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ABSTRACT 

The onset of ferromagnetism in cobalt-tin alloys is investigated experimentally and 

theoretically. The Co1+xSn alloys were prepared by rapid quenching from the melt and form a 

modified hexagonal NiAs-type crystal structure for 0.45 ≤ x ≤ 1. The magnetic behavior is 

described analytically and by density-functional theory using supercells and the coherent-potential 

approximation. The excess of Co concentration, x, which enters the interstitial 2d sites in the 

hypothetical NiAs-ordered parent alloy CoSn, yields a Griffiths-like phase and, above a quantum 

critical point (xc ≈ 0.65), a quantum-phase transition to ferromagnetic order. Quantum critical 

exponents are determined on the paramagnetic and ferromagnetic sides of the transition and 

related to the nature of the magnetism in itinerant systems with different types of chemical 

disorder. 
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I. INTRODUCTION 

Quantum-phase transitions (QPTs), defined as continuous phase transitions at zero 

temperature, have remained an intriguing research topic [1-6]. There are several types of QPTs, 

dealing with various classes of materials, such as magnets [7-9], superconductors [10] , heavy-

fermion compounds [11, 12], and ferroelectrics [13], and triggered by different control parameters, 

for example mechanical pressure, magnetic or electric fields, and chemical composition [14-16]. 

In some solid-solution alloys of type M1-xTx [2, 17, 18] magnetic transition-metal elements (T) 

cause the nonmagnetic metal (M) to become a ferromagnet above some critical concentration xc. 

The chemical disorder in QPT alloys is normally of the substitutional solid-solution type, with 

nearest-neighbor exchange bonds. This paper deals with QPTs caused by interstitial modification 

of an intermetallic compound, a scenario not considered up to now.  

  

FIG. 1. Unit cell of NiAs-ordered Co1+xSn: (a) CoSn and (b) Co1.5Sn. The excess Co (x) occupies the 

interstitial 2d sites, which exhibit a trigonal-prismatic coordination by the Co atoms of the CoSn 

host lattice. 

 

We consider alloys having the composition Co1+xSn (0 < x ≤ 1), where the excess Co (x) 

enters the 2d interstitial sites in the NiAs structure (Fig. 1) [19, 20]. Current research on Co-based 

alloys is partly motivated by the need to discover new magnetic materials with high Curie 

temperature, high anisotropy, and high magnetization. Such materials, especially consisting of 

earth-abundant and inexpensive elements, are needed for advanced energy and information-

processing applications [21-23]. New Co- and/or Fe-rich compounds, especially those with non-
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cubic and/or metastable structures, are of particular interest, since they potentially possess the 

above desirable magnetic properties. The Co1+xSn system is compelling because the local-

environment effects and associated spin-cluster effects are nontrivial, and whether the apparent 

quantum phase transition is similar to or distinguishable from other examples is intriguing [5]. 

Thermodynamic phase transitions such as Curie transitions and QPTs have many features 

in common but also exhibit important differences. A common feature is that both types of 

transitions are typically described by power laws that relate the response of the system to control 

parameters. Our focus is on magnetic alloys, where the order parameter (magnetization M) and the 

susceptibility χ are controlled by the temperature T, the magnetic field H, and the chemical 

composition x. For example, structurally homogeneous ferromagnets near the Curie temperature Tc 

obey M ~ (Tc – T)β and χ ~ 1/|Tc – T|γ [24]. The susceptibility diverges near the critical point, and 

this divergence is accompanied by long-range critical fluctuations. These fluctuations, observed 

for example as critical opalescence in fluids, have correlation length ξ ~ 1/|Tc – T|ν  [24, 25]. A 

major difference is that QPTs reflect quantum-mechanical fluctuations, as contrasted to the 

thermodynamic fluctuations governing the critical behavior of ferromagnets (Curie transition) and 

of fluids (gas-liquid transition).  

 The description of critical behavior and the determination of critical exponents is 

nontrivial, especially in low-dimensional systems [24-27]. For example, it is well-known that 

long-range fluctuations yield Tc = 0 in one-dimensional magnets [25, 26, 28]. The simplest 

approach towards critical phenomena is the mean-field approximation (MFA), where the 

crystalline environment of a given atom is modeled as an effective medium. In this paper, we 

distinguish between three types of mean-field approximations, namely thermodynamic MFA 

(Landau theory), quantum-mechanical MFA (Stoner theory), and structural MFA (Bethe-lattice 

percolation theory). 

 In its simplest form, the mean-field theory of thermodynamic phase transitions considers 

the order parameter M = M ez and assumes a Landau free energy  

F = ½ ao (T – Tc) M2 + ¼ a4 M4 – µo H M    (1) 

 

where ao and a4 are materials constants and M = <M(r)>. Putting ∂F/∂M = 0 in this equation yields 

the familiar mean-field exponents β = 1/2 and γ = 1. An alternative way of deriving these 
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exponents is to replace the field H acting on an atomic spin by H + λM, where λ is referred to as 

molecular- or mean-field coefficient. 

 The assumption of an effective medium of average magnetization <M> does not 

necessarily mean that the local magnetization M(r) of homogeneous solids is equal to the average 

magnetization <M>. The corresponding fluctuations are described by the correlation function 

 

C(|r – r'|) = (M(r) – <M>) · (M(r') – <M>)       (2) 

 

The zero-field correlations decay as C(|r – r'|) ~ exp(–ξ/(|r – r'|).  

 Completely ignoring C(|r – r'|) corresponds to the Landau theory of Eq. (1), but the 

Ornstein-Zernike extension of the Landau theory includes fluctuations on a mean-field level 

[24, 27]. The extension is obtained by adding a Ginzburg-type gradient term (∇M)2 to Eq. (1). This 

term means that interatomic exchange diminishes pronounced magnetization fluctuations. The 

Ornstein-Zernike theory yields the wave-vector-dependent Curie-Weiss susceptibility 

χ(k) = 
χo

1 – T/Tc + w k2      (3) 

where the parameter w is quadratic in the lattice parameter a. 

The quantum-mechanical mean-field approximation deals with electron-electron 

interactions and treats surrounding electrons as an effective medium (electron gas). In this case, 

Eq. (1) must be replaced by the conceptually very similar expression 

 

      E = ½ a2 M2 + ¼ a4 M4 – µoM H                (4) 

 

Here a2 ~ 1/ ࣞ (EF) – I, where I, ࣞ, and H are Stoner parameter, density of states at the Fermi 

level, and external magnetic field, respectively. This approximation ignores electron correlations 

(the Coulomb interaction between individualized electrons) but is normally a good approximation 

for itinerant systems, such as Co-Sn. The corresponding wave-vector dependent susceptibility is 

[29, 30] 
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χ(k) = 
χo

1 – I ࣞ(EF) + w k2     (5) 

This equation, where w ≈ 2 I(EF)/kF
2, describes the low-temperature susceptibility. Due to spin 

fluctuations, Eq. (5) is difficult to generalize to finite temperatures, but for reasons discussed 

elsewhere [30-32], high-temperature susceptibilities of itinerant magnets are often of the Curie-

Weiss type, Eq. (3). 

 A third type of mean-field theory is related to the percolation aspect of disordered alloys. 

Randomly distributing Co atoms over the interstitial sites creates Co-rich clusters and Co-poor 

regions, and ferromagnetism develops from Co-rich clusters. In fact, even below the onset of long-

range ferromagnetic order, some clusters are very big, which causes the susceptibility to exhibit a 

quasi-ferromagnetic singularity known as the Griffiths singularity; the corresponding region is 

referred to as Griffith phase [2, 33-36]. With increasing x, the Co clusters grow, and at some initial 

percolation threshold xc, an infinite backbone develops. Below xc, the average cluster size has the 

character of a correlation length, obeying ξ ~ 1/(xc – x)ν [37, 38].  

 The mean-field description of percolation is that of the Bethe lattice [38] and yields the 

mean-field exponent ν = 1/2. The same mean-field exponent is obtained from Eq. (3), where ξ ~ 

1/(1 – T/Tc)1/2, and from Eq. (5), where ξ ~ 1/(1– Iࣞ(EF))1/2. These correlation lengths all diverge 

at the critical point. One question considered in this paper is how the different correlation lengths 

interact with each other in the cobalt-tin system.  

Our emphasis is on length scales of a few interatomic distances, partially going beyond 

mean-field theory. In the experimental part, Section II, the Co-Sn alloys are investigated, using 

structural and magnetic measurements, whereas Section III is devoted to analytical and density-

functional theoretical calculations, as well as an analysis of the data in terms of a quantum-phase 

transition. 

 

II. EXPERIMENTAL METHODS AND RESULTS 

Samples of bulk Co1+xSn (0.45 ≤ x ≤ 1.0) were fabricated by conventionally arc melting 

appropriate amounts of Co and Sn, followed by rapid quenching from the melt using a melt-

spinning method. A wheel speed of 40 m/s was used to melt-spin the arc-melted samples into 
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ribbons. The additional melt-spinning step was motivated to achieve a broad high-temperature 

homogeneity range of alloys such as Co-Sn [20]. The composition of the alloys was measured by 

energy dispersive x-ray spectroscopy (EDS), using a spectrometer attached to a secondary-electron 

microscope (FEI Nova NanoSEM 450). The structural properties were investigated with a Rigaku 

SmartLab X-ray Diffractometer using Cu Kα radiation, which has a wavelength of 1.5406 Å. A 

Quantum Design MPMS superconducting quantum-interference device (SQUID) and a physical 

property measurement system (PPMS) were used to measure the magnetic properties of the Co-Sn 

samples.  

 

A. Structure 

 The parent structure of Co1+xSn alloys is the hexagonal B81 structure (prototype NiAs, 

space group P63/mmc). As shown in Fig. 1(a), the NiAs structure has the layer stacking ABAC, as 

compared to the AB and ABC stackings of the hcp and fcc structures. The Sn atoms (yellow) 

occupy the 2c sites in the B and C layers. In a hypothetical equiatomic NiAs-ordered CoSn, Fig. 

1(a), the Co atoms (dark blue) occupy the 2a sites in the A planes only, leaving the interstitial 2d 

sites empty. The extra Co atoms (light blue) occupy a fraction x of the interstitial sites in the B and 

C planes, in Fig. 1(b). 

 NiAs-type Co1+xSn exists over a broad composition range [19, 20]. However, the NiAs 

structure is unstable for equiatomic CoSn, which crystallizes in the unrelated hexagonal B35 

structure (prototype CoSn, space group P6/mmm). Some excess Co (x > 0) is therefore necessary 

to stabilize the NiAs structure. The idealized case of complete interstitial occupancy (x = 1) 

corresponds to the B82 structure (prototype Ni2In, P63/mmc), which is a modified NiAs structure.  

 The experimental XRD patterns for the melt-spun Co1+xSn (0.45≤x≤1) alloys are shown in 

Fig. 2 and analyzed by Rietveld refinement using models based on both site mixing of Co and Sn 

as well as interstitial occupation of excess Co. From the simulations of powder XRD, relative 

intensity variation of (101), (102) and (110) diffraction peaks provides important evidence on the 

site occupancy of Co. If the Co atoms were to replace Sn at the 2c site, the diffraction peak (101) 

always remains the most intense peak. In contrast, an increasing occupation of excess Co at the 

interstitial 2d site leads to a gradual increase of the relative intensities of (102) and (110) in 

comparison to (101) peak. We have observed the latter behavior in our experimental XRD 
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patterns, which strongly suggests the interstitial occupation of the excess Co. Co-Sn site-mixing 

up to 10% cannot be ruled out, but the predominant mechanism can be established as the 

interstitial occupation of excess Co as evident from the fitting results. For example, the fitted XRD 

curves for x = 0.45 and x = 1 based on interstitial occupation of excess Co are shown in Fig. 2 and 

exhibit good agreement with the experimental XRD patterns. We also have simulated XRD pattern 

for the equiatomic CoSn with the hypothetical NiAs-type structure using DFT-optimized lattice 

parameters (Section III B) and included in Fig. 2 for a comparison. There are two most significant 

differences between the XRD patterns on the interstitially modified alloys (0.45 ≤ x ≤1) and that of 

the equiatomic CoSn compound; (i) the (101) reflection is the most intense for x = 0, whereas the 

(102) and (110) reflection shows most intense peaks for 0.45 ≤ x ≤1; the positions of the XRD 

peaks for x = 0 exhibit significant shifts as compared to those for interstitially modified alloys due 

to the difference in lattice parameters.  

 

FIG. 2. X-ray diffraction patterns of the Co1+xSn samples indexed using standard x-ray diffraction data for 

Co1.5Sn alloy with NiAs-type hexagonal structure [39]. The black curves on the experimental 

XRD patterns for x = 0.45 and 1 represent the corresponding fitted curves using Rietveld analysis 

based on interstitial occupation of excess Co. A simulated x-ray diffraction pattern for CoSn 

(x = 0) with the hypothetical NiAs-type structure is also shown for comparison.  
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B. Magnetism 

 Figure 3 shows the magnetization at 10 K as a function of the external magnetic field for 

0.45≤ x ≤1 in Co1+xSn and reveals an apparent transition from paramagnetism to ferromagnetism 

between x = 0.45 and x = 1. In brief, the samples having x = 0.45-0.65 are far away from 

saturation, typical paramagnetic behavior and the Co-rich samples exhibit a ferromagnetic 

signature, with near-saturation in relatively low fields; i.e. the results indicate that cobalt addition 

stimulates the onset of ferromagnetism in the range 0.6 < x < 0.7.  For example, the temperature-

dependence of M (H) indicates paramagnetism for x = 0.5 and ferromagnetism for x = 0.8 as 

shown in Fig. 4(a) and 4(b), respectively.   

 

 

FIG. 3. Magnetic-field dependence of the magnetization of Co1+xSn alloys measured at 10 K. 

 

The temperature dependence of the magnetization in a field of 1 kOe, inset of Fig. 4(b), 

also shows that the x = 0.7 and x = 0.8 samples are ferromagnetic with Curie temperatures of about 

650 K and 660 K, respectively. The M(T) behavior of the alloy with x = 1 suggests a Curie 

temperature well above 900 K. An upturn was observed at 700 K for x = 0.7 and 840 K for x = 0.8, 

not shown in the inset of Fig. 4(b), which is possibly due to the decomposition of the Co-Sn alloys 
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into Co and Sn. Our measurements indicate a magnetic phase transition to ferromagnetic long-

range order immediately above x = 0.65.  

 

FIG. 4. Field-dependent magnetization measured at different temperatures: (a) x = 0.5 and (b) x = 0.8. 

The inset in (b) shows the M(T) curves in an external field of 1 kOe for x = 0.7, 0.8, and 1.0.  

  

The high-field magnetization at 10 K was analyzed for the ferromagnetic samples by the standard 

law-of-approach to saturation: M(H) = Ms [1 – A/H2], where Ms is the saturation magnetization, 

and A is related to the intrinsic magnetic anisotropy [40]. The Ms values for the x = 0.7, 0.8 and 1.0 

samples are shown in Table I and these lead to estimates of the average moments per formula unit 

(f.u.), also shown in Table I. 
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Table I. Properties of the ferromagnetic Co1+xSn samples at 10 K. 

x Ms (emu/cm3) Ms (μB/f.u.) 

0.7 77 0.32 

0.8 128 0.53 

1.0 195 0.80 

 

As shown in Fig. 5(a), the Co1+xSn samples having x = 0.45-0.65 are paramagnetic with 

low-temperature upturns in the susceptibility. We interpret this as a Griffiths-phase effect 

involving cluster moments embedded in a Pauli paramagnetic host matrix. Analysis of the low-

temperature data in terms of a simple Curie or Curie-Weiss expression is not possible in this case 

because the cluster density as a function of x is unknown. For this reason, in Fig. 5(b) we have 

fitted the experimental magnetization for the samples with x = 0.45 - 0.65 to the Langevin 

expression, 

M = ߯଴ܪ ൅ ௦௖௟௨௦௧௘௥ࣦܯ  ቆ ଵ௞ಳ் ቀߤ଴݉ܪ ൅ ࣣ ெெೞ೎೗ೠೞ೟೐ೝቁቇ      (6) 

where m and ܯ௦௖௟௨௦௧௘௥ are the magnetic moment and saturation magnetization of the clusters, and ߯଴ is the Pauli susceptibility. The measured data and the fitted curves are in good agreement. The 

fitting parameters ܯ௦௖௟௨௦௧௘௥, m, and ࣣ will be discussed in Sect. III.A. 
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FIG. 5. (a) Temperature-dependent susceptibility and (b) field-dependent magnetization measured at 10 

K fitted to a Langevin function. The open circles correspond to the experimental data and solid 

lines represent fitting results. 

 

III. DISCUSSION 

 While NiAs-ordered CoSn does not exist as an equilibrium phase [19, 20], small amounts x 

of interstitial Co stabilize the phase. With increasing x, the phase is initially nonmagnetic, but then 

local moments appear, magnetic clusters form, and a Griffiths phase develops. Above a critical 

value xc, the system develops long-range ferromagnetic order. In cluster systems, the onset of 

long-range ferromagnetism is a percolation effect, roughly corresponding to the geometrical 

percolation of the interstitial-cobalt regions. In this section, we analyze theoretical aspects of these 

transitions, both analytically and numerically. The exact numerical treatment of structural and 

magnetic percolation effects is nontrivial and requires complicated methods such as renor-

malization-group (RG) theory [25] and Monte-Carlo simulations [38], which go beyond the scope 

of this paper. However, much nontrivial physics emerges from the analysis of some specific 

aspects of the interstitially modified alloy. We first focus on cluster moment formation in the 

paramagnetic phase. Then we use spin-polarized electronic-structure calculations to describe the 



12 
 

onset of ferromagnetism. Finally, we determine the extent to which our results can be understood 

in terms of recent ideas on quantum-phase transitions.  

A. Cluster Moments and Percolation 

 Figure 6 illustrates the moment-formation and percolation aspects of the interstitial 

Co1+xSn by considering the B and C layers, which are equivalent aside from a shift ½(a + b) in the 

a-b-plane. Small interstitial concentrations x correspond to isolated Co atoms in the B and C 

planes, but with increasing x, clusters rich in interstitial Co start to form (light green). The number 

and sizes of the clusters increase with x, and at some percolation threshold xp, an infinite backbone 

cluster emerges (light red). The geometrical percolation transition at xp roughly corresponds to the 

onset of long-range ferromagnetic order (xc). In fact, there are several types of percolation even in 

a geometrical sense, such as site and bond percolation [38]. Figure 6 corresponds to a special type 

of site percolation, where two interstitial Co atoms are connected if they share sides with a 

common Sn atom. If two Co atoms are connected by this rule, they also share two trigonal-

prismatically coordinating A-layer atoms, which is favorable for the development of interatomic 

exchange across layers. By comparison, the bond-percolation equivalent of this rule, which 

connects two interstitial Co atoms in a B or C layer if they share corners with a common Sn atom, 

does not lead to this type of interlayer coupling. 

 Below percolation, there exists a broad range of non-or weakly interacting clusters, 

including a small fraction of big but finite clusters that correspond to the Griffiths phase [2, 33-

36]. Even above xp, some of the clusters remain unconnected and therefore paramagnetic (light 

green in Fig. 6). The question arises whether unconnected clusters have a magnetic moment. The 

existence of local magnetic moments in disordered metallic structures is a well-studied problem. 

The physics underlying this phenomenon often is discussed in terms of the Anderson model, 

where atomic d-levels are polarized and split by the d-d interaction and then broadened into 

resonances by hybridization with s-electrons [41]. Since the present system is metallic and without 

strong correlations, it is reasonable to consider the use of density-functional theory (DFT) based 

on the local spin-density approximation (LSDA). The actual moment formation cannot be 

predicted in a simple way from the site- or bond percolation thresholds, and explicit electronic-

structure calculations are necessary to predict the moments (Sect. III.B). 
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FIG. 6 . Percolation and Griffith phase in the B and C planes of the modified NiAs structure. Isolated 

interstitial Co atoms (blue) are nonmagnetic, but small clusters of interstitial atoms (light green) 

develop a local magnetic moment. Sufficiently high interstitial Co contents yield a percolating 

backbone (light red), which corresponds to the onset of ferromagnetism [38]. The percolation 

criterion used in this figure (site percolation involving Sn atoms) is only approximate, due to 

interatomic wave-function overlap. 

 

 Table II. Properties of clusters in Co1+xSn obtained using Langevin fitting of M(H) curves 

x 

 

௦௖௟௨௦௧௘௥ܯ  

(emu/cm3) 

m 

(µB) 

ࣣ/kB 

(K) 

ρ 

(nm-3) 

D 

(nm) 

0.45 8.1 0.98 18.5 0.90 1.29 

0.5 24.3 2.8 21.5 0.94 1.27 

0.6 60.4 5.41 26.6 1.20 1.17 

0.65 88.1 6.87 28.5 1.38 1.11 
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 Figure 5(b) makes it possible to determine the average cluster moment m as a function of x, 

and an effective cluster density ρ, which can be defined through ܯ௦௖௟௨௦௧௘௥ = ρ m. The values of ܯ௦௖௟௨௦௧௘௥, m, and ࣣ obtained from Langevin fitting are given in Table II.  

Figure 7 shows plots of m and ࣣ/kB as functions of x. Both the cluster moment m and the 

intercluster exchange ࣣ increase with x, and the positive sign of ࣣ is consistent with ferromagnetic 

coupling between the clusters. 

 

FIG. 7. Dependence of cluster moment (m) and exchange (ࣣ/kB) on x (excess Co). The lines are simply 

guides to the eye. 

 

The values ρ = ܯ௦௖௟௨௦௧௘௥/m of cluster density are shown in Table II and range from 0.90 to 

1.38 (nm)-3 on varying x from 0.45 to 0.65. The clusters are randomly distributed, but the center-

to-center distance D between neighboring clusters is approximately twice the Wigner-Seitz cell 

radius of the corresponding three-dimensional Voronoi mosaic, D = (6/πρ)1/3. This distance 

decreases from 1.29 to 1.11 nm on increasing x from 0.45 to 0.65 (Table II).  

B. Electronic-Structure Calculations 

 To calculate the magnetic moments of individual atoms, we have used density functional 

theory as implemented in the Vienna ab initio simulation package (VASP) [42]. The method 

involves an accurate frozen-core projector-augmented-plane-wave (PAW) method. We employ 

PAW pseudopotentials, with exchange and correlation described by Perdew, Burke, and Ernzerhof 
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(PBE), using a generalized-gradient approximation (GGA) [43]. A kinetic-energy cutoff of 500 eV 

was taken for the plane-wave basis set and the equilibrium lattice parameters were obtained by 

relaxing the unit cell using the conjugate-gradient method with a highly accurate convergence 

limit of 10-6 eV. We used different sizes of the k-point grid for different unit cells for the 

calculations in the irreducible part of the Brillouin zone, employing the Monkhorst–Pack scheme 

[44].  

To model the atomic structure of the interstitial alloys, we have constructed several 

supercells slightly above x = 0, using DFT-optimized lattice parameters of a = 3.88 Å and c = 5.25 

Å for the hypothetical CoSn alloy (x = 0).  For x ≥ 0.38, the relaxed lattice parameters obtained 

using calculations are similar to the experimental lattice parameters. A random-number generator 

was used to assign occupancies of 0 (empty) or 1 (Co) to the individual 2d sites. To avoid off-

stoichiometric (Co-poor or Co-rich) supercells, configurations having too few or too many Co 

atoms were discarded. The largest supercell considered is that of Fig. 8(a), a 3 × 3 × 3 supercell 

containing between 108 and 162 atoms and corresponding to the Co1.02Sn stoichiometry. 

Our calculations predict that hypothetical CoSn is nonferromagnetic. The same is true for a 

single interstitial Co atom in a large supercell, Fig. 8(a), which is unable to create a local magnetic 

moment, in spite of its trigonal-prismatic coordination by six Co atoms on the 2a sites. Note that 

the Wigner-Seitz cell radius established by the interstitial Co sublattice of Fig. 8(a) is 0.79 nm. 

This figure can therefore be used to gauge the center-to-center cluster distance of Sect. III.A. 

 

FIG. 8. Moment formation in interstitial Co1+xSn: (a) single interstitial Co atom in a 3 × 3 × 3 supercell, 

corresponding to a net composition Co1.02Sn and (b) magnetic cluster (light gray) in a 2 × 2 × 2 

supercell, corresponding to Co1.5Sn. 
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 Adding further Co atoms to the structure of Fig. 8(a) has two effects. A part of the 

additional Co atoms occupies interstitial sites in Co-poor regions and remains nonmagnetic. 

However, some added Co atoms are close to interstices already occupied, forming or enlarging 

Co-rich magnetic clusters (gray circle). The formation of new clusters enhances the cluster density 

ρ, but some added Co atoms provide percolation bridges between existing clusters and thereby 

reduce ρ. This means that additional Co primarily increases the cluster size, as opposed to the 

number of clusters.   

We have found that relatively small clusters of interstitial Co atoms develop a magnetic 

moment, largely but not exclusively confined to the central (interstitial) atoms and the 

coordinating Co prism. The situation is schematically depicted in Fig. 8(b), where the atoms in the 

gray circle are spin-polarized. The atomic moments strongly depend on more distant interstitial Co 

atoms, and we have not attempted to systematically analyze the configurational aspect of the 

problem. A very transparent picture is obtained for x = 1, where the atomic moments per atom are 

0.99 µB (Co 2a), 0.33 µB (Co 2d), and –0.06 µB (Sn 2c). 

 

 

FIG. 9. Total density of states (DOS) from DFT calculations: (a) CoSn (paramagnetic) and (b) Co2Sn 

(ferromagnetic). The ferromagnetism can be seen from the spin-dependent shift of the dominant 

Co 3d peak just below the Fermi level. 
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For comparison, the calculated total densities of states for x = 0 and x = 1 are shown in 

Fig. 9(a) and Fig. 9(b), respectively. The ↑ and ↓ bands are identical for x = 0 (paramagnetism). 

For x =1, the ↑ and ↓ bands are different, the alloys are ferromagnetic, and the calculations yield 

an average magnetic moment of 0.66 μB/Co for x = 1, in a rough agreement with the experimental 

value, 0.8 μB/fu or 0.40 μB/Co (Table I). 

We also have performed first-principle spin-polarized DFT calculations within the 

coherent-potential approximation (CPA) [45]. The generalized-gradient approximation (GGA), 

parameterized by Perdew, Burke, and Ernzerhof [43], was employed along with the spin polarized 

relativistic Korringa-Kohn-Rostoker (SPR-KKR) code from the Munich group [46, 47]. The 

calculations were carried out in scalar-relativistic mode with a dense 32 × 32 × 32 k-point mesh. 

The experimental lattice parameters were used in the calculations. The 2a-site is always fully 

occupied by Co. Sn occupies the 2c-site. The interstitial 2d-site is partially or fully occupied by Co 

depending on the value of x.   

In the coherent-potential approximation CPA [45, 48], individual interstitial sites (Co-

filled or empty) are treated accurately, but the surrounding atoms are modeled as an effective 

medium. This single-site approximation is a major advantage and fairly accurately describes most 

physical properties. However, one of its shortcomings is the neglect of cluster localization. For 

example, band edges calculated using the CPA are unphysically sharp [49, 50]. In the present 

context, cluster localization means that the magnetism of the Co atom depends on whether it is 

located in a Co-rich cluster or in a Co-poor region. In the former case, it becomes spin-polarized 

easily, and this effect is ignored by the CPA. As a consequence, the CPA largely ignores Griffiths-

phase effects and underestimates the formation of magnetic moments for low Co contents. In brief, 

the CPA calculations agree with the experimental magnetic behaviors observed for x = 0.5 and x = 

1 in Co1+xSn alloys, meaning that Co1.5Sn is paramagnetic and Co2Sn is ferromagnetic with 0.26 

µB per Co, which agrees qualitatively with the corresponding experimental value (0.40 μB/Co) 

(Table I). 

C. Quantum-Phase-Transition Analysis 

The onset of ferromagnetic order in the present system is generated by the quantum 

fluctuations induced by the excess Co in Co1+xSn, that is, determined ultimately by the density of 
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states at the Fermi level, as discussed in Section I. For example, the DOS can be tuned by 

changing the chemical composition of an alloy MxT1-x with ferromagnetism occurring above xc, the 

quantum critical point, and the saturation magnetization eventually follows the power law Ms ~ (x 

– xc)β′, where β ′ is a critical exponent [51]. We have fitted the experimental Ms values of the 

ferromagnetic Co1+xSn samples (Table I) using this power law, Fig. 10, and this analysis yields β ′ 

= 0.47±0.03 and xc = 0.65±0.01, that is, the magnetic QPT to ferromagnetism in the Co1+xSn alloys 

occurs at xc of about 0.65. Our analysis shows a comparatively strong dependence of β′ on the 

variation of xc within the error bar.  

 

FIG. 10. The measured saturation magnetization at 10 K for the Co1+xSn as a function of x (solid circles). 

The curved line corresponds to the fitting of the experimental data using Ms ~ (x – xc)β'
. 

We also consider QPT in Co1+xSn alloys following another approach used by Wang et al. 

in Ni1-xVx [2]. This study shows that the QPT mediated by the Griffith phase is also reflected in 

M(H) curves, which follow anomalous power laws  M ~ Hα and M – M0 ~ Hα  in the paramagnetic 

and ferromagnetic regions, respectively [2, 34, 35]. Here M0 is the spontaneous magnetization and  

α is a non-universal exponent, strongly dependent on x and decreasing towards zero at xc. 

Figure 11(a) shows the fitting of the experimental magnetization curves of Co1+xSn 

(0.45 ≤ x ≤ 0.65) for a field region 7 to 70 kOe using M ~ Hα, with α obtained using the fitting as 

shown as a function of x in Fig. 11(b). Note that α is also reported to follow a power law α(x) ~ (xc 
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– x)ζ (ζ = νψ in Ref. 2, where ν is different from the exponent ν discussed in Section I), and we 

have fitted α values of the paramagnetic Co1+xSn samples using the above equation and xc = 0.65 

determined from Fig. 10. This analysis also yields ζ = 0.47, which strikingly is the same as β ′. On 

the ferromagnetic side, α is strongly affected by a number of factors, such as the size distribution 

of the non-percolated (unconnected) clusters, random anisotropy, and domain formation. 

Therefore, we have not attempted to explicitly analyze this aspect of the QPT for the 

ferromagnetic samples. Note that α(x) is reported in Ref. 2 to be nearly symmetric on both sides of 

xc, and thus a symmetric α(x) curve for the ferromagnetic side is also drawn as a dashed line in 

Fig. 11(b) to visualize clearly the critical behavior near the quantum-critical point (QCP). 

However, the abrupt magnetization jump near xc shown in Fig. 10 is consistent with the finding in 

Ref. 2 that α goes to zero as x approaches xc.  

 

 

FIG. 11.  Power-law analysis of the field dependence of the magnetization: (a) experimental M(H) 

curves measured at 10 K for Co1+xSn (solid circles). The solid lines correspond to the fitting 

using M ~ Hα; (b) the non-universal exponent α(x), solid circles, fitted by α(x) ~ (xc – x)ζ  

(solid line). The dashed line is drawn exactly symmetric to the solid line to explain the 

quantum critical behavior. 
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It is also important to distinguish QPTs involving strong and weak itinerant ferromagnets. 

In strong ferromagnets, the majority (↑) band is completely filled, so that any change in x simply 

reduces or enhances the number of 3d electrons in the minority (↓) band. As a consequence, the 

saturation magnetization changes linearly with x, and the exponent in Ms ~ (x – xc)β′ is β  

′ = 1. A 

very similar scenario is realized when the Fermi level is captured in the vicinity of some peak. 

Examples of this strong ferromagnetism are Ni1-xVx and Ni1-xCux [34, 52]. In weak ferromagnets, 

such as bcc Fe, the ↑ and ↓ 3d bands are partially but not equally filled, so M ~ n↑ – n↓ is nonzero. 

Since changes in x affect both subbands, they make the difference n↑ – n↓ very small in some 

alloys without complete band filling, which is known as very weak itinerant ferromagnetism 

(VWIF). This scenario is realized in materials such as ZrZn2 [30, 53, 54] and, Co1+xSn as 

discussed below. 

The simplest quantum-mechanical approach is to evaluate the magnetic energy in terms of 

Eqs. (4-5). The interesting physics is in the parameter a2 ~ 1/ ࣞ (EF) – I. The parameter a4 exhibits 

a more complicated dependence on ࣞ (E) [30], but it is generally of the order of 1 eV/µB
4 if M is 

measured in µB per atom. The magnetization is obtained by finding the minima of E, that is, by 

putting ∂E/∂M = 0 in Eq. (4). For H = 0, this yields the spontaneous magnetization, whereas the 

application of a small field yields the susceptibility, χ = µo/a2 in the case of exchange-enhanced 

Pauli paramagnetism, Eq. (5). Figure 12(a) shows E(M) for different regimes. In the paramagnetic 

state (blue curve), a2 is positive and large, which yields a deep magnetic-energy minimum at M = 

0 and a very small Pauli susceptibility. In strong ferromagnets, a2 is large but negative, so that the 

magnetic energy exhibits two deep minima (red curve). This corresponds to spontaneous 

symmetry breaking and to a ferromagnetic ground state with |M| = M0, where M0 roughly 

corresponds to full spin polarization, about 2 µB per atom for metallic Co. With decreasing a2, 

physically realized through (EF), the susceptibility increases and reaches infinity at the Stoner 

transition (a2 = 0). Note that Fig. 12(a) is very similar to the Landau theory of finite-temperature 

phase transitions [55]. 

 Figure 12(a) also shows the energy landscape for the very-weak itinerant ferromagnetic 

case, where the Stoner criterion is barely satisfied (black curve). In this case, the spontaneous 

magnetization Mmin is substantially smaller than M0. Figure 12(b) shows how Mmin varies as a 
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function of the control parameter g = –a2. The density of states is a function of x, so that g can 

approximately be linearized near gc; thus x rather than g can be used on the horizontal axis of 

Fig. 12(b). In more detail, putting ∂E/∂M = 0 and H = 0 in Eq. (5) yields a square-root dependence 

M ~ (–a2)1/2, which is schematically shown in Fig. 12(b). Writing ࣞ(EF) = ࣞs + b (x – xc), where ࣞs corresponds to the Stoner transition, putting the linearized expression into a2, and analyzing M 

as a function of x yields M ~ (x – xc)1/2, that is β  

′ = 1/2. 

 

 

 

Fig. 12.  Predictions from Eq. (5): (a) magnetic energy as a function of magnetization for paramagnet, 

very weak itinerant ferromagnet and strong ferromagnet and (b) magnetization as a function of 

the control parameter g ~ (EF) ~ x. 

 

The existence or nonexistence of a quantum-phase transition having β  

′ = 1/2 depends on 

the electronic structure of the material. Equation (9) is an analytic function of E on M, but 

densities of states and the resulting magnetic energies are generally nonanalytic. The non-

analyticity is most pronounced in strong ferromagnets, where the two minima stay far apart at ±Mo 

even very close to the Stoner transition [56]. As discussed above, our experiments as well as 

density-functional calculations support an exponent β  

′ = 1/2 rather than β  

′ = 1 in Co1+xSn. 

 The minima in the black curve of Fig. 12(a) are very shallow, the energy difference scaling 

as a2
2, which means that perturbations have a very strong impact on the system's behavior. Three 

types of perturbations need to be considered. First, quantum fluctuations reflect Heisenberg's 
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uncertainty principle [57, 58]. In strongly exchange-enhanced Pauli paramagnets, which are close 

to the Stoner transition and characterized by small but positive values of a2, quantum fluctuations 

have the character of temporarily stable paramagnons [57]. These quasiparticles affect, for 

example, the specific heat [29]. Second, at T > 0, the effect of the quantum fluctuations is 

enhanced by thermal fluctuations, which is known as the quantum-critical region. Third, chemical 

disorder acts as a strong perturbation and profoundly alters the physical behavior of the system. In 

the present systems, the disorder is of the interstitial type, a case not previously considered. 

 In terms of Eq. (5), quantum effects due to interstitial disorder correspond to the k-

dependence of the susceptibility, whereas in density-functional theory, they are described in terms 

of supercells, Fig. 8.  One aspect of the system is the existence of Griffiths phenomena in the 

paramagnetic phase, caused by regions rich in interstitial Co. By itself, the Griffiths phase [33] is a 

classical phenomenon, because it deals with the Ising model [28], where all operators commute. 

Note that this proper or statistical Ising model differs from the so-called transverse Ising model 

[57, 59], both models being important in the theory of phase transitions. However, the quantum-

mechanical interactions leading to the formation of Griffiths clusters in the present case are quite 

different from the random-Ising and substitutional-alloy systems considered so far.  

 In the analysis of the QPT, we take into account that the Co-Sn alloys are only weakly 

correlated, so that density functional theory and Eq. (5) can be used to determine the spin state. If 

the magnetism of the Co atoms were of the strong type, then each Co atom would have a stable 

magnetic moment, and the total moment would be proportional to the number of Co atoms. This is 

not the case here: hypothetical CoSn is (almost certainly) Pauli-paramagnetic, and the situation 

does not change very much for small amounts of excess cobalt. In particular, the DFT calculations 

and our experiments show that single Co atoms on interstitial sites do not develop a Co moment. 

However, once the interstitial Co atoms cluster, they develop a moment and also spin-polarize the 

surrounding host-lattice Co atoms. This scenario is described by Fig. 8 and very different from 

strong ferromagnetism, where the Co moment is determined by band-filling effects but otherwise 

stable. Spatial moment fluctuations are described through the k-dependence in Eq. (5). The onset 

of ferromagnetism in Co1+xSn involves fairly large numbers of Co atoms, about 17 in Fig. 8(b), but 

these regions are not infinite. Their finite size corresponds to nonzero k-values in Eq. (5) and 

therefore works against the Stoner parameter I, which is the driving force behind the onset of 

ferromagnetism.  
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 Once the Co clusters grow with increasing x, the Co atoms inside the clusters rapidly 

develop fairly stable moments (Sect. II.B). This situation is reminiscent of strong ferromagnetism 

but difficult-to-distinguish experimentally from the VWIF scenario, because both Fig. 12(b) and 

the number of Co atoms in the percolation backbone yield similar exponents β ′ ≈ 0.5 above xc.  

 

 

IV. CONCLUSIONS 

 In summary, we have shown a quantum-phase transition in Co1+xSn, caused by excess 

Co (x) occupying interstitial sites. Below the critical composition xc = 0.65, the material is para-

magnetic, combining Griffiths-phase and Pauli-paramagnetic features, whereas at xc, the excess 

Co triggers a transition to ferromagnetism. Isolated interstitial Co atoms do not develop a local 

magnetic moment, in spite of being embedded in a Co-rich matrix, but clusters of interstitial Co 

atoms do and also spin-polarize the surrounding host lattice. The transition involves two types of 

exchange interactions, namely a relatively strong Co-Co exchange mediated by host lattice Co 

atoms and a much weaker exchange between Co-rich clusters. 

 We hope that our analysis of the onset of ferromagnetism in Co-Sn deepens the 

understanding of quantum phase transitions in itinerant-electron systems, drawing attention to 

both universal and nonuniversal features. 
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