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We study a model in (241)-dimensional spacetime that is realized by an array of chains, each
of which realizes relativistic Majorana fields in (1+1)-dimensional spacetime, coupled via current-
current interactions. The model is shown to have a lattice realization as an array of coupled quantum
spin-1/2 ladders. We study this model both in the presence and absence of time-reversal symmetry,
within a mean-field approximation. We find regimes in coupling space where Abelian and non-
Abelian spin liquid phases are stable. In the case when the Hamiltonian is time-reversal symmetric,
we find regimes where gapped Abelian and non-Abelian chiral phases appear as a result of sponta-
neous breaking of time-reversal symmetry. These gapped phases are separated by a discontinuous
phase transition. More interestingly, we find a regime for which a non-chiral gapless non-Abelian
spin liquid is stable. The excitations in this regime are described by relativistic Majorana fields in
(241)-dimensional spacetime, much as those appearing in the Kitaev honeycomb model, but here
emerging in a model of coupled spin ladders that does not break the SU(2) spin-rotation symmetry.

I. MOTIVATION AND SUMMARY OF RESULTS

The Kalmeyer-Laughlin chiral spin liquid! was the first
example of a connection between the physics of the frac-
tional quantum Hall (FQH) effect and that of frustrated
quantum magnets that do not order through the sponta-
neous breaking of a symmetry. Such chiral spin liquids
present exotic features, e.g., a ground state degeneracy
on the torus — a defining attribute of topological order.?
The Kitaev honeycomb model® presents another exam-
ple of a chiral spin liquid when a gap is opened by the
addition of a magnetic field. The Kitaev model displays,
in a regime of parameters, non-Abelian topological order,
i.e., quasiparticles obey non-Abelian braiding statistics,
as in the Moore-Read FQH states.*

Recently, coupled-wire constructions pioneered by
Kane and collaborators®® have provided a complemen-
tary approach to the construction of topological ordered
states, in particular both Abelian and non-Abelian FQH
states. These constructions allow one to utilize the pow-
erful machinery of (14+1)-dimensional conformal field the-
ory (CFT) to describe individual quantum wires at low
energies, which are then coupled to their neighbors under
periodic boundary conditions to gap the bulk degrees of
freedom of the resulting two-dimensional system. Gap-
less chiral modes, described by chiral CFTs'?, are rather
naturally obtained in these coupled-wire constructions
under open boundary conditions.

Most of the focus of coupled-wire constructions has
been on electronic systems with a quantized (charge) Hall
response. However, one may also use, instead of quantum
wires, quantum spin chains or ladders, which can also be
described by CFTs in their gapless limits.'' ¢ The result
of these coupled “wire” (i.e., coupled quantum spin-1,/2
ladder) constructions are gapped chiral spin liquids in
(24+1)-dimensional spacetime!'!”, much as the electronic
wire constructions lead to gapped FQH states.

Within this coupled “wire” approach, we presented a
model in Ref. 15 that, as we argued, displays chiral spin
liquid phases supporting both Abelian and non-Abelian
topological order. In that model, each quantum spin-
1/2 ladder can be fine-tuned to a quantum critical point
with a central charge of ¢ = 2. In turn, this quantum
critical point can be thought of as the sum of four de-
coupled CFTs, each of which can be described by one
flavor of a gapless Majorana field carrying the central
charge ¢ = 1/2. These four independent Majorana fields
per “wire” when fine-tuned to the ¢ = 2 quantum crit-
ical point can be arranged into a triplet and a singlet
that transform like the spin one and spin zero represen-
tations of SU(2), respectively. These Majorana fields are
local within each “wire”, so that quadratic terms such
as back-scattering are allowed inside any given “wire”.
Back-scattering between the left- and right-moving com-
ponents of the singlet Majorana field is nothing but a sin-
glet mass term mg. It reduces the central charge ¢ = 2
to ¢ = 3/2. Equal amplitude back-scattering between
the left- and right-moving components of the triplet Ma-
jorana fields is nothing but a triplet mass term m,. It
reduces the central charge ¢ = 2 to ¢ = 1/2. Remark-
ably, the singlet and triplet masses [see Eq. (2.2)] re-
alize a linear combination of local two- and four-body
SU(2) symmetric spin-1/2 interactions on a quantum
spin-1/2 ladder (see Sec. IV). In this paper, we choose
to fine-tune each “wire” (i.e., a quantum spin-1/2 lad-
der) to the ¢ = 1/2 quantum critical point that follows
from gapping the triplet of Majorana fields. The ques-
tion we then address is the effect of switching inter-wire
interactions when each wire has been fine-tuned to its
¢ = 1/2 quantum critical point. Now, local inter-ladder
spin-1/2 interactions are necessarily quartic in the Ma-
jorana fields. They are characterized by a pair of dimen-
sionless couplings constants A and A defined in Eq. (2.3)
that are exchanged by the oparation of time reversal. In
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FIG. 1. (Color online) (a) Mean-field phase diagram as a function of the three couplings A > 0, x> 0, and |my|/A, for the
theory defined in Eq. (2.4) under the assumptions (2.8) [A, is a momentum cutoff that is introduced in Eq. (3.24b)]. The yellow
surface represents those points in coupling space at which a continuous mean-field transition separates two distinct gapped
phases of matter: an Abelian topological order (ATO) phase and a non-Abelian topological order (NATO) phase. The brown
surface represents those points at which a discontinuous mean-field phase transition occurs. The acronym “LR” (resp. “RL”)
refers to the chiralities of the gapless edge states, i.e., gapless edge states on the first “wire”, m = 1, are left handed (resp. right
handed), while those on the last “wire”, m = n, are right handed (resp. left handed) when open boundary conditions are chosen
along the stacking direction of the “wires”. The quadrant A = X for which Hamiltonian density (2.4) is time-reversal symmetric
(TRS) is colored in grey. (b) For |my/A,| >0 and A = X > 0, the region bounded by the vertical axis and the green colored
continuous line supports a TRS mean-field solution as the minimum of the mean-field potential, with the vanishing singlet gap
A, = 0 and the non-vanishing triplet gap A; = 2|m,| # 0 defined by Eq. (3.31). Outside of this region, time-reversal symmetry
is spontaneously broken at the mean-field level with non-vanishing singlet Ag # 0 and triplet A # 0 gaps defined by Eq. (3.31).
The brown dashed line is a line of discontinuous phase transitions that separates the mean-field snapshot of an ATO from a

NATO phase.

Ref. 15, we studied the special case A # 0, A = 0, that
maximally breaks time-reversal symmetry (TRS). This
limit was analyzed using mean-field theory and a ran-
dom phase approximation that started from an exactly
solvable limit. Within these approximations, we obtained
the phase diagram of the coupled-ladder system, with its
gapped Abelian and non-Abelian chiral phases. The goal
of this paper is to study the time-reversal symmetric limit
A = A by exploring the zero-temperature phase diagram
for arbitrary values of A # 0, A # 0 and |m,| > 0. The
main results of this paper are summarized by the mean-
field phase diagram presented in Fig. 1.

Summary of results:
The phase diagram at zero temperature

In the present work, intra-“wire” interactions (i.e.,
spin-1/2 interactions in a single quantum spin-1/2 lad-
der that respect the SU(2) spin-rotation symmetry) are
parameterized by the dimensionfull spin-singlet Majo-
rana mass mg and by the dimensionfull spin-triplet Ma-

jorana mass m,. Each “wire” is fine tuned to the quan-
tum critical point defined by the condition my = 0 in
this parameter space. We then imagine switching adia-
batically generic inter-“wire” interactions (i.e., generic
SU(2)-symmetric inter-ladder quantum spin-1/2 inter-
actions) that are encoded by a pair of Majorana quar-
tic interactions with the dimensionless couplings A #£0
and A # 0. Because reversal of time exchanges A # 0
and A # 0, the case A # A breaks explicitly TRS, while
the case A = A is TRS. When TRS holds, the existence
of non-chiral spin liquids becomes possible. Parameter
space for the coupled “wires” is thus three-dimensional.
In Fig. 1, we choose the dimensionless couplings A, A > 0,
and |my|/A,, where the momentum cutoff A, > 0 is of
the order of the band width of the spin excitations in the
underlying quantum spin-1/2 ladder realizing a “wire”.

We find a rather rich phase diagram within a mean-
field approximation, which we depict in Fig. 1. The
mean-field phase diagram includes gapped phases of mat-
ter supporting gapless edge states that realize either
¢=2or ¢ =1/2 CFT’s when open boundary conditions
are imposed. By the bulk-edge correspondence, we infer



that these mean-field gapped phases signal chiral Abelian
and chiral non-Abelian topologically ordered quantum
phases, respectively, when TRS is either explicitly or
spontaneously broken. The logic connecting a mean-field
phase diagram to a topologically-ordered phase of quan-
tum matter through the bulk-edge correspondence is very
much the same as the one used by Read and Green'® on
the one hand hand, and by Ivanov,'® on the other hand,
in their study of the braiding statistics of vortices in two-
dimensional chiral p-wave superconductors.

In the case when TRS is spontaneously broken on the
plane A = X of Fig. 1, we find that the Abelian and non-
Abelian phases are separated by a discontinuous mean-
field quantum phase transition. While quantum phase
transitions between distinct topological phases are often
presumed to be continuous, we have discovered an exam-
ple of a discontinuous phase transition at the mean-field
level. Another example of discontinuous quantum phases
transitions between topologically ordered phases of mat-
ter has been proposed for the Kitaev honeycomb model
under a magnetic field within a slave-particle mean-field
theory and exact diagonalizations in Ref. 20.

More interestingly, we identify a region in the three-
dimensional parameter space of Fig. 1 for which TRS
remains unbroken. The region of Fig. 1 characterized by
A = A with a vanishing mean-field singlet gap A, = 0
describes a gapless non-chiral spin liquid. In this region
of parameter space, the Majorana fields acquire disper-
sion in the direction perpendicular to the ladders, yield-
ing a pair of two-dimensional Majorana cones. We have
thus found an example related to a quantum spin-1/2 lat-
tice model in two-dimensional space with full SU(2) spin-
rotation invariance that supports a non-chiral spin liquid
phase with gapless Majoranas, as in the phase B of Kitaev
honeycomb model.* However, SU(2) spin-rotation sym-
metry is absent in the Kitaev honeycomb model. Now,
realizing the Kitaev model requires a strong spin-orbit
coupling,?!?2 whereas our model does not. We have thus
demonstrated by way of example that a gapless TRS
spin-liquid phase does not require the breaking of spin-
rotation symmetry. Keeping the SU(2) spin-rotation
symmetric interactions as the dominant ones may provide
more opportunities in material science to realize quantum
spin liquids experimentally.?3

The paper is organized as follows. We present the
model of coupled Majorana fields and analyze several of
its symmetries in Sec. IT. We then study the model within
a mean-field treatment in Sec. ITI. In Sec. IV, we discuss
possible implications of this mean-field phase diagram for
a lattice model of coupled spin-1/2 ladders that we pro-
pose as a regularization of the field theory defined in Sec.
II. We summarize our results in Sec. V.

II. MODEL OF COUPLED MAJORANA FIELD
THEORIES

A. Definition

Our quantum field theory is built from four species
(labeled by p = 0,---,3) of Majorana fields whose sup-
port is (1 4 1)-dimensional spacetime. We will call this
building-block a “ladder”. This terminology is justified
by the fact that we find in Sec. IV a quantum spin-
1/2 ladder that regularizes this quantum field theory.
We then consider n independent copies of the Majorana
quantum field theory in (1 4 1)-dimensional spacetime
with the kinetic Hamiltonian density

HO - 222 M(XLm x)/(\ﬁm

m=1 p=0

Rhalelhin), (212)

where the velocities v, are real valued and L,R de-
notes the left- and right-movers, respectively. The Ma-
jorana fields, (XA .)* = Xi1n Obey the equal-time anti-
commutators 7 7

{Rbal), R () b = ytng Gy 8,0 (2 — 7). (21D)
with p,p/ =0,---3, M\M' = L, R, m,m’ = 1,--- ,n, and
0<z<L,.

Besides the kinetic term (2.1a), we assume that there
is a back-scattering term with real valued couplings m
(w=0,---,3) inside each ladder

n 3
- — . /\I_L AI_L
Hintra—ladder T § : E : 1 mu XL,mXR,m'

m=1 pu=0

m

(2.2)

We then couple consecutive ladders by considering inter-
ladder quartic interactions with real valued coupling con-
stants A and A

n—1
Hintor—tadder = Z (ﬁA,m + ?me) ; (2.3a)
A . , m=1 ,
Ham= 7 (Z ARm+1> : (2.3b)
g L 2
AX,m - % (Z Szﬁ,m 3A<f,m+1> . (2.3¢)
=0

Each H Am and 7-I,~

like quartic mteractlon
The final Hamiltonian density is

term alone is the O(4) Gross-Neveu-

~ ~

M= HO + Hintrafladdcr + Hintcrfladdcrv (24)

with HO’ Hintra—ladder and Hlnter ladder defined in Eq

(2.1a), (2.2) and (2.3), respectively.



The limit A = 0 in the Hamiltonian density (2.4)
was considered in Ref. 15. This regime corresponds
(with the singlet mass mg; = 0) to the planar region
(A>0,A=0,m, >0,m, =0) in Fig. 1, where ATO
and NATO are the abbreviations for “Abelian topologi-
cal order” and “non-Abelian topological order”, respec-
tively. A telltale to distinguish these phases is the cen-
tral charge ¢ of edge states: For Abelian phases, ¢ is
necessarily integer; instead, if ¢ is fractional, the phase
is necessarily non-Abelian. (Notice that it is possible to
have integer ¢ for non-Abelian phases, for instance direct
sums of models with fractional ¢’s that add up to an inte-
ger.) In our model, the signatures of these phases at the
mean-field level are the following. The edge states of a
mean-field snapshot of the ATO phase are quadruplet
of right-moving (left-moving) Majorana fermions 55%71
()?ﬁn) on the first (last) edge for p = 0,1,2,3, yield-
ing c=4x1/2=2 € Z. The edge states of a mean-field
snapshot of the NATO phase consist of the singlet Majo-
rana modes X% ; and X7 ,,, withc =1x1/2=1/2 ¢ Z.

The goal of this work is to study the generic case where
both A and A are non-zero. The phase diagram in Fig. 1
is mirror symmetric about the plane A = A, and we shall
be particularly interested in the limit A = A at which the
Hamiltonian density (2.4) is invariant under TRS.

B. Symmetries

Reversal of time is implemented by the m-resolved an-
tiunitary Z, transformation by which

R (@) = R a(), (2.5a)
Xra(®) = Xia(), (2.5b)
i i (2.5¢)

forany p=0,---,3,m=1,--- ,nand 0 <z < L,.
The Hamiltonian density (2.4) has more symmetries.

First, for arbitrary values of the masses and the cou-

plings, the Hamiltonian density (2.4) is invariant under

SC\MM,m(:L‘) = O'H 5(\HM,m(x)7 (26)

forany pu =0,---,3, M=L R, m=1,---,n,and 0 <
x < L,. Second, it is also invariant under the m-resolved
(local) Z, transformation by which

ot = =41,

X (Z) = O Xnpm(2),
forany p =0,---,3, M=L R, m=1,---
<L,

Whenever the underlying lattice regularization of the
Hamiltonian density (2.4) is endowed with a global SU(2)
symmetry, we will impose the conditions

o, =41,  (2.7)

,n, and 0 <

Vy = Vg = 0, mg =mg =0, (2.8)
Vy, =V =, my, =My, a=1,2,3, '

where s and t stands for “singlet” and “triplet”, respec-
tively.

III. MEAN-FIELD APPROACH
A. Two auxiliary scalar fields

We will treat the inter-ladder quartic interactions (2.3)
by performing a Hubbard-Stratonovich transformation.
To this end, we employ the Euclidean path-integral for-
malism and introduce two real-valued auxiliary scalar
fields, ¢y g and ¢y g form=1,--- ,n — 1. The model
(2.4) can then be written as

7= / Do, 4 / DIyt 2 e S, (3.1a)

B L. L,/a
S = /dT/dx
0 0

L~ [on . L
‘Cf,m = 5 Z |:X£7m (67' + H}uaw) X£,m

(Lin+ Lon+ Lan),  (3.1D)

m=1

pn=0
+ Xia (0, —10,0,) X‘é,m]
3
+ Zimﬂxlﬁ,m Xl;/{7m7 (3.1(3)
n=0
Ly = i(qg )2+i(¢ )2 (3.1d)
bm ™ 4\ m,m+1 4}: nnt1) )
1
ﬁfb,m = Z 5 <_1Xﬁ,m Xﬁ’mJ’,l) ¢m1m+1
u=0
3 1 i
+ Z 2 (_ixlé,m Xﬁ,m-H) ¢m,m+1- (3.1e)
n=0

Here, 3 is the inverse temperature and a,, is the spacing
between two consecutive ladders.

B. Symmetries

The action (3.1b) with A = X is invariant under the
m-resolved antiunitary time-reversal transformation [c.f.

Eq. (2.5)]

Mia(™2) 2 Xpal(rz),  M#M,
Fnat1(T:7) = = Gypia (T, 2), (3.2)
ng,m+1(7'v T) = — ¢m,m+1(7'a ),

forany pu =0,---,3, M=LRm=1,--- ,n,0<7<g,

and 0 <z <L,.

The action (3.1b) has the following additional symme-
tries. First, the u-resolved Majorana parity is conserved
owing to the symmetry of the action S (3.1b) under the
Z, transformation [c.f. Eq. (2.6)]

(3.3)

’n?0§T§ﬂ7

Xna(To ) = o Xy (7, ), ot = 41,

forany#:()’...’3’M:L,R’m:1’...
and 0 <z < L,.



Second, the action (3.1b) is invariant under the m-
resolved Z, transformation [c.f. Eq. (2.7)]

Xa(T @) = o Xia(T @), oy =1,
Gunt1(T:2) > 0y Oyt Py (75 @), (3.4)
q;m,m+1(7—7 T) = 0y Opy ng,m+1(7'»x)7

forany u=0,---,3, M=LR,m=1,--- ,n, 0<7<p,

and 0 <z <L,.

C. Mean-field single-particle Hamiltonian

We do the mean-field approximation by which the
Hubbard-Stratonovich fields ¢ and ¢ are assumed inde-
pendent of the spacetime coordinates (7,z) and the lad-

J

der index m,

¢m,m+1(7-a CU) = ¢v dgm,erl(T? {E) = QNS

In what follows, we will ignore sign fluctuations of
these Hubbard-Stratonovich fields ¢ and ¢, since as was
demonstrated in Ref. 24, where fermions coupled to a Z,
gauge field on a square lattice were studied, such fluctu-
ations are irrelevant. If so, the action from (3.1d) simpli-
fies to

(3.5)

We proceed by imposing periodic boundary condition along the y-direction

i
XM,n+1

for M = L, R, and by performing the Fourier transformation

L,/a

m=1

A Ly y/ %y
Sf —+ Sfb = /d’]‘ / dI Z (Ef,m + Efb7m) =
0 0 =

-
I O p -
where x,, , = (XR7w,k’ XLM,k) for each flavor 4 =0, -+,

I;'/E/I,E = —v,k, 03— P, sin (k: a )

and we have introduced the linear combinations

- 1(6=9).

B L, L,/a,
5= [or far 3 c
0 0 m=1
~6L, iqﬁ F ). (3.6)
B r a 4\ B\ :
=X (3.7)
5 1 T N
Z Z 5 (Xliu,,_k) (iw ffo + H}:/,Ig) Xg,k’ (38&)
w,k p=0
3, the mean-field Majorana Hamiltonian is
+ [m, — ®_cos (k,a,)] 6, (3.8b)
(3.8¢)

for the auxiliary scalar fields. Here, 6, 65, and 65 are Pauli matrices, while 6 is the 2 x 2 identity matrix.

We can diagonalize the 2 x 2 single-particle Hamilto-
nian (3.8b) for each flavor p = 0,---,3. There follows
eight branches of mean-field excitations with the disper-
sions (we have set a, = 1)

(kl, k,) = \/vﬁk?c + (mu — ®_ cos ky)2 + ®2 sin’ k.
(3.9b)

We see that the eight branches fall into four pairs of
particle-hole symmetric bands. For arbitrary value of
k, and k,, the mean-field Majorana direct gap is defined
by

A (kmﬂ ky) - €+,u(kaﬂ ky) E_ (kmﬂ ky)

=2¢,(k,, k).

zs vy

(3.10)

(

In the vicinity of (k, = 0,k, = 0) and (k, = 0,k, = 7),
the mean-field Majorana direct gaps are,
¢ ¢
A, (0,0) =2|m, —®_|=2|m, -5+ 5|, (31la)
and
A 0,7)=2 o | =2 ¢ _¢ 3.11b
;1,(771-)_ |mu+ —}_ mu+§_§7 ( )

respectively. The miminum of the two gap functions
(3.11) is

1 ~
A, =2|jm,| —|&_]| :2‘|m#|—2‘¢—¢”. (3.12)
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D. Linearized spectrum

The physics captured by the mean-field Majorana single-particle Hamiltonian (3.8b) becomes more transparent

upon linearizing the latter around the gap closing points (

finds the pair of 2 x 2 Dirac-like Hamiltonians

k., k,) = (0,0) and (k,,k,) = (0,7/a,), respectively. One

z vy

zs Vy

MR N . . .

Hyk —01p, k,=04p, = —Vu Py 03 =0, @y p, 6 + (m, —®_) 6y, (3.13a)
TMF - . . .

H1A7k¢=0+pm,ky=(7r/uy)+py ~ —v,p, 03 +a, . p 6+ (m“ + <I>_) Gy- (3.13b)

Accordingly, a,®, plays the role of the Fermi velocity in the y-direction. Furthermore, we find that the single-particle

Majorana gap is 2|m,, + ®_

, in agreement with Egs. (3.11a) and (3.11b). We now combine these linearized mean-field
Majorana single-particle Hamiltonian into the 4 x 4 matrix

7TMF
fIMF,lin o Hu,km:0+pm,ky:0+py U252
w,p '_ 0 HMF
2x2 w,k,=0+p, .k, =(r/a,)+p,
= — ’U{L’,,upfb 5—3 ® 'f_o — ’pry OA_l ® 723 + m# 6'2 ® 7/;0 — @7 5—2 ® %3, (3143)
where we have defined
Vo = Vs Vy = ay©+7 (314b)

with the triplet 7, 75, and 75 a second set of Pauli ma-
trices and 7, a second 2 x 2 identity matrix. This is
an anisotropic single-particle Dirac Hamiltonian. The
anisotropy enters through the two distinct Fermi ve-
locities (3.14b), with the velocity along the y direc-
tion emerging from the non-vanishing value ®, for the
bonding linear combination of the Hubbard-Stratonovich
fields. There are two competing masses, m, and the
anti-bonding linear combination ®_ of the Hubbard-
Stratonovich fields that measures the amount by which
the mean-field breaks time-reversal symmetry. These
masses compete because they multiply two 4 x 4 matrices
that commute,

[Gy ® Ty, 0y ® T3] = 0. (3.15)
The mass term m,, 6, ® 7, breaks a unitary Z, symmetry
represented by conjugation with

T=6,®%. (3.16)

The mass term ®_ 6, ®75 breaks time-reversal symmetry
that is represented by conjugation with

T=6,0%K, (3.17)
where K denotes the complex conjugation.
The competition between the mass terms m, 6, @ 7

and ®_ 6, ® 73 implies a gap closing (i.e., continuous)
transition when

Imy,| = ®_] (3.18)

(

that separates two single-particle insulating phases. As
shown by Haldane?®, the Chern numbers for the pair of
band resolved by the flavor index p is £1 when

m,| < |®_]|. (3.19)

This single-particle insulating phase realizes a Chern in-
sulator at half-filling. When open boundary conditions
are imposed, channel p contributes one (Majorana) chi-
ral edge state. The Chern numbers for the pair of band
resolved by the flavor index p have vanishing Chern num-
bers when

m,,| > [@_|. (3.20)

This single-particle insulating phase is topologically triv-
ial at half-filling. Gapless boundary states are not generic
when open boundary conditions are imposed.

E. Mean-field potential

After integrating out the Majorana fields and express-
ing the scalar fields ¢ and ¢ in terms of ®_ by using Eq.
(3.8¢c), the partition function (3.1) becomes

7 /D[(ILF,(I)?]e_Seff, (3.21a)



where
Sef = Sp + Sk, (3.21D)
BL L [ 2 1 2]
Sp = P, +d )+ = (D, —D_ ,
wm T [ S0 ) (00 )

(3.21¢)
13
Spi= =500
log (—w2 — vikg — (m# —®_cos q)2 — @i sin? q) ,
(3.21d)

with q:= kyay.

When A = A, the action (3.21) is invariant under a
global antiunitary Z, transformation defined by

o, = —d, o — d_, i— —i (3.22)

This transformation is the mean-field counterpart to the
time-reversal transformation defined in (3.2). We note
that the p-resolved global Majorana parity represented
by the Z, transformation (3.3) is invisible in the action
(3.21) as we have integrated out Majorana fields. The
m-resolved Z, transformation (3.4) is also invisible in the
action (3.21) since o, = 0, for anym = 1,--- ,n under
the mean-field approximation (3.5).

We are interested in the zero temperature and ther-

modynamic limit 8 — oo, L, — o0, and L, — oo of the

effective action (3.21). The summations then become in-
tegrals in three-dimensional spacetime.

The Bosonic contribution to the mean-field potential
J

“+
n
Ve p =

—T

where

is defined by

ay
VMF,B::BLL B
z My
1 2 1 2
=— (P, +P )+ = (P, —D_), 3.23
S eere) s -0’ (32)

where S5 is given by Eq. (3.21c).
Similarly, the Fermionic contribution to the mean-field
potential is

ng;w,

where Sp is given by Eq. (3.21d) and we have defined

/e /

log (w2 + vkl + (mﬂ — ®_ cos q) + @2 sin q)
(3.24b)

VMF,F = ﬁL L (3243)

T
Veff,F =

with A, a momentum cutoff that regularizes a divergent
momentum integral over k,. This momentum cutoff is of
the order of the band width for the spin excitations of the
single quantum spin-1/2 ladder defined in Sec. IV that
regularizes the quantum field theory describing a single
“wire”. As it should be, the final expression for the mean-
field potential (3.27) is independent of the value of A,
when the mean-field values of &, and ®_ are measured
in units of the momentum cutoff A . This is a typical fea-
ture of mean-field solutions in (quasi) one-dimension.?®
After performing the integrals over the Matsubara fre-
quency w and over the momentum k,,%” we are left with

—A2 er /g—g [F2@) + 1+ F2a) n (14 \[F2(@) + 1) = F2(q) m F, (q)], (3.25a)
=~ cos q>2 + (ii)z sin® g. (3.25b)

Finally, the total mean-field potential V};y is the addi-
tion of the bosonic mean-field potential Vyp g (3.23) to

the fermionic mean-field potential Vyp ¢ (3.24), i.e.,

Var = Vurs + Ve - (3.26)

It is more convenient to rewrite Vi (3.26) into the di-
mensionless form



with F},(q) defined in Eq. (3.25b).

We observe that the mean-field potential (3.27) is in-
variant under

b, b ——d_. (3.28)

J

(3.27)

(@) In (1+ /F2(@) +1) = F(q) mF, ()]

(

Thus, without loss of generality, we shall assume that
m,, ®, >0, while ®_ € R.

F. Saddle-point equations

The saddle-point equations stem from the first-order derivative of V g (3.27) with respect to ® | and ®_, respectively

T
11 11 1
(2)\ ox/ T \ax 2x 27rz;

+
1 /dq 9 . ( 1 )

— | —®, sin” ¢ X arcsinh , 3.29a
= U’CW o T F#(q) ( )

11 11 R 1

q .

0O=(———= )@ +<+~)<I>_ —/— ®_cosqg—m, xcosqxarcsmh< > , (3.29b
(2)\ 2)\> To\ax  2x 27r; v, w { 2 F,(q) (3.26b)

—T

where I, (g) is defined in Eq. (3.25b).

For simplicity, we assume a hidden SU(2) symmetry
that implies that the conditions (2.8) must hold (see Sec.
IV). For simplicity, vy, = v, = v = 1. We also assume
that mg = 0, a consequence of fine tuning at a quantum
critical point of a microscopic building block of the model
(see Sec. IVA). We solve for (®,,®_) in Eq. (3.29) nu-

merically for arbitrary value of A, A, and % As we
are only interested in local minima of the saddle-point

equations (3.29), we use the Hessian matrix

82‘/MF 82VI\TF
032 9% 0P
+ +
HHess 3V 8V (3'30)
9®_0d, 092
and demand that it is positive definite. A solution

(®,®_) of Eq. (3.29) is stable if the Hessian matrix
evaluated at (®_,®_) is positive definite.

G. Mean-field phase diagram

By combining Eq. (2.8) with Eq. (3.12), we find the
singlet and triplet gaps
Ac=20_| =64, (3.31a)

1 -
A= 2llm] = 2| =2|pm| - 3 o - &

. (3.31b)

respectively, given a stable solution (®,,®_) to the
saddle-point equations (3.29). Correspondingly, we enu-
merate the following four possibilities

P, =+P_=+¢/2#0, $=0, (3.32a)
P, =—-0_=-0/2#0, ¢ =0, (3.32b)
D, =¢=0¢, d_ =0, (3.32¢)
O = (p—p)/2=xm, #0. (3.32d)

Case (3.32a) is obtained when A > 0 while A = 0. Case
(3.32b) is obtained when A = 0 while X # 0. Case (3.32c¢)
implies that the singlet gap vanishes, A, = 0, while the
triplet gap is solely controlled by the triplet mass, A, =
|m,|. Case (3.32d) implies that the triplet gap vanishes,
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FIG. 2. (Color online) Blue curve: we fix (A, X) = (7,1) in Fig. 1 so as to strongly break time-reversal symmetry. Red curve:
we fix (A, A) = 4v/2(sin 6, cos§) with 6§ = 237/90 in Fig. 1 so as to weakly break time-reversal symmetry. (a)-(b) Continuous
and discontinuous dependence on my of the stable solution ®, and ®_ to the saddle point equations (3.29). (c)-(d) Continuous
and discontinuous dependence on my of the singlet gap A, and the triplet gap A; given by Eq. (3.31). The triplet gap A,
represented by the blue curve vanishes at |m|/A, & 0.76 that signals a continuous quantum phase transition.

A, = 0, while the singlet gap is solely controlled by the
triplet mass, A, # 2|m|.

Figure 1 summarizes the numerical search for the sta-
ble solutions to the saddle-point equations (3.29) in the

three-dimensional coupling space A > 0, A > 0, and
|m;| > 0, holding v,, and m fixed to the values v, =1
and mg, = 0, respectively. The terminology ATO for
Abelian topological order and NATO for non-Abelian
topological order applies whenever the stable saddle-
point delivers Chern insulating bands with four and one
chiral Majorana edge states, respectively, upon imposing
open boundary condition along the y-direction. Which
chirality is to be found on the left (m = 1) or right
(m = n) ends of the model defined in Eq. (2.4) is speci-
fied by the combination of letters LR or RL. Of course,
there is no topological order at the mean-field level as the
ground state is non-degenerate when periodic boundary
conditions are imposed. However, we conjecture that the
ground state manifolds in the ATO and NATO phases ac-
quire distinct non-trivial topological degeneracies when
the mean-field approximation is relaxed. Computing ex-
plicitly these topological degeneracies is beyond the scope
of this paper. Nevertheless, the existence of bulk topolog-
ical excitations can be inferred by invoking the bulk-edge
correspondence — the chiral central charge of the CFT on
the edge must be related to the unitary braided fusion
category of the topological quantum field theory in the
bulk (see Refs. 3, 28 and 29).

1. Phase transitions between ATO and NATO

There are two wings of yellow-colored surfaces in Fig.
1. Within the same “LR-” or “RL-" topologically or-
dered phases, ATO and NATO phases are separated by
a yellow-colored surface on which the triplet gap A, de-
fined in Eq. (3.31b) vanishes (namely, |®_| = |m,|). As
a demonstration, we plot in Fig. 2 the blue curves by
fixing (\,\) = (7,1) in Fig. 1. In Fig. 2(a)-(b) We find a
continuous dependence on m, of the stable solution ®
and ®_ to the saddle point equations (3.29). It follows
from Eq. (3.31) that the singlet gap A, and the triplet
gap A, in Fig. 2(c)-(d) are also continuous dependent on
m,. Moreover, the triplet gap vanishes at |m,|/A, ~ 0.76
that signals a continuous quantum phase transition.

The two yellow wings to the left and right of the
quadrant A = X in Fig. 1 are connected by a stripe
(colored in brown) that separates the ATO from the
NATO phases by a discontinuous quantum phase tran-
sition. As a demonstration, in the red curves of Fig. 2,
we move away from (A, A) = (4,4) in Fig. 1 by choosing
(A A) = 4v/2(sin 6, cos ) with § = 237/90. We present
the stable solution ®, and ®_ as a function of m, in
the red curves of Fig. 2(a) and (b), respectively. There
is a discontinuous dependence on m, of the stable solu-
tion ®, and ®_ to the saddle point equations (3.29) that
delivers a discontinuous dependence on m, of the singlet
gap A, and the triplet gap A, in the red curves of Fig.
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FIG. 3. (Color online) (a) and (b) Cut with fixed A = XA = 4 from Fig. 1(b). The stable mean-field solutions ®. and ®_ are
presented in panels (a) and (b) as functions of |m|/A,, respectively. The |m;|/A, dependence of the singlet (A,) and the
triplet (A;) gaps are plotted in panels (c) and (d) by making use of Egs. (3.31a) and (3.31b), respectively.

2(c) and (d).

2. Case A=\

Figure 1(b) summarizes the numerical search for the
stable solutions to the saddle-point equations (3.29) in
the quadrant A = A > 0, and |m,| > 0, holding v,
and my fixed to the values v, =1 and mg = 0, respec-
tively. We found three distinct mean-field phases whose
boundaries are shown in Fig. 1(b). One phase is gapless.
Two phases are gapful when periodic boundary condi-
tions are imposed.3? The region bounded by the vertical
axis and the green curve supports a stable solution to the
saddle-point equations (3.29) with ®, # 0 but ®_ = 0.
Hence, this solution respects the time-reversal symmetry
of the mean-field Hamiltonian. It follows from Eq. (3.31)
that the triplet gap A, is non-vanishing while the singlet
gap A, is vanishing. The triplet of Majorana are thus
gapped, while the singlet of Majorana is gapless because
of a Dirac-like band touching. The dashed line (colored
in brown) in Fig. 1(b) is a line of discontinuous quantum
phase transitions by which |®_| < |m,| above the dashed
line, while |®_| > |m,| below the dashed line. The dis-
continuous jump of |®_| is evidence for a mean-field dis-
continuous quantum phase transition. This discontinuity
is mirrored in the discontinuities of ®,, A;, and A; as
exemplified in Fig. 3 for (\,\) = (4,4).

As a comparison, we plot in Fig. 4 the stable mean-field
solutions ®, and ®_ as a function of §:= arctan(A/\)

and fixing A2+ A2 = 32 for |m,|/A, = 0.1,1, and 3 in Fig.

4(a),(b) and (c), respectively. When 6 = 7/4, there is a
discontinuous (respectively, continuous) phase transition
for panel (a) and (c¢) [respectively, (b)]. We note that in
Fig. 4(a), the value of |®_| is not equal to |® | while
1o, ]~ [o_|| < 1.

IV. LATTICE REGULARIZATION

We are going to show that the one-dimensional lattice
model (4.1) regularizes the (1 + 1)-dimensional quantum
field theory with the Hamiltonian density obtained by
adding Eq. (2.1a) to Eq. (2.2) with n = 1. This will be
achieved using the density matrix renormalization group
(DMRG)?!32 to match quantum criticality in the quan-
tum field theory with that in the lattice model.

We will then couple a one-dimensional array of spin-
1/2 ladders of the form (4.1) as is done in Hamiltonian
(4.5) and argue that this two-dimensional lattice model
regularizes the Hamiltonian density (2.4).
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(b) ()

FIG. 5. (Color online) (a) The phase diagram for the lad-
der model (4.1) as a function of J; < 0 and |J,| < 0.3.
The phase boundary between the columnar-dimer (CD) and
the rung-singlet (RS) phases is a continuous phase transition
in the Ising universality class. The phase boundary between
the Haldane phase (H) and the columnar-dimer phase is a
continuous phase transition in the su(2); WZNW universal-
ity class. (b) Classical representation for the CD order. (c)
Classical representation for the RS order.

A. Numerical study of a two-leg ladder

Following Ref. 15, we define a spin-1/2 ladder by the
Hamiltonian

N-1 N-1

N B SN 2,

Hipgder = E J1S¢'Si+1+§ J1 Sy Siga
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~
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+
i

=
L

>y (§i.§i+1) (§;.§;+1). (4.1)

ﬁ
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Here, §i and .§;, are spin-1/2 operators localized on the
sites of the first and second legs of the ladder, respec-
tively. There are three independent couplings obeying
Jy > 0and J,,J,,J; € R with the condition J, =
—J, /2. References!®3%3 have shown that, at the level
of bosonization, the low-energy limit of the ladder (4.1)
is the single copy (n = 1) of the non-interacting massive
Majorana field theory defined by adding the Hamiltonian
densities (2.1a) and (2.2) with the mass terms m, and m,
related to the microscopic couplings in Eq. (4.1) by

1
m (4J, —Jy).

1
(127, + Jy), m = o
(4.2)

s = =
™
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FIG. 6. (Color online) (a) Plot for the leg-dimer order pa-
rameter (4.3) at the center of the ladder, Dy /,, as a function
of J, for different system sizes while fixing J; = —1. The
extrapolation to the thermodynamic limit is obtained with a
second-order polynomial in 1/N, whereas the dashed curve
is a fit to the Ising scaling law D (J,) o (J . — J)VE
in the vicinity of the critical point J, . ~ 0.041. (b) Fixing
Juy = —1, this log-log plot shows the scaling of Dy, with 1/N
for different values of J, in the vicinity of the critical point.
The Ising scaling law Dy /5(J1 ) o N~1/% fits pretty well the
scaling of Dy, at the transition point J, . ~ 0.041. (c-d) Fit-
ting the entanglement-entropy from Eq. (4.4) as a function of
x with N = 128 in pane (c) and of N with z = N/2 in panel
(d) yield ¢ = 0.4692 and ¢ = 0.4824, respectively.

Bosonization thus predicts the existence for the spin-1/2
ladder (4.1) of a quantum critical point in the Ising uni-
versality class for which my = 0 as the dimensionless ra-
tio Ji;/J | smoothly crosses the critical value (J;;/J | ), ~
—1/12. We are going to use the technique of the density
matrix renormalization group (DMRG)3132 to verify this
prediction. We fix the units of energy by setting J; =1,
bound from above the bond dimension in the DMRG by
1500, and impose open boundary condition.

The phase diagram as a function of J; < 0 and
|J,] < 0.3 is shown in Fig. 5(a). Here, CD and RS
stand for columnar-dimer and rung-singlet, respectively.
A classical representation for the CD and the RS phases
is obtained by coloring nearest-neighbor bonds as shown
in Figs. 5(b) and 5(c). The acronym H stands for the
Haldane phase of the antiferromagnetic quantum spin-1
Heisenberg chain®®36. The Haldane phase is obtained
when J, is ferromagnetic (J, < 0) and |J;;| is not too

12

large. Increasing |J;;| weakens the Haldane phase until it
gives way to the CD phase. Destroying the CD phase is
achieved by changing the sign of J, holding |J;;| fixed.

The phase boundary between the CD phase and the
RS phase is a continuous phase transition belonging to
the two-dimensional Ising universality class. The numer-
ical evidence for this Ising transition is supported by the
finite-size scaling of the leg-dimer order parameter!'#-7

D= (8- (8, =8)), i=1- N—1, (43)
combined with an estimate of the central charge from the
scaling of the entanglement entropy.

In Figs. 6(a) and 6(b), we fix J, = —1. We then
calculate D, /2(J | ) for various values of J, and N. We
find an Ising critical point at J, . ~ 0.041 for which the
Ising scaling laws®” for the order parameter provide an
excellent fit.

Another piece of evidence to support the Ising tran-
sition is provided by the scaling form of the bipartite
von Neumann entanglement entropy under open bound-
ary condition.?” %2 It is given by

N+1 . T
sin
T N+1

) +A(S,-5,.)+B.

(4.4)
Here, x is the position of the rung at which we partition
the ladder into left and right “worlds”, ¢ is the (to be
determined) central charge, and A, B are non-universal
constants. In Figs. 6(c) and 6(d), we fix J; = —1 and
J, =0.041. In Fig. 6(c), we vary z keeping N fixed. In
Fig. 6(d), we fix x = N/2 and vary N. Both calculations
are consistent with an Ising transition for which the exact
central charge ¢ =1/2.

The phase boundary between the H phase and the RS
phase in Fig. 5(a) is predicted within the bosonization
framework to be a continuous phase transition belonging
to the (1+1)-dimensional 5u(2), Wess-Zumino-Novikov-
Witten (WZNW) universality class. The central charge is
3/2 and the critical exponent for the scaling of the order
parameter is 3/8. We have obtained DMRG evidence for
such a transition in the same way as was done for the
Ising transition. As this transition is not the focus of
this paper, we will not present these numerical results.

We conclude this section by observing that the spin
ladder model defined in Eq. (4.1) with J, = 0 was re-
cently studied in Ref. 43. Reference 43 derives a phase
diagram similar to that shown in Fig. 5(a). The only
differences are the slopes of the phase boundaries. These
differences can be understood from the fact that the
phase boundaries of the spin-1/2 ladder (4.1) are deter-
mined by the zeros of the masses of the Majorana fields
(4.2). Choosing different intra-ladder couplings changes
the relation (4.2) between the masses of the Majorana
fields and the microscopic couplings. This change affects
the slopes of the phase boundaries in the microscopic
model. We opted to introduce a non-vanishing coupling
Jy = —J, /2 in Hamiltonian (4.1) in order to suppress

S(x,N) = gln(



all the bare couplings for all marginally relevant pertur-
bations to the su(2); ®su(2); WZWN critical point [i.e.,
all couplings except J; set to zero in Eq. (4.1)].15:33

B. Model of coupled spin-1/2 two-leg ladders

We take n-copies labeled by the indexm =1,--- ,n of
the spin-1/2 ladder (4.1). We couple this array of spin-
1/2 ladders with the inter-ladder interaction'®

ﬁinter—ladder = ﬁA + ﬁIA + ‘EID + ﬁl/jv (458‘)
where
J N n—1
:?XZ |: 2,m~41 ( z+1m/\S )
i=1 m=1
+ Sz+1 m (Si,erl A Si+1,m+1> ] (45b)
and
N n—1
Hp=J, Z (Si,m : Si,m—i—l
i=1 m=1
1~ ~ 1~ ~
+ 5 imt1 Sitim T §Si,m : Si+1,m+1>a (4.5¢)

with ﬁ’A and fAI'D deduced from fAIA and ﬁD by the sub-
stitution §i7m — §{m
nian Hlnter ladder Was obtained using bosonization in Ref.
14 and 15 (see also Ref. 11). Aside from a renormaliza-
tion of the velocities entering the quadratic Hamiltonian
density (2.1a), it produces, as was shown in Ref. 44, the
quartic Majorana interaction (2.3) with the couplings A

. The low energy limit of Hamilto-

and A related to the microscopic couplings entering Eq.
(4.5b) by!#15

A=2a[(J /m)+20,], X=2a[-(J,/m)+2],].

(4.6a)

We will use shortly the reciprocal relation

JV:S%()\JrX), Jo=1-(A=2).

The two-dimensional spin-1/2 model is then defined by

(4.6b)

~

o= Hmrray + Er

ladder inter-ladder>»

(4.7)

where ﬁ&ggﬁr is simply the sum of n copies of the spin-
1/2 ladder (4.1).

C. Implications

We are now ready to deduce from the mean-field phase
diagram Fig. 1 of the quantum field theory (2.4) the fol-
lowing predictions for the two-dimensional array of cou-
pled spin-1/2 ladders (4.7).

13

First, fixing mg, = 0 implies the linear condition [c.f.
Eq. (4.2)]
J| x —=Jy. (4.8)
It then follows that m, is only controlled by one param-
eter, namely

el o< [, ] o< |y, (4.9)

Second, fixing A = A implies J, = 0, i.e., the three-
spin interaction that breaks explicitly time-reversal sym-
metry must vanish. We then deduce from the quantum
field theory (2.4) that the two-dimensional spin-1/2 lat-
tice model (4.7) could support three phases, of which two
are gapped and break spontaneously the time-reversal
symmetry while one is gapless and time-reversal symmet-
ric. There is an important a caveat here, namely that we
have neglected perturbations, whose bare couplings are
very small (e.g., generated by quantum corrections) but
relevant at the @, [su(2), ®5u(2),] WZWN critical point,
that would stabilize collinear long-ranged ordered phase
or dimer phases.*>4¢ If we ignore this possibility, a too
small or too large |m;| o< |J | | o |Jy;| could then stabilize
a topologically ordered spin-liquid phase, whereas inter-
mediate values of |m| o< |J | o< |Jy| with A =X J,, >
0 not too large (say, A < 8) could stabilize a gapless
spin-liquid phase with a Dirac point. The mean-field
transition through the time-reversal-symmetric quadrant
A = \ from the region with A < X to the region with
A > X is continuous (discontinuous) if it goes through
the gapless (one of the gapped) phase.

V. SUMMARY

We have studied a strongly interacting quantum field
theory (QFT) describing a two-dimensional array of wires
containing four (a singlet and a triplet) massive Majo-
rana fields in (1 + 1)-dimensional spacetime. This QFT
is a continuum limit of a two-dimensional lattice model of
spins S=1/2 interacting via SU(2) symmetric two- three-
and four spin interactions. In the continuum limit these
interactions give rise to two Majorana masses and to com-
peting quartic Majorana interactions (with couplings A

and X) that are interchanged under time reversal. The

case A # 0, A = 0 when the time reversal is explicitly
broken was studied by us before'®. Here, we have con-
sidered the limit A = A\ and established the conditions
under which time-reversal symmetry is broken sponta-
neously.

At the mean-field level on the time-reversal-symmetric
plane A = A, we have found three competing phases.
There are two gapped phases that break spontaneously
the time-reversal symmetry; they are gapped in the bulk,
and support chiral Majorana edge modes carrying the
chiral central charges 2 and 1/2, respectively. One phase
is conjectured to signal an Abelian topological order



(ATO), the other is conjectured to signal a non-Abelian
topological order (NATO), if the mean-field approxima-
tion is relaxed. This pair of mean-field gapped phases
is separated by a line of points at which a discontinu-
ous phase transition takes place. However, we have also
found a time-reversal-symmetric mean-field phase that
supports a branch of mean-field Majorana modes with
a gapless Dirac spectrum. This phase is bounded by a
line of continuous phase transitions separating it from
the mean-field snapshot of the NATO phase.

We remark that although we have assumed that the
singlet mass my is vanishing in our mean-field analysis
and treated the triplet mass m, as a tunable parameter,
we could equally well have reversed the roles of the sin-
glet and triplet masses. If so, we can simply exchange
the role played by the triplet and the singlet Majorana
modes. The resulting mean-field phase diagram would
contain again the mean-field snapshots of an Abelian
phase and of a non-Abelian phase. The Abelian phase is
the same Abelian phase as in the present study. The non-
Abelian phase would be different, however, as its chiral
edge modes would carry a chiral central charge of 3/2. A
non-Abelian topologically ordered phase with chiral edge
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states endowed with the central charge 3/2 is a cousin
to the Moore-Read state for the fractional quantum Hall
effect*. One also finds such a non-Abelian topologically
ordered phase for certain spin-1 Heisenberg models on
the square lattice?”.
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