pairing order parameter breaks translation symmetry
with its amplitude modulation; such symmetry-breaking
order parameter can be understood as a superposition of
two different irreducible representations. Table II sum-
marizes the transformation of the spin-triplet order pa-
rameters with momentum K .

Appendix E: Direct first-order transitions to topological
superconductivity

In the phase diagram for nearest-neighbor density-
density attraction, for a large range of x, we find a di-
rect transition from insulator to topological helical super-
conductor. Following the arguments of the main text (see
“On-site attraction U”), we know this is not allowed for
a continuous insulator-to-superconductor transition. Is
there really a first-order transition from an insulator to a
topological superconductor? For x = 0.6, we show the dis-
continuous jump in ∆ESP ≡ ∆̃K ,↑↑ = ∆̃K ′,↓↓ = 0 in Fig. 14(a).
The first order transition is clearly seen in the free en-
ergy landscape: the insulating state (∆ESP = 0) remains a
local minimum [Fig. 14(b)] even as the global minimum
shifts to finite ∆ESP. Since the topological index ν̃ cannot
be changed by an adiabatic change of parameters, we ex-
pect, as we smoothly increase ∆ESP from 0, that the gap in
the Bogoliubov quasiparticle spectrum will close at some
∆gc, as in Fig. 14(b), after which ν̃ changes. Fig. 14(c)
shows that the jump in ∆ at the first order SC transi-
tion is always greater than ∆gc, which establishes a direct
transition from insulator to the helical topological super-
conductor across the range of x where there is a insulator
to ESP superconductor. We have checked that all other
order parameters besides ∆̃K ,↑↑,∆̃K ′,↓↓ are zero near this
transition.

Appendix F: Spatial and spin structure of trivial
T -breaking SC

The trivial T -breaking superconducting phase, which
we haven’t discussed much in the main text, contains both
p-Kekule and s-Kekule patterns, in different spin chan-
nels. Figure 15 shows the spatial structures of all of the
spin components of the pairing order parameter: Singlet
component is zero, and only the three spin-triplet com-
ponents are non-zero. The dz component (S = 1,Sz = 0)
has s-Kekule pattern, while ∆↑↑ (S = 1,Sz = 1) and ∆↓↓
(S = 1,Sz =−1) show p-Kekule pattern.
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FIG. 14. Direct (first order) transition from an insulator to a topological superconductor. (a) Evolution of the strength of the pairing
potential ∆ESP ≡ ∆̃K ,↑↑ = ∆̃K ′,↓↓ corresponding to the helical SC, as a function of interaction strength V , evaluated at x = 0.6 (i.e.
along the vertical cut indicated by the red arrow on the phase diagram shown in the inset), which clearly shows a first order jump in
the order parameter ∆jump = 0.043t at V =Vc = 2.3t. (b) Upper panel: Free energy as a function of pairing potential ∆ESP for a range
of V across Vc in steps of 0.01t. The markers indicate the locations of global minima. The first-order transition is highlighted in red,
and involves a discontinuous jump in ∆ESP. Lower panel: The jump in the order parameter (marked by ∆jump) exceeds the value
of ∆ESP required to close and reopen the gap in the Bogoliubov quasiparticles spectrum (marked by ∆gc), if ∆ESP was to increase
continuously from 0. The topological index ν̃ changes across the gap closing. This establishes a direct discontinuous transition from
an insulator to a topological superconductor at x = 0.6. (c) The first order jump in ∆ESP exceeds ∆gc across the range of x where we
find a transition to helical superconductor. Beyond x ∼ 0.7, there is a continuous transition into the topologically trivial p-Kekule SC.
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ψ dz

∆↑↑ ∆↓↓
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FIG. 15. Pairing order parameter in the trivial T -breaking
triplet SC phase [pink region in Fig. 2(b)]. The thickness and
the color of a bond indicates the magnitude and the phase angle
of the order parameter on the bond.
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